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Abstract. This paper deals with numerical solutions of maximizing ex-
pected utility from terminal wealth under a non-bankruptcy constraint. The
wealth process is subject to shocks produced by a general marked point pro-
cess. The problem of the agent is to derive the optimal insurance strategy
which allows ”lowering” the level of the shocks. This optimization problem
is related to a suitable dual stochastic control problem in which the deli-
cate boundary constraints disappear. In Mnif [11], the dual value function is
characterized as the unique viscosity solution of the corresponding Hamilton
Jacobi Bellman Variational Inequality (HJBVI in short). We characterize the
optimal insurance strategy by the solution of the variational inequality which
could be solved numerically by using an algorithm based on policy iterations.

1. Introduction

The problem of optimal risk control of a financial corporation has recently
gained a considerable interest from the academic and practitionner communities.
The most typical example is an insurance company, where the insurer receives a
rate of premiums, and he is faced with shocks. He prefers to cover only a portion of
the shocks and to pay to the reinsurer a certain part of the premiums. In return,
the latter is obliged to pay a part of the claim when it happens. This type of
contract is needed by legal restrictions. Such a problem could be solved by using
the maximizing utility technics. It is useful in the context of an insurance syndicate
when the insurers can be seen as individuals endowed with utility functions 1.

In this paper, we study the optimal insurance demand problem of an agent
whose wealth is subject to shocks produced by some marked point process. Such
a problem was formulated by Bryis [3] in continuous-time with Poisson shocks.
Gollier [6] studied a similar problem where shocks are not proportional to wealth.
An explicit solution to the problem is provided by Bryis by writing the associated
Hamilton-Jacobi-Bellman (HJB in short) equation. In Bryis [3] and Gollier [6],
they modeled the insurance premium by an affine function of the insurance strategy
θ = (θt)t∈[0,T ] which is the rate of insurance decided to be covered by the agent. If
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the agent is subject to some accident at time t which costs an amount Z, then he
will pay θtZ and the insurance company reimburses the amount (1 − θt)Z. They
didn’t assume any constraint on the insurance strategy, which is not realistic.

In risk theory, Hipp and Plum [7] analysed the trading strategy, in risky assets,
which is optimal with respect to the criterion of minimizing the ruin probability.
They derived the HJB equation related to this problem and proved the existence
of a solution and a verification theorem. When the claims are exponentially dis-
tributed, the ruin probability decreases exponentially and the optimal amount
invested in risky assets converges to a constant independent of the reserve level.
Schmidli [13] studied the optimal proportional reinsurance policy which minimizes
the ruin probability in an infinite horizon. He derived the associated HJB equa-
tion, proved the existence of a solution and a verification theorem in the diffusion
case. He proved that the ruin probability decreases exponentially whereas the
optimal proportion to insure is constant. Moreover, he gave some conjecture in
the Cramér-Lundberg case. Højgaard and Taksar [8] studied another problem of
proportional reinsurance. They considered the issue of reinsurance optimal frac-
tion, that maximizes the return function. They modelled the reserve process as a
diffusion process.

In this paper, we model the claims by using a compound Poisson process. The
insurance trading strategy is constrained to remain in [0, 1]. We impose a con-
straint of non-bankruptcy on the wealth process Xt of the agent for all t. The
objective of the agent is to maximize the expected utility of the terminal wealth
over all admissible strategies and to determine the optimal policy of insurance.

The latter stochastic control problem with state constraint by duality meth-
ods is studied in Mnif [11]. He characterized the dual value function by a PDE
approach as the unique solution to the associated HJBVI. In this paper, we de-
termine numerically the optimal strategy of investment and the optimal reserve
process. The optimal strategy is usually determined in a feedback form by using
the primal approach and solving the associated HJB equation. Thanks to a veri-
fication theorem (See Theorem 4.1), the optimal reserve process is related to the
derivative of the dual value function with respect to the dual state variable. When
the shocks are modeled by a Poisson process, we can obtain an explicit expression
of the optimal strategy of insurance in terms of the dual value function . The
paper is organized as follows. Section 2 describes the model. In Section 3, we
formulate the dual optimization problem and we derive the associated HJBVI for
the value function. In Section 4, we prove a verification theorem. We show that if
there exists a solution to the HJBVI, then subject to some regularity conditions,
it is the value function of the dual problem. The optimal insurance strategy could
be completely characterized by the value function of the dual problem. Section 5
is devoted to a numerical analysis of the HJBVI.

2. Problem Formulation

Let (Ω,F , P ) be a complete probability space. We assume that the claims
are generated by a compound Poisson process. More precisely, we consider an
integer-valued random measure µ(dt, dz) with compensator π(dz)dt. We assume
that π(dz) = ̺G(dz) where G(dz) is a probability distribution on the bounded
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set C ⊆ IR+ and ̺ is a positive constant. In this case, the integral, with respect
to the random measure µ(dt, dz), is simply a compound Poisson process: we have
∫ t

0

∫

C
zµ(du, dz) =

∑Nt

i=1 Zi, where N = {Nt, t ≥ 0} is a Poisson process with
intensity ̺ and {Zi, i ∈ IN} is a sequence of random variables with common
distribution G which represent the claim sizes.

Let T > 0 be a finite time horizon. We denote by IF = (Ft)0≤t≤T the filtration
generated by the random measure µ(dt, dz). By definition of the intensity π(dz)dt,
the compensated jump process:

µ̃(dt, dz) := µ(dt, dz)− π(dz)dt

is such that {µ̃([0, t]× B), 0 ≤ t ≤ T } is a (P, IF ) martingale for all B ∈ C, where
C is the Borel σ-field on C.

An insurance strategy is a predictable process θ = (θt)0≤t≤T which represents
the rate of insurance covered by the agent. We assume that the insurance premium
is an affine function of the insurance strategy. Given an initial wealth x ≥ 0 at
time t and an insurance strategy θ, the agent’s wealth process at time s ∈ [t, T ] is
then given by :

Xt,x,θ
s := x+

∫ s

t

(α− β(1 − θu)) du −

∫ s

t

∫

C

θuzµ(du, dz). (2.1)

We assume that α ≥ β ≥ 0 which means that the premium rate received by the
agent is lower than the premium rate paid to the insurer. In the literature, this
problem is known as the proportional reinsurance one. The agent is an insurer
who has to pay a premium to the reinsurer. We impose that the insurance strategy
satisfies:

θs ∈ [0, 1] a.s. for all t ≤ s ≤ T. (2.2)

We also impose the following non-bankruptcy constraint on the wealth process:

Xt,x,θ
s ≥ 0 a.s. for all t ≤ s ≤ T. (2.3)

Given an initial wealth x ≥ 0 at time t, an admissible policy θ is a predictable sto-
chastic process (θs)t≤s≤T , such that conditions (2.2) and (2.3) are satisfied. We de-
note byA(t, x) the set of all admissible policies and S(t, x) := {Xt,x,θ such that θ ∈
A(t, x)}.

Our agent has preferences modeled by a utility function U which satisfies the
following assumption:

Assumption 2.1. We assume that the agent’s utility is described by a CRRA (

Constant Relative Risk Aversion ) utility function i.e. U(x) = xη

η
, where η ∈ (0, 1).

We denote by I the inverse of U ′ and we introduce the conjugate function of U
defined by

Ũ(y) := sup
x>0

{U(x)− xy}, y > 0

= U(I(y))− yI(y). (2.4)

A straightforward calculus shows that Ũ(y) =
y−γ

γ
where γ = η

1−η
and Ũ ′(y) =

−I(y) for all y > 0.
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The agent’s objective is to find the value function which is defined as

v(t, x) := sup
θ∈A(t,x)

E(U(Xt,x,θ
T )). (2.5)

3. Dual Optimization Problem

First we introduce some notations. Let x ≥ 0 and t ∈ [0, T ]. We denote by
P(S(t, x)) the set of all probability measures Q ∼ P with the following property:
there exists A ∈ Ip, set of non-decreasing predictable processes with A0 = 0, such
that :

X −A is a Q− local super-martingale for any X ∈ S(t, x). (3.1)

The upper variation process of S(t, x) under Q ∈ P(S(t, x)) is the element

ÃS(t,x)(Q) in Ip satisfying (3.1) and such that A − ÃS(t,x)(Q) ∈ Ip for any A ∈
Ip satisfying (3.1).

From Lemma 2.1 of Föllmer and Kramkov [5], we can derive P(S(t, x)) and

ÃS(t,x)(Q). This result states that Q ∈ P(S(t, x)) if and only if there is an upper
bound for all the predictable processes arising in the Doob-Meyer decomposition of
the special semi-martingale V ∈ S(t, x) under Q. In this case, the upper variation
process is equal to this upper bound.

It is well-known from the martingale representation theorem for random mea-
sures (see e.g. Brémaud [2]) that all probability measures Q ∼ P have a density
process in the form :

Zρ
s = E

(
∫ s

t

∫

C

(ρu(z)− 1)µ̃(du, dz)

)

, s ∈ [t, T ], (3.2)

where ρ ∈ Ut = {(ρs(z))t≤s≤T predictable process : ρs(z) > 0, a.s., t ≤ s ≤ T ,z ∈

C,
∫ T

t

∫

C

(

| log ρs(z)|+ ρs(z)π(dz)
)

ds < ∞ and E[Zρ
T ] = 1}.

By Girsanov’s theorem, the predictable compensator of an element Xθ ∈ S(t, x)
under P ρ = Z

ρ
T .P is :

Aρ,θ
s =

∫ s

t

(α − β)du+

∫ s

t

θu(β −

∫

C

ρu(z) z π(dz))du.

We deduce from Lemma 2.1 of Föllmer and Kramkov [5] that P(S(t, x)) = {P ρ :
ρ ∈ Ut} and the upper variation process of P ρ is :

ÃS(t,x)
s (P ρ) =

∫ s

t

(α− β)du +

∫ s

t

(β −

∫

C

ρu(z) z π(dz))+du.

From the non-decreasing property of U , we have

v(t, x) = sup
H∈C+(t,x)

E[U(H)],

where C+(t, x) = {H ∈ L0
+(FT ) : X

t,x,θ
T ≥ H a.s. for θ ∈ A(t, x)}. Mnif and Pham

[12] gave the following dual characterization of the set C+(t, x)

H ∈ C+(t, x) ⇐⇒ J(H) ≤ x, (3.3)
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where J(H) is defined by

J(H) := (3.4)

sup
Z∈P0(t,x) ,τ∈Tt

E

[

ZTH1τ=T −

∫ τ

t

Zu(α− β + (β −

∫

C

ρu(z) z π(dz))+)du

]

,

P0(t, x) is the subset of elements P ρ ∈ P(S(t, x)) such that Ã
S(t,x)
T (P ρ) is bounded

and Tt is the set of all stopping times valued in [0, T ].
Following Mnif [11], the dual problem of (2.5) is written as:

ṽ(t, y) := (3.5)

inf
Y ∈Y0(t)

E

[

Ũ(yY ρ,D
T ) +

∫ T

t

yY ρ,D
u (α− β + (β −

∫

C

ρu(z) z π(dz))+)du

]

,

where

Y0(t) := {Y ρ,D = ZρD, Zρ ∈ P0(t, x), D ∈ Dt},

and Dt the set of nonnegative, nonincreasing predictable and càdlàg processes D
= (Ds)t≤s≤T with Dt = 1. We shall adopt a dynamic programming principle ap-
proach to study the dual value function (3.5). We recall the dynamic programming
principle for our stochastic control problem: for any stopping time 0 ≤ τ ≤ T ,
0 ≤ t ≤ T and 0 ≤ h ≤ T − t,

ṽ(t, y) = inf
Y ρ,D∈Y0(t)

E
[

ṽ
(

(t+ h) ∧ τ, Y
ρ,D

(t+h)∧τ

)

(3.6)

+

∫ (t+h)∧τ

t

Y ρ,D
u

(

α− β +

(

β −

∫

C

ρu(z) z π(dz)

)

+

)

du

]

,

where a ∧ b = min(a, b) ( see e.g. Fleming and Soner [4]).
We denote by Lt the set of adapted processes (Ls)t≤s≤T with possible jump at

time s = t and satisfying the equation

dLs = −
dDs

Ds

1{Ds>0}, t ≤ s ≤ T, Lt− = 0. (3.7)

The Hamilton Jacobi Bellman Variational Inequality arising from the dynamic
programming principle (3.6) is written as

min

{

∂ṽ

∂t
(t, y) +H

(

t, y, ṽ,
∂ṽ

∂y

)

,−
∂ṽ

∂y
(t, y)

}

= 0, (3.8)

(t, y) ∈ [0, T )× (0,∞), with the terminal condition

ṽ(T, y) = Ũ(y) , y ∈ (0,∞), (3.9)

where

H

(

t, y, ṽ,
∂ṽ

∂y

)

:= inf
ρ∈Σ

{

Aρ

(

t, y, ṽ,
∂ṽ

∂y

)

+ y

(

α− β + (β −

∫

C

ρ(z) z π(dz))+

)}

,
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Aρ

(

t, y, ṽ,
∂ṽ

∂y

)

:=

∫

C

(

ṽ(t, ρ(z)y)− ṽ(t, y)− (ρ(z)− 1)y
∂ṽ

∂y
(t, y)

)

π(dz),

and

Σ :=

{

ρ positive Borel function s.t.

∫

C

(

| log ρ(z)|+ ρ(z)
)

π(dz) < ∞

}

.

This divides the time-space solvency region [0, T )× (0,∞) into a no-jump region

R1 =

{

(t, y) ∈ [0, T ]× (0,∞), s.t.
∂ṽ

∂t
(t, y) +H

(

t, y, ṽ,
∂ṽ

∂y

)

= 0

}

and a jump region

R2 =

{

(t, y) ∈ [0, T ]× (0,∞), s.t.
∂ṽ

∂y
(t, y) = 0

}

.

In Mnif [11], The dual value function is characterized as the unique viscosity
solution of the associated HJBVI (3.8)- (3.9) in the set of functions Dγ([0, T ] ×
(0,∞)) defined as follows:

Dγ([0, T ]× (0,∞)) :=
{

f : [0, T ]× (0,∞) → IR such that ,

sup
y>0

|f(t, y)|

y + y−γ
< ∞ and sup

x>0,y>0

|f(t, x)− f(t, y)|

|x− y|(1 + x−(γ+1) + y−(γ+1))
< ∞

}

.

4. Verification Theorem

The main result of this section is the following verification theorem. It char-
acterizes the optimal wealth process. When we model the jump by a Poisson
process, the optimal insurance strategy is expressed in terms of the HJBVI solu-
tion. Our stochastic control problem is unusual, in the sense that, the control ρ is
an unbounded predictable process and L, given by (3.7), is also unbounded. For
technical reasons, we need to add the following integrability conditions that will
be checked later in the case of the Poisson process (See Example 4.9 and Remark
4.7).

Assumption 4.1. For all t ∈ [0, T ] and (ρ,D) ∈ Ut ×Dt. We assume that :

(i) for all γ
′

≥ 2γ, we have E[exp(γ
′

LT )] < ∞,
(ii) there exist two Borel functions C1ρ, C2ρ such that

C1ρ(z) ≤ ρs(z) ≤ C2ρ(z) ds⊗ π(dz) a.e., (s, z) ∈ [t, T ]× C,

∫

C
C1ρ(z)

−γ
′

π(dz) < ∞ and
∫

C
C2ρ(z)π(dz) < ∞.

The following lemma states the growth condition of the dual value function ṽ.

Lemma 4.2. The dual value function ṽ is locally bounded and satisfies

sup
y>0

|ṽ(t, y)|

y + Ũ(y)
< ∞. (4.1)

Proof. See Appendix. �
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Theorem 4.3. Suppose that there exists a solution to the HJBVI (3.8), denoted
by v̂ with terminal condition

v̂(T, y) = Ũ(y) for all y ∈ (0,∞),

such that v̂ is continuously differentiable with respect to t and y, ∂v̂
∂y

is continuously

differentiable with respect to t and y in the no jump region R1 and v̂ satisfies the
growth condition (4.1). Suppose that Assumption 4.1 holds. Suppose further that

there exist a Borel function ρ̂ ∈ Ut, a process D̂ ∈ Dt, t ∈ [0, T ] and a positive real
ŷ such that with probability 1 we have

(s, ŷŶs) ∈ R1 ds⊗ dP a.s. s ∈ [t, T ], (4.2)

∫ T

t

∂v̂

∂y
(s, ŷŶs−)Ŷs−dL̂s = 0, (4.3)

∂v̂

∂y
(t, ŷŶt) + x = 0, (4.4)

where Ŷ := Z ρ̂D̂ = ẐD̂. Then v̂ is the value function of the dual problem, (D̂, ρ̂)
is the solution of the dual problem. The optimal wealth process is given by:

X∗
s = −

∂v̂

∂y
(s, ŷŶs) ds⊗ dP a.s. s ∈ [t, T ]. (4.5)

Proof. See Appendix �

Remark 4.4. Hypothesis (4.2) means that ((s, ŷŶs))s∈[t,T ] remains almost surely
in the no jump region. The process might have jumps in the region R2 but it
immediately reaches the region R1.

Remark 4.5. Hypothesis(4.3) means that the process D̂ regulates the process Ŷ

and it only decreases when the wealth process hits zero.

Remark 4.6. If all the shocks have the same size denoted by δ, then the optimal
insurance strategy is given by

θ∗s =

∂v̂
∂y

(s, ρ̂sŷŶs−)−
∂v̂
∂y

(s, ŷŶs−)

δ
a.e. in s ∈ [t, T ]. (4.6)

From definition of L̂ (see assumption 4.3), L̂ decreases only on the set {∂v̂
∂y

(s, ŷŶs) =

0} or on this set, we have ∂2v̂
∂y2 (s, ŷŶs) = 0 and so

∂2v̂

∂y2
(s, ŷŶs)D̂sdL̂s = 0. By Itô’s

lemma we obtain

dX∗
s =

∂2v̂

∂y2
(s, ŷŶs)ŶsdL̂s + ̺(ρ̂s − 1)ŷŶs

∂2v̂

∂y2
(s, ŷŶs)ds (4.7)

−
∂2v̂

∂s∂y
(s, ŷŶs)ds− (

∂v̂

∂y
(s, ρ̂sŷŶs−)−

∂v̂

∂y
(s−, ŷŶs−))dNs

= ̺(ρ̂s − 1)ŷŶs

∂2v̂

∂y2
(s, Ŷs)ds−

∂2v̂

∂s∂y
(s, ŷŶs)ds

−θ∗sδdNs.
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Using Hypothesis (4.2), the regularity on the function v̂ and Itô’s lemma, we have

∂2v̂

∂y∂s
(s, ŷŶs−) + ̺(ρ̂s

∂v̂

∂y
(s, ρ̂sŷŶs−)−

∂v̂

∂y
(s, ŷŶs−)) (4.8)

−̺(ρ̂s − 1)
∂v̂

∂y
(s, ŷŶs−)− ̺(ρ̂s − 1)ŷŶs−

∂2v̂

∂y2
(s, ŷŶs−)

+(α− β + (β − ̺δρ̂s)+) = 0.

Plugging (4.8) into (4.7) and using (4.4), we obtain

X∗
s = x+

∫ s

t

(α− β + (β − ̺δρ̂u)+)du −

∫ s

t

θ∗uδdNu

+

∫ s

t

̺δρ̂uθ
∗
udu,

and so θ∗ is the optimal insurance strategy.

Remark 4.7. If all the shocks have the same size denoted by δ, then the set Ut

is given by Ut = {(ρs)t≤s≤T predictable process : ρs > 0, a.s., t ≤ s ≤ T and
E[Zρ

T ] = 1}. In this case Assumption 4.1(ii) is automatically checked.

Remark 4.8. Theorem 5.1 of Mnif and Pham [12] could be viewed as a dual ver-
ification theorem which caracterizes the solution of the primal approach. The
theorem 4.3 brings a new information by using PDE arguments which concern the
wealth process and the optimal strategy in the case of the Poisson process.

Example 4.9. If all the shocks have the same size denoted by δ and if α = β = πδ

(cheap reinsurance), then the Hamiltonian H has the following expression

H

(

t, y, ṽ,
∂ṽ

∂y

)

=

inf
ρ>0

{

π

(

ṽ(t, ρy)− ṽ(t, y)− (ρ− 1)y
∂ṽ

∂y
(t, y)

)

+ yβ(1 − ρ)+

}

As it is seen in Lemma 4.1 in Mnif [11], the dual value function is convex in y and
so

π

(

ṽ(t, ρy)− ṽ(t, y)− (ρ− 1)y
∂ṽ

∂y
(t, y)

)

+ yβ(1− ρ)+ ≥ 0

and the equality is obtained when ρ = 1. In this case H

(

t, y, ṽ,
∂ṽ

∂y

)

= 0. The

solution of the HJBVI (3.8) with terminal condition (3.9) is given by

ṽ(t, y) = Ũ(y),

and the solution of the dual problem is given by ρ̂ ≡ 1 and D̂ ≡ 1. From the
Verification Theorem the optimal wealth process is given by X∗ ≡ x, the insurance
strategy θ∗ ≡ 0 and so Assumption 4.1 is checked.
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5. Numerical Study

Here we restrict ourselves to the case where the integer valued random measure
µ(dt, dz) is a Poisson process with the constant intensity π. All the claims have
the same size denoted by δ. Our purpose is to solve the following variational
inequality:

min

{

∂ṽ

∂t
(t, y) + inf

ρ>0

{

Aρ(t, y, ṽ,
∂ṽ

∂y
) + y (α− β + (β − ρδπ)+)

}

−
∂ṽ

∂y
(t, y)

}

= 0, (5.2)

for all (t, y) ∈ [0, T )× (0,∞), with the terminal condition ṽ(T, y) = Ũ(y), where

Aρ(t, y, ṽ,
∂ṽ

∂y
) = π

(

ṽ(t, ρy)− ṽ(t, y)− (ρ− 1)y
∂ṽ

∂y
(t, y)

)

.

It is more appropriate to study numerically the function

J(t, y) := e−rtṽ(t, y), (5.3)

where r is a positive constant. We will explain in Remark 5.2 the advantage of
the introduction of the function J . We proceed with another technical change of
variable which brings [0, T ]× (0,∞) into [0, T ]× (0, 1), namely

{

ỹ = y
1+y

v̄(t, ỹ) = J(t, y).

The function v̄ satisfies

min

{

∂v̄

∂t
(t, ỹ) + inf

ρ>0

{

Āρ(t, ỹ, v̄, Dv̄) +
ỹ

(1− ỹ)
(α− β + (β − ρδπ)+)

}

,

−(1− ỹ)2Dv̄(t, ỹ)
}

= 0 (5.4)

for all (t, ỹ) ∈ [0, T )× (0, 1), where

Āρ(t, ỹ, v̄, Dv̄) :=

π

(

v̄(t,
ρỹ

1 + ỹ(ρ− 1)
)− v̄(t, ỹ)− (ρ− 1)(1− ỹ)ỹDv̄(t, ỹ)

)

− rv̄(t, ỹ)

and Dv̄ is the derivative of v̄ with respect to the state variable. The terminal
condition is given by

v̄(T, ỹ) =
e−rT ỹ−γ

γ(1− ỹ)−γ
(5.5)

for all ỹ ∈ (0, 1).
In Mnif [11], we have proved that the dual value function (3.5), within a change

of variables, is the unique viscosity solution of variational inequality (5.4). This
solution can be approximated by the following numerical method:
(i) approximate variational inequality (5.4) by using a consistent finite differ-
ence approximation which satisfies the discrete maximum principle (DMP) ( see
Lapeyre, Sulem and Talay [10] ),
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(ii) solve the discrete equation by means of the Howard algorithm (policy itera-
tion) (see Howard [9]). Finally a reverse change of variables is performed in order
to display results of variational inequality (5.1).

5.1. Finite difference approximation. Let h := (ht, hỹ) be the finite difference
step in the time coordinate and the finite difference step in the state coordinate.
The step ht is defined by ht := T

N
, (N ∈ IN∗). Let M ∈ IN∗ be the number of

discretization steps in the state coordinate ( hỹ is not uniform for all elements
of the grid). Let (ti, ỹj), 0 ≤ i ≤ N, 1 ≤ j ≤ M − 1 be the points of the grid
ΩN,M .We choose a fully implicit θ-scheme. We consider an approximation scheme
of (5.4) of the following form:

S(h, t, ỹ, v̄h(t, ỹ), v̄h) = 0, (t, ỹ) ∈ ΩN,M , (5.6)

where

S(h, t, ỹ, v̄h(t, ỹ), v̄h) := min
{ v̄h(t+ ht, ỹ)− v̄h(t, ỹ)

ht

− rv̄h(t, ỹ)

+ inf
ρ>0

{

π
(

v̄h(t, P r
( ρỹ

1 + ỹ(ρ− 1)

)

)− v̄h(t, ỹ) + ((1 − ρ)(1− ỹ)ỹ)+D+v̄
h(t, ỹ)

− ((1 − ρ)(1− ỹ)ỹ)−D−v̄
h(t, ỹ)

)

+
ỹ

(1− ỹ)
(α − β + (β − ρδπ)+)

}

− (1− ỹ)2Dv̄h(t, ỹ)
}

;

D+v̄
h(t, ỹ) :=

v̄h(t, ỹ + hỹ)− v̄h(t, ỹ)

hỹ

, D−v̄
h(t, ỹ) :=

v̄h(t, ỹ)− v̄h(t, ỹ − hỹ)

hỹ

,

((1− ρ)(1 − ỹ)ỹ)+ = max ((1− ρ)(1 − ỹ)ỹ, 0) ,

((1− ρ)(1 − ỹ)ỹ)− = max (−(1− ρ)(1− ỹ)ỹ, 0) ,

and (t, P r
(

ρỹ
1+ỹ(ρ−1)

)

) is the projection of (t, ρỹ
1+ỹ(ρ−1) ) on the grid. We take

v̄h(ti, ỹM ) = v̄h(ti, ỹM−2) for all 0 ≤ i ≤ N − 1. For terminal condition, we
set

v̄h(T, ỹj) =
e−rT ỹ

−γ
j

γ(1− ỹj)−γ
for all 1 ≤ j ≤ M − 1.

Initial conditions are usually needed to approximate the derivatives which leads to
a linear system to solve (see for example Lapeyre, Sulem and Talay [10] ). In our
case, we approximate the first derivative with respect to the state variable when
ỹ = ỹ1 by using the forward finite difference discretization only since v̄(t, 0) =
ṽ(t, 0) = ∞, t ∈ [0, T ) (see inequality (6.5)). For the approximation of Dv̄(t, ỹ)
when ỹ = ỹM−1, we use the backward finite difference discretization only since
v̄(t, 1) = ṽ(t,∞), t ∈ [0, T ) is not defined. Taking into account these conditions,
the approximation (5.6) leads to a system ofN×(M−1) equations withN×(M−1)
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unknowns {v̄h(ti, ỹj) , 0 ≤ i ≤ N − 1, 1 ≤ j ≤ M − 1}:

min
{

v̄h(ti+1, ỹj)− v̄h(ti, ỹj) + min
ρ∈Mρ

{

htĀ
ρ,ti v̄h(ti, ỹj) + htl

ρ(ỹj)
}

,

B̄v̄h(ti, ỹj)
}

= 0, (5.7)

for all 0 ≤ i ≤ N − 1, 1 ≤ j ≤ M − 1, with terminal condition:

v̄h(T, ỹj) =
e−rT ỹ

−γ
j

γ(1− ỹj)−γ
for all 1 ≤ j ≤ M − 1,

where Mρ = {(ρij)0≤i≤N−1 , 1≤j≤M−1, ρij > 0}, Āρ,ti is the (M − 1) × (M − 1)
matrix associated to the approximation of the operator Āρ at time ti, l

ρ is (M−1)
vector such that

lρ(ỹj) =
ỹj

1− ỹj
(α− β + (β − ρδπ)+), for all 1 ≤ j ≤ M − 1

and B̄ is a (M−1)×(M−1) matrix associated to the second term of our variational
inequality, which verifies







B̄(j, j) = − 1
ỹj−ỹj−1

for all 2 ≤ j ≤ M − 1

B̄(j, j − 1) = 1
ỹj−ỹj−1

for all 2 ≤ j ≤ M − 1

B̄(i, j) = 0 if not .

Let Ap denote the set of control functions ρ : ΩN,M −→ Mρ. The system of
equations (5.7) can be written as a system of N stationary inequalities:

min

{

v̄h,ti+1 − v̄h,ti + min
ρ∈Ap

{

htĀ
ρ,ti v̄h,ti + htl

ρ
}

, B̄v̄h,ti
}

= 0, (5.8)

for all i = 0...N − 1, with terminal condition:

v̄h,T = (
e−rT ỹ

−γ
j

γ(1− ỹj)−γ
)j=1..M−1,

where v̄h,ti a vector which approximates (v̄(ti, ỹj))j=1...M−1.
The convergence of the numerical scheme in not proved in our situation as

in the case of Tourin and Zariphopoulou [14] ( They studied numerical schemes
for investment consumption models with transaction costs). The system of N

stationary inequalities (5.8) can be solved by Howard algorithms. We describe
this algorithm below.

Remark 5.1. Barles and Souganidis [1] proved that a numerical scheme consistent
monotone and stable converges to the unique viscosity solution of the HJB since
a comparison theorem holds for the limiting equation in class of bounded func-
tions. In our case, the dual value function is not bounded and since we used the
discoutinuous viscosity solutions, it is not obvious that the semi-relaxed limits of
our sequences are in the space Dγ([0, T ]× (0,∞)).

Remark 5.2. The introduction of the function J (see equality (5.3)), insures that
the matrix Āρ,ti , i = 0...N − 1 is diagonally dominant.
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5.2. The Howard algorithm. To solve Equation (5.8), we use the Howard al-
gorithm (see Lapeyre Sulem and Talay [10]), also named policy iteration.

It consists in computing two sequences (ρti,n)n∈IN and (v̄h,ti,n)n∈IN , i = 0...N−
1, (starting from v̄h,ti,1, i = 0...N − 1) defined by:

• Step 2n− 1. To v̄h,ti,n is associated to another strategy ρti,n

ρti,n ∈ arg min
ρ∈Ap

{

Āρ,ti v̄h,ti,n + lρ,n
}

, i = 0...N − 1.

• Step 2n. To the strategy ρti,n, we compute a partition (Dn
1 ∪ Dn

2 ) such
that

v̄h,ti+1,n + (htĀ
ρti,n,ti − I)v̄h,ti,n + htl

ρti,n

≤ B̄v̄h,ti,n, i = 0...N − 1, on Dn
1 ,

v̄h,ti+1,n + (htĀ
ρti,n,iht − I)v̄h,ti,n + htl

ρiht,n

≥ B̄v̄h,ti,n, i = 0...N − 1, on Dn
2 .

The solution v̄h,ti,n+1 is obtained by solving two linear systems:

v̄h,ti+1,n+1 + (htĀ
ρti,n,ti − I)v̄h,ti,n+1

+htl
ρti,n

= 0, i = 0...N − 1, on Dn
1 ,

and

B̄v̄h,ti,n+1 = 0, i = 0...N − 1, on Dn
2 .

• If |v̄h,ti,n+1− v̄h,ti,n| ≤ ǫ , i = 0...N −1, stop, otherwise, go to step 2n+1.

The convergence of the Howard algorithm is obtained heuristically. We have no
theoretical result for the convergence. The matrix arising after the discretization
of the HJBVI does not satisfy the discrete maximum principle which is a sufficient
condition for the convergence of such algorithm.

5.3. Algorithm for the optimal strategy. After the numerical resolution of
the Variational Inequality (5.4), we compute the optimal strategy of insurance and
the wealth process. From the Verification Theorem, we need to evaluate ŷ and to
construct the process (Ŷti)0≤i≤N−1.

The optimal insurance strategy and the wealth process are given by the formulas
(4.6) and (4.5). We describe the algorithm below.
First step: Given an initial wealth x,

• we compute ỹj0 s.t (0, ỹj0) ∈ ΩN,M and X̂(0, ỹj0) = x,

where X̂(ti, ỹj) = −(1 − ỹj)
2
(

v̄(ti,ỹj)−v̄(ti,ỹj−1)
ỹj−ỹj−1

)

, 0 ≤ i ≤ N − 1 and

1 ≤ j ≤ M

• we compute ŷ =
ỹj0

1−ỹj0

.

Second step: Let Ẑ0 = D̂0 = 1. For i = 1 to N − 1, we construct the process
Ŷti = ŷẐtiD̂ti as follows:

• We compute
Ŷti−1

1+Ŷti−1

and we select the nearest point of the grid to

(ti,
Ŷti−1

1+Ŷti−1

). This point will be denoted by (ti, ỹji).
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• We determine the optimal control ρ which is obtained by the Howard
Algorithm at point (ti, ỹji). We denote this control by ρ̂ji .

• We evaluate Ẑti = Ẑti−1
exp (−πh(ρ̂ji − 1))(1 + (ρ̂ji − 1)1{△µ(ti)=1}). We

take Dti = Dti−1
.

• We compute
ρ̂ji

Ŷti−1

1+ρ̂ji
Ŷti−1

(resp
Ŷti

1+Ŷti

) and we select the point of the grid

which is the nearest to (ti
ρ̂ji

Ŷti−1

1+ρ̂ji
Ŷti−1

) (resp
ŷŶti

1+ŷŶti

) . This point will be

denoted by (ti, ỹj′
i
) (resp (ti, ỹj′′

i
)).

• We make the following instruction: while X̂(ti, ỹj′′
i
) < 0 , we decrease the

process Dti . We denote by (ti, ỹj′′
i
) the new point of the grid.

• The optimal insurance strategy and the optimal wealth process are given
by

θ∗ti =
−X̂(ti, ỹ

′

j) + X̂(ti, ỹj)

δ
, (5.9)

X∗
ti
= X̂(ti, ỹ

′′

j ). (5.10)

Numerical resolution of the associated HJBVI is postponed in future research.

6. Appendix

6.1. Proof of Lemma 4.2. Since the controls ρs = 1 and Ds = 1, s ∈ [t, T ] lie
in Ut ×Dt, we have

ṽ(t, y) ≤ Ũ(y) +Ky, (6.1)

where K is a constant.
Let (Zn := Zρn

, Dn) be a minimizing sequence of ṽ(t, y). From the definition
of these minimizing sequences, there exist ǫn and n0 ∈ IN such that ǫn −→ 0 when
n −→ ∞ and for all n ≥ n0, we have

ṽ(t, y) ≥ E
[

Ũ(yZn
TD

n
T )
]

+yE

[

∫ T

t

Zn
uD

n
u(α− β + (β −

∫

C

ρnu(z) z π(dz))+)du

]

− ǫn.(6.2)

Since ǫn −→ 0 when n −→ ∞, there exists n1 ∈ IN such that for all n ≥ n1, we
have ǫn ≤ Ũ(y) + y. We recall That Ũ(y) ≥ U(0+) ≥ 0 and so Ũ(y) + y > 0
since y > 0. Using the boundedness of Dn, Jensen’s inequality and the martingale
property of Zn, we have:

E
[

Ũ(yZn
TD

n
T )
]

≥ Ũ(yE [Zn
T ])

≥ Ũ(y). (6.3)
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For the second term of the r.h.s of inequality (6.2), since Dn
s ≤ 1 for all s ∈ [t, T ],

using Fubini’s theorem and the martingale property of Zn, we have

E

[

∫ T

t

yZn
uD

n
u(α − β + (β −

∫

C

ρu(z) z π(dz))+)du

]

≥ y(α− β)E

[

∫ T

t

Zn
uD

n
udu

]

≥ y(α− β)

∫ T

t

E [Zn
u ] du

≥ K ′y, (6.4)

where K ′ is a constant independent of y. Inequalities (6.3) and (6.4) imply that

ṽ(t, y) ≥ Ũ(y) +K ′y.

From inequalities (6.1) and (6.5), we deduce that

sup
y>0

|ṽ(t, y)|

y + Ũ(y)
< ∞ (6.6)

6.2. Proof of Theorem 4.3. The proof of the theorem is broken in three steps.
Let t ∈ [0, T ] and y ∈ (0,∞).
First step: We show that

v̂(t, y) (6.7)

≤ inf
Y ρ,D∈Y0(t)

E

[

Ũ(yY ρ,D
T ) +

∫ T

t

yY ρ,D
u (α− β + (β −

∫

C

ρu(z) z π(dz))+)du

]

.

Let Y ρ,D ∈ Y0(t). Let

τn = inf{u ≥ t such that
∣

∣

∣

∫

C

v̂(u, ρu(z)yY
ρ,D

u−
)− v̂(u, yY ρ,D

u−
)π(dz)

∣

∣

∣
> n} ∧ T.

Applying the generalized Itô’s formula, we have

v̂(T ∧ τn, yY
ρ,D
T∧τn

) +

∫ T∧τn

t

yY ρ,D
u (α− β + (β −

∫

C

ρu(z) z π(dz))+)du

= v̂(t, y) +

∫ T∧τn

t

∂v̂

∂u
(u, yY ρ,D

u−
)du−

∫ T∧τn

t

∂v̂

∂y
(u, yY ρ,D

u−
)yY ρ,D

u−
dLu

−

∫ T∧τn

t

∫

C

∂v̂

∂y
(u, yY ρ,D

u−
)yY ρ,D

u−
(ρu(z)− 1)π(dz)du

+
∑

t≤u≤T∧τn

(

v̂(u, yY ρ,D
u )− v̂(u, yY ρ,D

u−
)
)

+

∫ T∧τn

t

yY ρ,D
u (α− β + (β −

∫

C

ρu(z) z π(dz))+)du
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and so we have

v̂(T ∧ τn, yY
ρ,D
T∧τn

) +

∫ T∧τn

t

yY ρ,D
u (α− β + (β −

∫

C

ρu(z) z π(dz))+)du

= v̂(t, y) +

∫ T∧τn

t

(

∂v̂

∂u
(u, yY ρ,D

u ) +Aρ(u, yY ρ,D
u , v̂,

∂v̂

∂y
)

)

ds (6.8)

+

∫ T∧τn

t

yY ρ,D
u (α− β + (β −

∫

C

ρu(z) z π(dz))+)du

−

∫ T∧τn

t

∂v̂

∂y
(u, yY ρ,D

u−
)yY ρ,D

u−
dLu

+

∫ T∧τn

t

∫

C

v̂(u, ρu(z)yY
ρ,D

u−
)− v̂(u, yY ρ,D

u−
)µ̃(du, dz).

Since v̂ is a classical solution of the variational inequality (3.8), we have

∂v̂

∂u
(u, yY ρ,D

u ) +Aρ(u, yY ρ,D
u , v̂,

∂v̂

∂y
)

+yY ρ,D
u (α− β + (β −

∫

C

ρu(z) z π(dz))+) ≥ 0

and −
∂v̂

∂y
(u, yY ρ,D

u−
)Y ρ,D

u−
dLu ≥ 0 a.e. in u ∈ [t, T ].

Taking expectation in (6.8), we have

v̂(t, y) ≤ E
[

v̂(T ∧ τn, yY
ρ,D
T∧τn

)

+

∫ T∧τn

t

Y ρ,D
u (α− β + (β −

∫

C

ρu(z) z π(dz))+)du

]

,

for all Y ρ,D ∈ Y0(t). It remains to show that

the family
(

ṽ(T ∧ τn, yY
ρ,D
T∧τn

)
)

n
is uniformly integrable under P. (6.9)

We consider the function g(z) = zp, p > 1 will be chosen later, z ≥ 0. By using
Itô’s formula and since the function U is a power utility function, we have

g
(

Ũ(Y ρ,D
T )

)

= g(Ũ(y)) +

∫ T

t

γpg
(

Ũ(yY ρ,D
u )

)

dLu (6.10)

+

∫ T

t

∫

C

g
(

Ũ(yY ρ,D
u )

)

(

ρu(z)
−γp − 1

)

µ̃(du, dz)

+

∫ T

t

∫

C

g
(

Ũ(yY ρ,D
u )

)

(

ρu(z)
−γp − 1 + γp(ρu(z)− 1)

)

π(dz)du.
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The solution of (6.10) is given by the Doléans-Dade exponential formula

g
(

Ũ(yY ρ,D
T )

)

= g(Ũ(y))Zρ
1T exp

(

γpLT +

∫ T

t

∫

C

(

ρu(z)
−γp − 1 + γp(ρu(z)− 1)

)

π(dz)du

)

≤
1

2
g(Ũ(y))

(

(Zρ
1T )

2

+exp

(

2γpLT + 2

∫ T

t

∫

C

(

ρu(z)
−γp − 1 + γp(ρu(z)− 1)

)

π(dz)du

)

)

,

where (Zρ
1u)u∈[t,T ] is a local martingale defined by

Z
ρ
1u = E

(
∫ u

t

∫

C

(

ρu(z)
−γp − 1

)

µ̃(du, dz)

)

.

We choose p = γ
′

2γ where γ
′

is defined in Assumption 4.1(i). From Assumption

4.1(ii) and by Jensen inequality, we have
∫ T

0

∫

C

ρs(z)
−γpπ(dz)ds ≤

∫ T

0

(

∫

C

ρs(z)
−2γpπ(dz)

)
1
2

ds

and so by Assumption 4.1 there exists a positive constant C1 such that :

E
[

exp

(

2γpLT + 2

∫ T

0

∫

C

(

ρs(z)
−γp − 1 + γp(ρs(z)− 1)

)

π(dz)ds

)

]

≤ C1.(6.11)

From the definition of (Zρ
1s)s∈[t,T ], we have

Z
ρ
1s = 1 +

∫ s

t

∫

C

Z
ρ

1u−

(

ρu(z)
−γp − 1

)

µ̃(du, dz)

Taking expectation under P and using Assumption 4.1(ii), we obtain

E
[

(Zρ
1s)

2
]

≤ 2
(

1 +

∫ s

t

∫

C

|Zρ
1u|

2
(

ρu(z)
−γp − 1

)2
π(dz)du

)

≤ 2
(

1 + E

∫ s

t

|Zρ
1u|

2du
)

.

By Fubini’s theorem and Gronwall’s lemma , we have

E
[

(Zρ
1s)

2
]

≤ C1 (6.12)

From inequalities (6.11) and (6.12), we obtain that

E
[

g
(

Ũ(yY ρ,D
T∧τn

)
)]

≤ C1g(Ũ(y)),

and so

sup
n∈IN

E
[

g
(

Ũ(yY ρ,D
T∧τn

)
)]

< ∞. (6.13)

Similarly, one can prove that sup
n∈IN

E
[

g
(

yY
ρ,D
T∧τn

)]

< ∞. Since
g(x)

x
−→ ∞ when

x goes to infinity and from the growth condition (4.1) , the property (6.9) holds.
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Sending n → ∞, we have τn −→ ∞ P a.s. By dominated convergence theorem,
we have (6.7).

Second step: We show that v̂ is the dual value function and (ρ̂, D̂) is the solution
of the dual problem i.e:

v̂(t, y) (6.14)

= E

[

Ũ(yŶ t
T ) +

∫ T

t

yŶ t
u(α− β + (β −

∫

C

ρ̂u(z) z π(dz))+)du
∣

∣ŷŶt = y

]

,

where Y t
s := Ŷs

Ŷt
, s ∈ [t, T ]. We consider the processes ρ̂ and D̂ and the positive

number ŷ such that (4.2) and (4.3) hold. Then, we have

∂v̂

∂u
(u, ŷŶu) +Aρ(u, ŷŶu, v̂,

∂v̂

∂y
) + ŷŶu(α − β + (β −

∫

C

ρu(z) z π(dz))+) = 0

and −
∂v̂

∂y
(u, ŷŶu−)Ŷu−dLu = 0 a.e. in u ∈ [t, T ].

Let

τ̂n = inf{u ≥ t such that
∣

∣

∣

∫

C

v̂(s, ŷρ̂s(z)Ŷs)− v̂(s, ŷŶs)π(dz)
∣

∣

∣
≥ n}.

Taking expectation in (6.8), we have

v̂(t, y) (6.15)

= E
[

v̂(T ∧ τ̂n, yŶ
t
T∧τ̂n

)

+

∫ T∧τ̂n

t

ŷŶ t
s (α− β + (β −

∫

C

ρ̂s(z) z π(dz))+)ds
∣

∣ŷŶt = y

]

.

Since the family
(

v̂(T ∧ τ̂n, yŶ
t
T∧τ̂n

)
)

n
is uniformly integrable under P , equation

(6.15) implies (6.14) and so (ρ̂, D̂) is the solution of the dual problem.

Third step: We show that X∗ defined by X∗
s := −

∂v̂

∂y
(s, ŷŶs), s ∈ [t, T ] is the

solution of the primal problem. Following the same arguments as in Lemma 6.6
of Mnif and Pham [12], we have from (6.14):

∂v̂

∂y
(t, y) (6.16)

= −E

[

Ŷ t
T I(yŶ

t
T )−

∫ T

t

Ŷ t
u(α− β + (β −

∫

C

ρ̂u(z) z π(dz))+)du

]

,

J(I(yŶ t
T )) = −

∂v̂

∂y
(t, y) and in particular I(yŶ t

T ) ∈ C+(t,−
∂v̂

∂y
(t, y)) (see charac-

terization 3.3). Moreover, from definition of Ũ and (2.4), we have for all H ∈
C+(t, x) :

U(H) ≤ Ũ(yŶ t
T ) + yŶ t

TH

= U(I(yŶ t
T ))− yŶ t

T I(yŶ
t
T ) + yŶ t

TH.
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Hence, by taking expectation, we obtain :

E[U(H)] ≤ E[U(I(yŶ t
T ))] + y

(

J(H) +
∂v̂

∂y
(t, y)

)

≤ E[U(I(yŶ t
T ))],

where we used expression of
∂v̂

∂y
(t, y) given in equation (6.16), expression of J(H)

in Lemma 3.2 in Mnif [11], and the fact that J(H) ≤ x = −
∂v̂

∂y
(t, y) (see equality

(4.4)). From characterization 3.3, there exists θ∗ ∈ A(t, x) such that :

I(yŶ t
T ) ≤ X

t,x,θ∗

T , a.s. (6.17)

Since Ŷ.X
t,x,θ∗

. −
∫ .

t
Ŷu(α − β + (β −

∫

C
ρ̂u(z) z π(dz))+)du is a supermartingale

under P (see Lemma 3.1 in Mnif [11]), we have :

E

[

Ŷ t
TX

t,x,θ∗

T −

∫ T

t

Ŷu(α− β + (β −

∫

C

ρ̂u(z) z π(dz))+)du

]

≤ x. (6.18)

From equation (6.16), and by (6.17), we actually have

Ŷ t
TX

t,x,θ∗

T = Ŷ t
T I(yŶ

t
T ) a.s.

and equality in (6.18). Therefore Ŷ.X
t,x,θ∗

. −
∫ .

t
Ŷu(α−β+(β−

∫

C
ρu(z) z π(dz))+)du

is a martingale under P , and so relation X∗
s = −

∂v̂

∂y
(s, ŷŶs) = Xt,x,θ∗

s holds for all

s ∈ [t, T ].
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