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Robust CMOS Camera Module Lens
Calibration by Support Vector Regression

Chan-Yun Yang’, Hooman Samani and Gene Eu Jan

ABSTRACT

An applicable paradigm mativated by the powerful computational capability inthe emerging hardware for embedded
lens calibration is proposed in this paper. The proposed new paradigm for the relationship between the image
provider and theimage processor showsfunctional and economical merits. The paper first focuses on the development
of the embedded lens calibrator. An underlying support vector machine based regression (SVR) is hence employed
as the key to achieve the goal. Based on the structural risk minimization, the SVR, employed as the calibration
regressor, s multaneously minimizes both themodel complexity and empirical error, and creates an estimator with
awidemargin. Thewidemargin in regression represents a smooth approximation function for the lens calibration
in which variances commonly exist in the CMOS camera modules that can tolerably be eliminated. The variance
tolerability provides high robustnessfor the calibration function and would conduct potential success of the proposed
paradigm.
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I. INTRODUCTION

The online machine vision, asitsimportance in the robotics and automation fields, is a topic stressed on its
processing speed. In a short time dice, images are repeatedly grabbed and processed in order to yield as
accurate as possible perception. Plentiful image processing techniques have been invented for various
purposes, such as image segmentation, feature extraction, frequency spectrum analysis, and pattern
recognition but most of the techniques have been suggested to be based on an undistorted row-image for an
accurate processing. As known, the image distortion (Fig. 1) mainly comes from an optical aberration, and
is commonly existed in most of digital cameras which adopt only medium-level or low-level CMOS
(complementary metal oxide semiconductor) camera module. Rather than a qualified post image processor
dedicated for a particular image's post-processing with considerations of image distortion, a generic lens
calibrator, embedded as a part of the firmware to provide first a calibrated undistorted image for the post-
processing, can smplify handle the post-processing and achieve it much more efficiently.

A new architecture is suggested to establish a generalized image provider (Fig. 2) to which the source
image can be readily served as undistorted as possible. With the architecture, all the image post-processors
can be simplified and unified by eliminating the device-dependent image calibration. A platform across
various manufacturers and devicesis hence potentially sustained based on the generalization offered by the
architecture.

From the market prospective, dueto its compactnessin volume and inexpensivein cost, CMOS camera
modules (Fig. 3) are widespread among various portable device applications, such as the mobile phone,
portable computer, and video recorder. Tremendous industrial modules are produced to fit the rapidly
developed varieties of applications. Although the productionisin large scale, the marginal profit isrelatively
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small due to commercial competitions. The manufacturing cost, especially the cost of lens manufacturing,
is hence a key to achieving a commercial success. There are diverse factors correspond to the precisions of
alensinits plastic injection manufacturing process, such as temperatures for mold and the melting polymer
materials and pressures for supplying materials and injection. Despite the controls of these processing
factors are often precisely and carefully taken, variances in the produced lens surface are still difficult to
avoid.
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Figure 1. Image Distortion Comes from the Optical Aberration
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In fact, the lens distortion is commonly existed in the inexpensive plastic-made lens. The distortion
would be more serious when the lens applied in a wide-view-angle photography. The lens calibration is
hence employed to recover the distortion. An undistorted image, either astandalone still image or a snapshot
extracted from a streamed dynamic video, can be fully restored by an exact calibration of the corresponding
lens. With the production variances mentioned above, there is a dilemma of choosing one exact calibration
function to fit alot of lenses even if their processing factors are carefully controlled. In thisregard, the lens
calibrator is serioudy suffered from the variance device by device.

In order to fit these lenses with diverse variances, a tolerable calibration function is proposed in the
study. Tracing backward to its technical nature, the lens calibration by a linear or nonlinear function is
intrinsically a regression problem. Unlike a particular regression function generated for calibrating one
certain lens, the regression proposed for the tolerability is dedicated to the generality and robustness for
calibrating a cluster of lenses with the dlight variances. The tolerability in this study is generated from a
large margin support-vector-machine regression (SVR). By solving with an optimization objective function,
SVRisindeed agood solutionto balance the trade-off between the calibration accuracy and the corresponding
tolerahility. Since the variances are a nature of the lenses despite of the precision of the manufacturing
process, the tolerable calibration function, instead of a particular dedicated calibration function, deserves
more attention.

II. LENS CALIBRATION

The lens calibration, as its significance in the machine vision, is an inversed manipulation measuring the
photogrammetric distorted image to estimate its undistorted correspondence. For variant purposes, alot of
methods of calibration have been developed to solve the distortion problem [1-3]. The study here focuses
on the most common algebra approaches for an estimation of the distortion. The calibration is realized by
devising mechanically arigid calibration platform (Fig. 4) for gauging reliable points coordinates, say data
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Figure 4: The Devised Rigid Calibration Framework

points, of the calibration target which is generally atwo-dimensional board with parallel and perpendicular
lines drawn on it. The flat board is placed parallel with the focal plan of calibrated cameras. With such a
fixture platform, the calibration target can be imaged to provide correspondences between a cluster of two-
dimensional distorted image point coordinates (x,, y,) and their corrected point coordinates (X, y ). A
calibration function is hence defined as a relationship function between these (x,, y,) and (x,, ¥ ):

x,= (%), andy, =1 (y,), D
where f and fy are the inversed functions for recovering corrected data points (x , y ) from their distorted
correspondences (X, Y,).

The recovery intrinsically is a regression problem. Due to the difficulty to obtain 24 an exact solution,
the recovery in genera could only be estimated by a regression function which would be optimized by the
input data points (x,, y,). Plainly speaking, the problem can only be solved by the observations themselves.

Tsal [4-5] has proposed a famous calibration model, beginning with the problem of lens calibration,.
With the image coordinate system centered at the image center (X, y ), the distortion is assumed to be radial
symmetric and exaggerated extensively outward along the radial axes from the center (Fig. 1). Dueto the
centered symmetry, Tsai’'s model first converted the image point coordinates (x,, y,) on the projected plane
from the centered Cartesian coordinate system to a polar coordinate system, and measured their radial
distancesr . The undistorted point coordinates (X , y ) can thus be recovered by:

x =x,(1+ar?,andy =y, (1+ar?, 2
where

=X+ V5. (©)

In the expressions, a is a calibration coefficient for fitting the conversion. Tsai’'s model here can be
regarded as a polynomial regression. Devernay and Faugeras have extended the idea of Tsai by considering
more the decentering and the tangential distortion, and reformulate the model as [6]:
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X =x+ax—x)rzady=y+aly—-y)r/’ 4)
where

ry = \/(%) +(¥y - Y.)2 (5)

In the expression, s denotes the image aspect ratio practically corresponding to the tangential distortion
for adjusting the image coordinate system. Under the assumption of centered radial symmetry, the model
can further be abbreviated as:

r,=r,(l+ar?). (6)

wherer, = \/((xu —%.)/9)?+ (Y, - V.)*. It should be noted that Eq. (6) indicates that r is a third-order

polynomial function of r . Haneish and Miyake [ 7] adopts adecentered polar coordinate systemto generalize
both the models of Tsai and Devernay and Faugeras as apower series. Using the power seriestogether with
polar radius r, of the data points, the polar radius r  of the corrected point coordinates (X, y,) can be
recovered by:
ro=r,+ar’+ar +---ar'™ (7
Obviously, their model adopts a general high (n + 1)-order polynomial regression for fitting the
relationship of r and r . Actually, considering the trade-off between computational complexity and the
calibration precision, a sufficient second or third order polynomial is suggested. Based on above models,
we are surely to admit that the adoption of linear polynomial regression models for lens calibration is
intuitively excellent in both theory and application. Practically, the models are widely spread in many real-
world applications.

For such a generalized polynomial model, the vector of caibration coefficients a = [a,, &, ..., a]"
is often obtained accordingly by a least squares optimization. For example, for a third order
polynomial r =r + ar, ?+ ar_ > the calibration coefficients would be a = [a,, a]", n = 2. If the
model is calibrated by a 12x12 image data points (x,, y,), i.e., we have m = 144 inputs to estimate these
two calibration coefficients. The problem is thus typicaly well-posed due to m >> n, can be solved
satisfactorily.

Considering extensively the decentering, tangential distortion, and thin prism distortion, Wel and Ma
have developed a model more precise to the calibration [1]. By deriving first the distortion on CMOS
sensor focal plane:

X =Xy +8% (X, Vy), and Yy =y, + 8 (X4, V) )
where

80Xy, ¥) = ks O + ¥3) + (P(3XE + ¥2) +2P,%, Y) + 8% + V3)
8V (X, Ya) = kY (X3 + Ya) + (2PXg Yy + P (3% + ¥3)) + S,(% + Ya), )

Decentering& tangential distortion Thin prismdistorition

where 5% and 8% are distortions corresponding to the x and y axes, respectively, and k , p,, p,, s, and s,
denote respectively a set of constants corresponding to each effects from decentering, tangential distortion,
and thin prism distortion, respectively. According to the distortionsin Eq. (8), the corrected point coordinates
(X, y,) can be given by:
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= Y aPxyil Y &%yl and y,= Y a®Xyil Y alPx%y.. (10)

0<i+j<3 0<i+j<3 0<i+j<3 0<i+j<3

The calibration coefficients a”.(") in the above expressions extensively become a matrix and can be
arranged as.

& o A

A=|a? ., a2|. (11)
(3) (3
Ay’ ,..., Ay

Equivaently, the model of Wei and Ma is still a generalized third order linear polynomial.

According to the radial symmetry of the lens distortion, Smith et al., [8] have directly derived a set of
recursive orthogona Chebyshev polynomials on the polar coordinate system for the calibration. The
coefficients a of the Chebyshev polynomials are recursively computed first by the next Egs. (12) and (13):

8 =1 p,0) | SIpOF 1)
o (iKY i®
n0-265 () 3

and are used for interpolation, wherei =0, 1, ..., m1isthe index of the input data 10 points, P, 1=0,1, ...,
n, isthe j-th order of Chebyshev polynomial basis, and i®=i(i — 1)(i —2) ... (i —k + 1). Using a from Eq.
(12), the recovery of r  can be done 12 by:

M
ry = Zaj P; (ru /b), (14)
j=0

where b denotes a scaling constant for conversion between the input and output coordinates. At this point,
we can summarize that the lens distortion is mainly resolved by a regression function, particularly a
generalized algebraic polynomial functions, though all the functions have been developed significantly
different. It should be noted that the Runge's phenomenon [9], which iscommonly existed in an interpolation
problem, is still present in such kinds of regressions since they are intrinsically an interpolation problem.
The use of orthogonal Chebyshev polynomials can significantly reduce the Runge’'s phenomenon in the
interpolations.

1. MODEL SELECTION

The next step is the admissibility of this type of algebraic polynomial regression for the before-ahead
device-independent lens calibrator embedded in the image-provider. As stressed, the diverse variations are
agreat challenge in devising the embedded lens-calibration. In general, the higher order of a polynomial is
the higher flexibility it can be for the calibration, and the higher capability for reflecting the local curvature
discontinuity of surface smoothness. Whereas a higher order polynomial can precisely adapt the local
curvature discontinuity, a lower one is more tolerable to the diverse variations due to the less model
complexity. There is obvioudly a trade-off between the precision adaption and the variation tolerahility.
The trade-off made the model-selection of our topic different from those of the previous researches, and
involved it into the model complexity [10]. The model, considering mainly the diverse variations generated
by the production process, must be robust enoughto resist the individual variations, and to expand essentialy
the most general curvature of the lenses surface. A regularized optimization model, which is beneficia
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from the model-complexity penalty can dea with the trade-off well, is hence suggested for the calibration
work.

V. SUPPORT VECTOR MACHINE REGRESSION

SVM (support vector machine), founded by Vapnik et al. [11-12] since 1997, is a feasible aternative to
traditional artificial neural networks (ANN'’s). The category of SVM based regression, namely termed as
SVR, aso hasbeen invented for function approximation since 1998. Built onthe structural risk minimization,
the SVM based methods for both the classification and regression simultaneously minimize both the model
complexity and empirical error, and create an estimator with awide margin. The wide margin in regression
represents a smooth approximation function in which individual variance has been rejected as much as
possible. Incontrast to an algebraic polynomial or anANN regression model which devisesthe approximation
function by only minimizing the training error between observed and corresponding predicted responses,
the SVR attempts to minimize a generalization error which combines the training error and aregularization
term for controlling the model complexity. The generalization error rejects mainly the highly variant noise,
and achieves arigid regression. Hence, a SV R-based embedded calibrator is proposed for the study which
is sought to mostly reject the distortion variances commonly existed in the CMOS camera modules.

Based onaregularization form, SVR regresses a cluster of data points considering not only the empirical
errors but also the regularized penalties to reduce the model complexity [13]. The general regularization
form can first be expressed as.

argminA O f1+ R[], (15)

where Remp[f] denotes a summated empirical training error by measuring individual output error of all the
training data points[13-14]. Together with ascaling factor A ,, aregularizationterm Q[f] hasbeenintroduced
for regularization. Inthe expression, H denotes areproducing kernel Hilbert space (RKHS) whichisahigh
dimensional space mapped from the finite dimensional input data space by a kernel function k(-, ). InH, a
sophisticated nonlinear problem can be solved linearly by the kernel function [14]. The model seeks to
smultaneously minimize both the regularized objective and the empirical risk. With the scaling factor A,
the model complexity can easily be regularized. For our calibration example, the regularization term of the
one-dimensional regression function f(x) was chosen as:

Qrf]=Z{wlf (16)

with the m-lengthinput X =[x, X,, ..., X ]T. Theregularization term corresponding to the margin w isakey
usually used for the excellent capability of noise tolerable, and the model complexity [10]. To cope with the
penalization, an e-insendtive lossfunction § = max(| e |—, 0) (Fig. 5a) isintroduced to convert theindividual
empirical errorsinto their corresponding slack variables§ = [, &,, ..., & |"Tand&=[E ,E , ..., & ]". These
dack variableshere are utilized to approximate the function with certain degree of precision by aminimization
scheme. A complete primal form of the SVR 11 thus can be given as:

min W 1423, 5 +E), )
subject to
< > b<e+&,
< _x>+b y, <e+&, and (18)
£.,5=0, i=1..m,
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where ). converting the scaling factor A, is used to weight the balance between the regularized objective
term and the empirical risk term, the expression <:, -> represents a smilarity measure which the kernel
function (-, -) is often taken into account, and the parameter ¢ for e-insengitive loss function is used to
construct ae-tube (Fig. 5b) for controlling the error tolerability. The use of the e-tubeisto vanish its penalty
of aninput data point if it locateswithin the e-tube. Due to the penalty vanish, the insensitive range [—, +¢]
contributes remarkably to the smoothness of the regression function, and takes effect on the determination
of number of the support vectors (SV) which are essential data points to sufficiently and necessarily support
the output function. By taking Lagrangian with Lagrange multipliers o = [a,, a.]" and o =[a ,, . ]", the
problem (17)-(18) can be converted into a dual convex quadratic problem [14-15]:

subject to

max-1 3 6, - )@~ ) (X X, )€ @ o) + Y v (@ ~ou),

ij=1

i(oci —-0a,)=0,and o;,0; €[0,A], Vi.

i=1

Loss
A
|
: > e
—£ +&

(a) Loss function

- <

y=(W,Xx)+b+¢

£)

y=(W,Xx)+b—¢

P X

(b) &-tube

Figure 5: Loss Function and e-tube

(19)

(20)
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Only those nonzero optimized o and o” are gathered to form the support vectors. Theintrinsic sparseness
of the support vectors has meritsto speed-up the computation of interpolation using the consequent regression
function. Eventually, with SV, the consequent regression function can be given by:

f(x):zmesv(&f—oc?)(xi,x>+b. (21)

V. RESULTSAND DISCUSSIONS

Inour experiments, five CMOS cameramodulesfor the purpose of convincing thedistortion and itsvariations
were collected for experiments. By center-aligning to a two-dimensional equally spaced grids (Fig. 1a) on
the target board, which was fixed on the devised calibration platform (Fig. 4), each camera module was
consecutively mounted onto the platform with an identical posture to capture the image. The calibration
platformin the experiments is an important fixture to guarantee the images from different camera modules
are varying only with the camera modules (lens) itself. The grids on these images were then discretized into
image point coordinates (X, y,) to formfive set of data points, Lens#1 to Lens#5. Anoverlapped observation
of these five sets of (x, y,) is depicted in Fig. 6. A phenomenon of barrel distortions can be easily be
confirmed by the observation.

The observation of the overlapped (x,, y,) then moves to the diverse variations of the distortion. As
shown, variances exist around every (X, y,). The variances of every batches of (x, y,) is cylindrically
distributed and expands radically in aregular and consistent tendency outward from the image center with
different growing rates. The tendency reveals a dependency between the variations of distortion and the
lenses. The dependency impliesthat the variationsvarying the lenses may be rooted oncethelensis produced.

In our first experiment, we have collected all the data points (x,, y,) asthe input for regression, but it
failed due to a wide-spread of variations. As we found, the expanding rate of the distortion variance of a
certainlensareincoherent cylindrically in every directionsranged from0to 2r. Thefact madethe regression
to pay much more effort to deal with the incoherency than that to dea with the variation for maintaining the
predictive accuracy. A strategy subdividing the cylindrical 0 < 6 < 2z directionsinto 8 partitions, as shown
the subdividing radial blue linesin Fig. 6, was thus adopted to specify the incoherency and go forward our
analysis. The subdivided-partition strategy indeed took effect in depressing the incoherency. Instead of the
full rangeof 0, thefirst 1/8 partition, ranging from 0 to /4, washence dicited for experimentsand discussions.

Using the data points gathered from the first partition, the relationship of r_ is charted in Fig. 7. By
different colored symbols, the relationships in every datasets show consistently an increasing tendency of
larger variance of the distortion which we have stressed above, and, also, the tendency shows the so called
incoherency among the datasets. With such an incoherency in variations, regression functions from both
SVR and an algebraic polynomial regression are generated to fit the data points. As a delegate to represent
such anoisy relationship, the regression functionsfor sure should be robust enoughto resist to the noise. To
test the robustness, a cross-validation scheme, randomly chosen a dataset for training and validated the
performance with the remaining datasets, was hence selected to test the robustness of theregression functions.
Here, dataset Lens#5 was chosen as the training set. With the predetermined [3-order polynomial kernel
function, a series of experiments were taken to find an optimized SVR function which fitted most the data
points of Lens#5. By aparameter searching scheme, alow-complexity model parameterized with arguments
C=1,¢e=2,and p = 2 was eventually selected for comparison. The model with = 2 equivalent to a 2nd
order polynomial function satisfies the original expectation of low model complexity. Therefore, a curve
obtained by this selected SVR function together with a comparative stump generated by a second order
algebraic polynomial regression were depicted in Fig. 7 as those characterized by a black solid and a red
dash lines, respectively. The proximity of these two curves show the calibration capacity the regression
functions can achieve would be very close.
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The regression functions were then brought to recover the distortions of the vaidation sets Lens#1 to
Lens#4. Figure 8 shows these recovered (X, ¥ ) of the validation sets by both the optimized SV R function and
the algebraic polynomial regression. As shown, most of the recovered (X , ¥/ ) of the validation sets are inexact
with respect to their corresponded (X, ¥ ). The inexactness even is extended to the training set Lens#5 itself.
The fact behind the self-inexactness is due to the effort used to trade off the robustness we expected.

Instead the inexactness brought by the regressions, the key point we have to stress is the variation-
resistant capahility that the regressions can achieve. An examination of root mean square error (RMSE)
was thusissued by the cross-validation (Table 1). As exhibited in this table, the calibration accuracies form
SVR mgorly are higher than those from the 2nd order algebraic polynomial regression except the accuracy
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of thetraining set Lens#5. The higher accuraciesfrom SV R satisfy the expectation, and assert the calibration
by SVR arelatively higher robustness. As understanding, a model with high accuracy in a re-substitution
validation of the training dataset is often overfitted. It means the low RM SE with the 2nd order agebraic
polynomial regression would be too fitted to dataset Lens-5, and hence degraded the calibration capability
in applying to the other datasets.

Tablel

Root M ean Square Error Comparison
RMSE (Root mean Lens Lens Lens Lens Lens
square error) #1 #2 #3 #4 #5
Recovered by SVR 1.44 1.05 243 221 114
Recovered by 2nd
order algebraic 1.69 1.08 2.85 2.58 0.65
polynomial

V1. CONCLUSIONS

Our proposed robust embedded lens calibrator by employing SVR has shown reliable results. With the
proposal of adevice-independent lens calibrator, the capability of robustnessfor the corresponding regression
function is essentially needed. The study, with the evidence of arelatively high robustness, showsthat SVR
withits noisetolerability is an admissible candidate to develop the calibrator. Indeed, the tolerable capability
is akey to achieve the calibration robustness. Although the preliminary validations feature the feasibility of
such an application, a broad investigation and an in-depth systematic design should be complete in the
future.
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