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APPLICATIONS TO INSIDER FINANCE

BERNT ØKSENDAL* AND TUSHENG ZHANG

Abstract. In this paper, we study backward stochastic differential equations
(BSDEs) with respect to general filtrations. We prove existence and uniqueness
theorems for such BSDEs and we establish a comparison theorem. Reflected
BSDEs with general filtration are also studied. The results are used to find
the optimal consumption rate for an insider from a cash flow modeled as a
generalized geometric Itô-Lévy process.

1. Introduction

The classical backward stochastic differential equation (BSDE) consists in finding
a pair (Yt, Zt) of Ft -adapted processes such that

{

dYt = −f(t, Yt, Zt)dt+ ZtdBt; t ∈ [0, T ]
YT = ξ.

(1.1)

where Bt is a Brownian motion on a filtered probability space (Ω,F , {Ft}t≥0, P ) ,
ξ is a given FT -measurable random variable and f : [0, T ]×R×R → R is a given
function.

If f(t, y, z) = f(t, y) does not depend on z, then an equivalent way of writing
(1.1) is

Yt = E
[

ξ +

∫ T

t

f(s, Ys)ds|Ft]; t ∈ [0, T ]. (1.2)

In this paper we extend (1.2) to a general filtration Ht and consider the problem
to find an Ht-adapted process Yt such that

Yt = E
[

ξ +

∫ T

t

f(s, Ys)ds|Ht]; t ∈ [0, T ], (1.3)
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where ξ now is a given HT -measurable random variable. Thus we arrive at a BSDE
based on a general filtration Ht, not necessarily the filtration Ft of Brownian mo-
tion. This turns out to be a useful generalization for certain applications, for ex-
ample in connection with insider trading in finance, which was the main motivation
for this study. (See Section 5)

Here is an outline of the paper. In Section 2 we give a more detailed presentation
of our BSDE based on a given filtration. In Section 3 we prove existence and
uniqueness of solutions of such equations. In Section 4 we study reflected BSDEs
based on a given filtration. We prove existence and uniqueness of solution and
we show that it coincides with the solution of an optimal stopping problem (for
H-stopping times). In Section 5 we give an application to finance. We show that
the optimal consumption problem for an insider can be transformed into a BSDE
with respect to the information filtration Ht of the insider. Then we apply results
from previous sections to find the optimal consumption rate explicitly.

2. Statement of the Problem

Let (Ω,H,Ht, P ) be a complete filtrated probability space with a right contin-
uous filtration {Ht, t ≥ 0}. Let T > 0 and let ξ be an HT measurable random
variable with E[|ξ|] < ∞, where E denotes expectation with respect to P . Let
f(ω, t, y) : Ω× [0, T ]×Rd → Rd be a given P × B(Rd)-measurable function, where
P is the predictable σ-field associated with the filtration {Ht, t ≥ 0}. Consider the
following backward stochastic differential equation (BSDE):

BSDE(1): Find an Ht- optional process Yt such that

E
[

∫ T

0

|f(s, Ys)|ds
]

< ∞. (2.1)

and

Yt = E
[

ξ +

∫ T

t

f(s, Ys)ds|Ht]; t ∈ [0, T ]. (2.2)

Next, consider the following BSDE:

BSDE(2): Find an Ht- optional process Yt and an Ht-local martingale Mt such
that M0 = 0 and

{

dYt = −f(t, Yt)dt+ dMt

YT = ξ.
(2.3)

An equivalent formulation to (2.3) is that
∫ T

0

|f(s, Ys)|ds < ∞ a.s. (2.4)

and

Yt = ξ +

∫ T

t

f(s, Ys)ds− (MT −Mt); t ∈ [0, T ]. (2.5)

There is a close relation between BSDE(1) and BSDE(2): First note that if Yt

satisfies BSDE(1), then we can define

Mt = E[ξ +

∫ T

0

f(s, Ys)ds|Ht]
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and we see from (2.2) that

Yt = E[ξ +

∫ T

0

f(s, Ys)ds−

∫ t

0

f(s, Ys)ds|Ht]

= −

∫ t

0

f(s, Ys)ds+Mt.

Moreover, YT = ξ. Hence (Yt,Mt) satisfies BSDE(2).
Conversely, if (Yt,Mt) satisfies (2.5) and Mt is an Ht-martingale, then (2.2)

follows by taking conditional expectation of (2.5) with respect to Ht. Hence Yt

satisfies BSDE(1).
We now proceed to study BSDE(2).

Definition 2.1. We say that a pair (Yt,Mt, t ≥ 0) is a solution to BSDE(2) if
(i). Yt is an Ht-optional, R

d-valued process.
(ii). Mt, t ≥ 0 is a càdlàg Rd-valued Ht-martingale.
(iii). For every t ≥ 0,

Yt = ξ +

∫ T

t

f(s, Ys)ds− (MT −Mt) (2.6)

P -almost surely.

Remark 2.2. Our BSDE solution concept may be regarded as a generalization,
both with respect to filtration and to jumps, of the weak BSDE solution concept
introduced and studied in [2][3][4][5]. Our methods of proofs are similar to methods
found in e.g. [2][9][10][15], but adapted to our more general situation.

3. Backward Stochastic Differential Equations

3.1. Existence and uniqueness.

Theorem 3.1. Suppose ξ ∈ L2(Ω) and E[
∫ T

0 |f(t, 0)|2dt] < ∞. Assume that f is
uniformly Lipschitz with respect to y, i.e., there exists a constant C such that

|f(t, y1)− f(t, y2)| ≤ C|y1 − y2| (3.1)

Then there exists a unique pair (Y,M) such that (Y,M) is a solution to the BSDE(2)
and

E[ sup
0≤t≤T

|Yt|
2] < ∞. (3.2)

Proof. Let B denote the Banach space of Rd-valued, Ht-optional processes X such
that

||X ||B := sup
0≤t≤T

(E[X2
t ])

1

2 < ∞.

Define recursively a sequence Y n
t , t ≥ 0 of processes in B by Y 0 = 0 and

Y n+1
t = E[ξ +

∫ T

t

f(s, Y n
s )ds

∣

∣Ht] (3.3)

It is easy to see that Y n ∈ B for all n ≥ 1. Moreover,

E
[

|Y n+1
t − Y n

t |2
]

≤ TE
[

∫ T

t

|f(s, Y n
s )− f(s, Y n−1

s )|2ds
]

≤ CT

∫ T

t

E[|Y n
s − Y n−1

s |2]ds (3.4)
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Set φn(t) = E[|Y n
t − Y n−1

t |2]. Then (3.4) becomes

φn+1(t) ≤ CT

∫ T

t

φn(s)ds (3.5)

Repeating the above inequality, we get

sup
0≤t≤T

φn+1(t) ≤
(

sup
0≤s≤T

φ1(s)
) (CT )nT n

n!
(3.6)

This implies that Y n, n ≥ 1 is a Cauchy sequence in B. Denote the limit of Y n by
Ŷ . Letting n → ∞ in (3.3) we obtain

Ŷt = E[ξ +

∫ T

t

f(s, Ŷs)ds
∣

∣Ht] (3.7)

Next we show that Ŷt, t ≥ 0 admits a right continuous version which will be the
solution to BSDE(2). Let Mt, t ≥ 0 be the right continuous version of the square

integrable martingale E[ξ +
∫ T

0
f(s, Ŷs)ds

∣

∣Ht]. Put

Yt = Mt −

∫ t

0

f(s, Ŷs)ds, t ≥ 0

Then Yt is right continuous and for every t ≥ 0,

Yt = E[ξ +

∫ T

t

f(s, Ŷs)ds
∣

∣Ht] = Ŷt

P -almost surely. By the Fubini theorem, it follows that

Yt = Mt −MT + ξ +

∫ T

0

f(s, Ŷs)ds−

∫ t

0

f(s, Ŷs)ds

= ξ +

∫ T

t

f(s, Ŷs)ds− (MT −Mt)

= ξ +

∫ T

t

f(s, Ys)ds− (MT −Mt) (3.8)

P -almost surely. This shows that (Y,M) is a solution to the BSDE(2). Let us now
prove (3.2). Using Doob’s inequality, we have

E[ sup
0≤t≤T

|Yt|
2] ≤ 2E[ sup

0≤t≤T

|Mt|
2] + 2TE[

∫ T

0

|f(s, Ys)|
2ds]

≤ C2E[|MT |
2] + 4TE[

∫ T

0

|f(s, 0)|2ds] + 4T

∫ T

0

E[|Ys|
2]ds

= C2E[|ξ +

∫ T

0

f(s, Ys)ds|
2]

+4TE[

∫ T

0

|f(s, 0)|2ds] + C34T

∫ T

0

E[|Ys|
2]ds

≤ C(E[|ξ|2] + sup
0≤t≤T

E[|Yt|
2] + E[

∫ T

0

|f(s, 0)|2ds] < ∞. (3.9)
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It remains to prove the uniqueness. Let (X,Z) be another solution to equation
BSDE(2). Then both Y and X satisfy

Yt = E[ξ +

∫ T

t

f(s, Ys)ds
∣

∣Ht] (3.10)

Xt = E[ξ +

∫ T

t

f(s,Xs)ds
∣

∣Ht] (3.11)

Using the Lipschitz continuity of f , as the proof of (3.4), we have

E
[

|Yt −Xt|
2
]

≤ CT

∫ T

t

E[|Ys −Xs|
2]ds (3.12)

By Gronwall’s inequality, it follows that Yt = Xt, which in turn gives Mt = Zt.
The proof is complete. �

Next theorem states a result on existence and uniqueness under some monotone
conditions on the coefficients.

Theorem 3.2. Suppose

1. ξ ∈ L2(Ω) and E[
∫ T

0
|f(t, 0)|2dt] < ∞.

2. There exists a constant C such that

(y1 − y2)(f(t, y1)− f(t, y2)) ≤ C|y1 − y2|
2 (3.13)

3. f(t, y) is continuous in y and

|f(t, y)| ≤ C1(t), (3.14)

with E[
∫ T

0
C1(s)ds] < ∞.

Then there exists a unique solution (Y,M) to the BSDE(2) satisfying

E[ sup
0≤t≤T

|Yt|
2] < ∞. (3.15)

Proof. Take an even, non-negative function φ ∈ C∞
0 (R) with

∫

R
φ(x)dx = 1. Define

fn(t, y) =

∫

R

f(t, z)φn(y − z)dz,

where φn(z) = nφ(nz). Since f is continuous in y, it is easy to see that fn(t, y) →
f(t, y) as n → ∞. Furthermore, for every n ≥ 1,

|fn(t, y1)− fn(t, y2)| ≤ Cn|y1 − y2|, (3.16)

for some constant Cn. Consider the BSDE:

Y n
t = ξ +

∫ T

t

fn(s, Y
n
s )ds+Mn

T −Mn
t ; t ∈ [0, T ]. (3.17)

Equation (3.17) has a unique solution (Y n,Mn) according to Theorem 2.1. Next
we show that Y n

t is a Cauchy sequence. By Itô’s formula, we have

|Y n
t − Y m

t |2 + [Y n − Y m, Y n − Y m]T − [Y n − Y m, Y n − Y m]t

= 2

∫ T

t

(Y n
s − Y m

s )(fn(s, Y
n
s )− fm(s, Y m

s ))ds

−2

∫ T

t

(Y n
s− − Y m

s−)d(M
n
s −Mm

s ) (3.18)
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In view of (3.13), (3.14),

(Y n
s − Y m

s )(fn(s, Y
n
s )− fm(s, Y m

s ))

=

∫

R

(Y n
s − Y m

s )(f(s, Y n
s −

1

n
z)− f(s, Y m

s −
1

m
z))φ(z)dz

=

∫

R

[(Y n
s −

1

n
z)− (Y m

s −
1

m
z)](f(s, Y n

s −
1

n
z)− f(s, Y m

s −
1

m
z))φ(z)dz

+

∫

R

(
1

n
z −

1

m
z))(f(s, Y n

s −
1

n
z)− f(s, Y m

s −
1

m
z))φ(z)dz

≤ C

∫

R

((Y n
s −

1

n
z)− (Y m

s −
1

m
z))2φ(z)dz + C1(s)

∫

R

(
1

n
|z|+

1

m
|z|)φ(z)dz

≤ C(Y n
s − Y m

s )2 + C

∫

R

(
1

n2
+

1

m2
)z2φ(z)dz + C1(s)

∫

R

(
1

n
|z|+

1

m
|z|)φ(z)dz

(3.19)

Substitute (3.19) into (3.18), take expectation to obtain

E[|Y n
t − Y m

t |2] + E{[Y n − Y m, Y n − Y m]T − [Y n − Y m, Y n − Y m]t}

≤ C

∫ T

t

E[(Y n
s − Y m

s )2]ds+ CT

∫

R

(
1

n2
+

1

m2
)z2φ(z)dz

+CE[

∫ T

t

C1(s)ds]

∫

R

(
1

n
|z|+

1

m
|z|)φ(z)dz (3.20)

Applying Gronwall’s inequality, it follows from (3.20) that

E[|Y n
t − Y m

t |2]

≤ CT {

∫

R

(
1

n2
+

1

m2
)z2φ(z)dz + E[

∫ T

t

C1(s)ds]

∫

R

(
1

n
|z|+

1

m
|z|)φ(z)dz} (3.21)

Hence,

lim
n,m→∞

sup
0≤t≤T

E[|Y n
t − Y m

t |2] = 0 (3.22)

By (3.20) and the Burkholder inequality, (3.22) further implies

lim
n,m→∞

E[ sup
0≤t≤T

|Mn
t −Mm

t |2]

≤ lim
n,m→∞

E([Mn −Mm]T )

= lim
n,m→∞

E([Y n − Y m]T ) = 0. (3.23)

Consequently, there exist a square integrable, predictable process Yt and a square
integrable, right continuous martingale Mt such that

lim
n→∞

sup
0≤t≤T

E[|Y n
t − Yt|

2] = 0 (3.24)

lim
n→∞

E[ sup
0≤t≤T

|Mn
t −Mt|

2] = 0 (3.25)

In view of (3.14), use the dominated convergence theorem and let n → ∞ in (3.17)
to get

Yt = ξ +

∫ T

t

f(s, Ys)ds+MT −Mt; t ∈ [0, T ]. (3.26)
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Since the right hand side of (3.26) is right continuous, we can take Y to be right
continuous. Thus Yt, t ≥ 0 is a solution to BSDE(2).

Now we prove the uniqueness. Suppose that (Y 1,M1) and (Y 2,M2) are two
solutions to BSDE(2). Similar to the calculations for (3.18), we have

|Y 1
t − Y 2

t |
2 + [M1 −M2,M1 −M2]T − [M1 −M2,M1 −M2]t

= 2

∫ T

t

(Y 1
s − Y 2

s )(f(s, Y
1
s )− f(s, Y 2

s ))ds− 2

∫ T

t

(Y 1
s− − Y 2

s−)d(M
1
s −M2

s )

(3.27)

Taking expectation and keeping (3.13) in mind, we get from (3.27) that

E{|Y 1
t − Y 2

t |
2 + [M1 −M2,M1 −M2]T − [M1 −M2,M1 −M2]t}

≤ CE[

∫ T

t

(Y 1
s − Y 2

s )
2ds]

By Gronwall’s inequality, we deduce that Y 1
t = Y 2

t ,M
1
t = M2

t for t ≥ 0, thereby
completing the proof. �

3.2. Comparison theorem. Let (Y,M) be the solution to the following linear
BSDE:

Yt = ξ + (φT − φt) +

∫ T

t

βsYsds− (MT −Mt), (3.28)

where φt, t ≥ 0 is a given, right continuous process of bounded variation with φ0 = 0
and βt is a bounded predictable process. We have the following result.

Theorem 3.3. Assume the total variation of φ is integrable. The following repre-
sentation holds

Yt = E[LT
t ξ +

∫ T

t

Ls
tdφs|Ht], (3.29)

where

Ls
t = exp(

∫ s

t

βudu)

In particular, if ξ ≥ 0, then Yt ≥ 0. Moreover Y0 = 0 implies ξ = 0 and φ = 0.

Proof. Put Lt = exp(
∫ t

0 βudu). By Itô’s formula, we find that

YtLt +

∫ t

0

Lsdφs = Y0 −

∫ t

0

LsdMs

is a martingale. Consequently,

YtLt +

∫ t

0

Lsdφs = E[YTLT +

∫ T

0

Ls
tdφs|Ht]

= E[ξLT +

∫ T

0

Ls
tdφs|Ht].

(3.29) follows. �

Let both (ξ1, f1(s, y)) and (ξ2, f2(s, y)) satisfy the conditions in Theorem 2.1.
Denote by (Y 1,M1) and (Y 2,M2) the solutions of the BSDEs associated with
(ξ1, f1(s, y)) and (ξ2, f2(s, y)), respectively.
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Theorem 3.4. Suppose f1(s, Y 2
s ) ≥ f2(s, Y 2

s ) almost surely on Ω × [0, T ] and
ξ1 ≥ ξ2. Then, Y 1

t ≥ Y 2
t P -almost surely for all t ≥ 0. Furthermore, if Y 1

t = Y 2
t

P -almost surely on an event A ∈ Ht, then ξ1 = ξ2 on A and Y 1
s = Y 2

s on A for
s ≥ t.

Proof. Define

βs =

{

f1(s,Y 1

s )−f1(s,Y 2

s )
Y 1
s −Y 2

s
if Y 1

s 6= Y 2
s ,

0 otherwise.
(3.30)

Then βs is bounded. Moreover, we have

Y 1
t − Y 2

t = ξ1 − ξ2 +

∫ T

t

(f1(s, Y 2
s )− f2(s, Y 2

s ))ds

+

∫ T

t

βs(Y
1
s − Y 2

s )ds− [(M1
T −M2

T )− (M1
t −M2

t )] (3.31)

Using Theorem 2.2, we have

Y 1
t − Y 2

t = E[LT
t (ξ

1 − ξ2) +

∫ T

t

Ls
t (f

1(s, Y 2
s )− f2(s, Y 2

s ))ds|Ht] (3.32)

(3.32) implies the desired results. �

As a corollary to Theorem 3.4, we have the following

Theorem 3.5. If f(t, 0) ≥ 0 dP × dt, then the solution Yt(ξ) gives rise a price
system, that is,

1. At any time t, the price Yt(ξ) for a positive contingent claim ξ is positive.
2. At any time t, the price Yt(ξ) is an increasing function with respect to ξ.
3. No-arbitrage holds, i.e., if the prices Y 1

t and Y 2
t coincide on an event A ∈

Ft, then on A, ξ1 = ξ2, a.s.

4. Reflected Backward Stochastic Differential Equations

Consider the reflected backward stochastic differential equation:

dYt = −f(t, Yt)dt+ dMt − dKt (4.1)

Definition 4.1. Let Lt; t ≥ 0 be a given càdlàg Ht-adapted process. We say that
(Yt,Mt, Kt, t ≥ 0) is a solution to RBSDE(3.1) with lower barrier Lt, t ≥ 0 if

(i). Yt is an Ht-adapted, càdlàg real-valued process,
(ii). Yt ≥ Lt P -a.s. for every t ≥ 0.
(iii). Mt, t ≥ 0 is a càdlàg real-valued Ht-martingale.
(iv). Kt, t ≥ 0 is an increasing, continuous Ht-adapted process with K0 = 0.
(v). For every t ≥ 0,

Yt = ξ +

∫ T

t

f(s, Ys)ds− (MT −Mt) +KT −Kt P − almostly surely. (4.2)

(vi).
∫ T

0 (Yt − Lt)dKt = 0.

In the following we let T H
t,T denote the set of H-stopping times τ such that

t ≤ τ ≤ T a.s. By combining the arguments of [9][10] we get the following result.
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Theorem 4.2. Let f(t, y) and ξ be as in Theorem 3.1. Assume ξ ≥ LT and one
of the following conditions hold:

(i). Lt is a right continuous, increasing, square integrable predictable process
with E[L2

T ] < ∞.

(ii).Lt is absolutely continuous and E[
∫ T

0
(L′

t)
2dt] < ∞.

Then :
a) The RBSDE(4.1) admits a unique solution.
b) The solution process Yt can be given the optimal stopping representation

Yt = esssupτ∈T H

t,T
E[

∫ τ

t

f(s, Ys)ds+ Lτχτ<T + ξχτ=T |Ht]; t ∈ [0, T ] (4.3)

c) The solution process Kt is given by

KT −KT−t = max
s≤t

(ξ+

∫ T

T−s

f(u, Yu)du− (MT −MT−s)−LT−s)
−; t ∈ [0, T ] (4.4)

where x− = max(−x, 0).

Proof. a) We first prove the uniqueness. Suppose (Y 1
t ,M

1
t , K

1
t ) and (Y 2

t ,M
2
t , K

2
t )

are two solutions to the RBSDE(2). By Itô’s formula, we have

|Y 1
t − Y 2

t |
2 + [Y 1 − Y 2, Y 1 − Y 2]T − [Y 1 − Y 2, Y 1 − Y 2]t

= 2

∫ T

t

(Y 1
s − Y 2

s )(f(s, Y
1
s )− f(s, Y 2

s ))ds− 2

∫ T

t

(Y 1
s− − Y 2

s−)d(M
1
s −M2

s )

+2

∫ T

t

(Y 1
s − Y 2

s )d(K
1
s −K2

s ) (4.5)

Take expectation in the above equation, use (ii), (vi) in Definition 4.1 to obtain

E[|Y 1
t − Y 2

t |
2] + E{[Y 1 − Y 2, Y 1 − Y 2]T − [Y 1 − Y 2, Y 1 − Y 2]t}

≤ C

∫ T

t

E[(Y 1
s − Y 2

s )
2]ds− 2E[

∫ T

t

(Y 2
s − Ls)dK

1
s ]

−2E[

∫ T

t

(Y 1
s − Ls)dK

2
s ]

≤ C

∫ T

t

E[(Y 1
s − Y 2

s )
2]ds (4.6)

(4.6) and Gronwall’s inequality implies that E[|Y 1
t − Y 2

t |
2] = 0 for t ≥ 0, proving

the uniqueness.
To prove the existence, we will use the penalization method. For n ≥ 1, consider

the penalized backward stochastic differential equation:

Y n
t = ξ +

∫ T

t

f(s, Y n
s )ds− (Mn

T −Mn
t ) + n

∫ T

t

(Y n
s − Ls)

−ds (4.7)

Equation (4.7) admits a unique solution according to Theorem 2.1. By the com-
parison Theorem 2.4, we know that the sequence Y n, n ≥ 1 is increasing, i.e.,
Y n
t ≤ Y n+1

t P -a.s. Set Yt := limn→∞ Y n
t . Similar to the proof of Theorem

4.2 of [10], we next give an a priori estimate for the L2 bound of Y n. Put
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Kn
t = n

∫ t

0
(Y n

s − Ls)
−ds. By Itô’s formula, we have

|Y n
t |2 + [Mn,Mn]T − [Mn,Mn]t

= ξ2 + 2

∫ T

t

Y n
s (f(s, Y n

s )ds− 2

∫ T

t

Y n
s−dM

n
s

+2n

∫ T

t

Y n
s (Y n

s − Ls)
−ds (4.8)

As f has a linear growth in the variable y, it follows that
∫ T

t

|Y n
s (f(s, Y n

s )|ds ≤ CT (1 +

∫ T

t

(Y n
s )2ds) (4.9)

For any δ > 0,

2nE

[
∫ T

t

Y n
s (Y n

s − Ls)
−ds

]

= 2nE

[
∫ T

t

(Y n
s − Ls)(Y

n
s − Ls)

−ds

]

+ 2nE

[
∫ T

t

Ls(Y
n
s − Ls)

−ds

]

≤
1

δ
E

[

sup
0≤s≤T

(Ls)
2

]

+ δE

[

(Kn
T −Kn

t )
2

]

(4.10)

On the other hand, in view of (4.7), we see that

E

[

(Kn
T −Kn

t )
2

]

≤ CE[|ξ|2] + CE[|Y n
t |2] + C(1 +

∫ T

t

E[(Y n
s )2]ds)

+CE

[

(Mn
T −Mn

t )
2

]

≤ CE[|ξ|2] + CE[|Y n
t |2] + C(1 +

∫ T

t

E[(Y n
s )2]ds)

+CE

(

[Mn,Mn]T − [Mn,Mn]t

)

(4.11)

Take expectation in (4.8) and substitute (4.9)–(4.11) into (4.8) to get

E[|Y n
t |2] + E

(

[Mn,Mn]T − [Mn,Mn]t

)

≤ CδE[|ξ|2] + CδE

[

sup
0≤s≤T

(Ls)
2

]

+ Cδ(1 +

∫ T

t

E[(Y n
s )2]ds)

+Cδ

{

E[|Y n
t |2] + E

(

[Mn,Mn]T − [Mn,Mn]t

)}

(4.12)

Select δ so that Cδ < 1 and apply Gronwall’s inequality to deduce that

sup
n

sup
0≤t≤T

(E[|Y n
t |2] + E([Mn,Mn]T )) ≤ CTE[|ξ|2] + CTE

[

sup
0≤s≤T

(Ls)
2

]

(4.13)

This implies supn E[(Mn
T )

2] < ∞. Thus, there exists a subsequence nk such that
Mnk

T converges weakly to some random variable MT in L2(Ω) as k → ∞. Let
Mt, t ≥ 0 denote the martingale with terminal value MT . Then it is easy to see
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that Mnk

t converges weakly to Mt in L2(Ω) for every t ≤ T . Replacing n by nk in
(4.7) we get

Knk

T −Knk

t = Y nk

t − ξ −

∫ T

t

f(s, Y nk
s )ds+ (Mnk

T −Mnk

t ) (4.14)

Since each term on the right hand side converges, we deduce that there exists an
increasing process Kt, t ≥ 0 such that Knk

t converges weakly to Kt. Moreover,
(Y,M,K) satisfies the following backward equation:

Yt = ξ +

∫ T

t

f(s, Ys)ds− (MT −Mt) +KT −Kt (4.15)

By Lemma 2.2 in [16], it follows from the equation (4.15) that Yt, Kt are right
continuous with left limits. Furthermore, using Fatou Lemma it follows that

E[

∫ T

0

(Yt − Lt)
−dt]

≤ lim inf
n→∞

E[

∫ T

0

(Y n
t − Lt)

−dt]

≤ lim inf
n→∞

1

n
E[(Kn

T −Kn
t )] ≤ C lim

n→∞

1

n
= 0 (4.16)

As both Y and L are right continuous, (4.16) implies that Yt ≥ Lt P -a.s. for evert
t ≥ 0. To show that (Y,M,K) is a solution to the RBSDE(3.1), it remains to prove

∫ T

0

(Yt − Lt)dKt = 0 (4.17)

To this end, we need to strengthen the convergence of Kn to K. Define

φ(u, x) = n[(x− Lu)
−]2

Then φ(u, x) is convex in x for every u ≥ 0. By smooth approximation, we may
assume φ′′(u, x) exists and φ′′(u, x) ≥ 0, where φ′ stands for the derivative of φ
w.r.t. x. By Itô’s formula, we have

dφ(t, Y n
t ) = ∂tφ(t, Y

n
t )dt+ φ′(t, Y n

t )dY n
t

+
1

2
φ′′(t, Y n

t )d[Y n, Y n]ct

+d

(

∑

0<s≤t

{φ(s, Y n
s )− φ(s, Y n

s−)− φ′(s, Y n
s−)∆Y n

s }

)

(4.18)

Hence,

φ(t, Y n
t ) +

∫ T

t

[n(Y n
u − Lu)

−]2du+

∫ T

t

1

2
φ′′(u, Y n

u )d[Y n, Y n]cu

+
∑

0<s≤t

{φ(s, Y n
s )− φ(s, Y n

s−)− φ′(s, Y n
s−)∆Y n

s }

= −2n

∫ T

t

|{Lu>Y n
u }(Lu − Y n

u )dLu − 2n

∫ T

t

(Y n
u − Lu)

−f(u, Y n
u )du

−2n

∫ T

t

(Y n
u − Lu)

−dMn
u (4.19)
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Since φ(u, x) is convex in x, we have
∫ T

t

1

2
φ′′(u, Y n

u )d[Y n, Y n]cu ≥ 0,
∑

0<s≤t

{φ(s, Y n
s )−φ(s, Y n

s−)−φ′(s, Y n
s−)∆Y n

s } ≥ 0

(4.20)
By virtue of the linear growth of f , it is easy to see that

−2n

∫ T

t

(Y n
u − Lu)

−f(u, Y n
u )du ≤

1

3

∫ T

t

[n(Y n
u −Lu)

−]2du+CT +CT

∫ T

t

(Y n
u )2du

(4.21)

If condition (i) holds, −2n
∫ T

t
χ{Lu>Y n

u }(Lu − Y n
u )dLu ≤ 0. In this case, it follows

from (4.19)–(4.21) that

2

3
E

[
∫ T

t

[n(Y n
u − Lu)

−]2du

]

≤ C + E

[
∫ T

t

(Y n
u )2du

]

(4.22)

On the other hand, if condition (ii) is true, then

−2n

∫ T

t

χ{Lu>Y n
u }(Lu − Y n

u )dLu ≤
1

3

∫ T

t

[n(Y n
u − Lu)

−]2du+ C

∫ T

t

(L′
u)

2du

In this case, we deduce from (4.19)–(4.21) that

1

3
E

[
∫ T

t

[n(Y n
u −Lu)

−]2du

]

≤ C+CE

[
∫ T

t

(Y n
u )2du

]

+CE

[
∫ T

t

(L′
u)

2du

]

(4.23)

In view of (4.13), we obtain both from (4.22) and (4.23) that

sup
n

E

[
∫ T

t

[n(Y n
u − Lu)

−]2du

]

< ∞. (4.24)

Choosing a further subsequence if necessary, (4.24) implies that nk(Y
nk
u − Lu)

−

converges weakly to some function gu in L2(Ω × [0, T ], P × dt) and Kt defined

above is given by Kt =
∫ t

0
gudu. Now we are in a position to prove (4.17). Write

∫ T

0

(Yu − Lu)dKu −

∫ T

0

(Y nk
u − Lu)dK

nk
u

=

∫ T

0

(Yu − Lu)[nk(Y
nk
u − Lu)

− − gu]du

+

∫ T

0

(Yu − Y nk
u )[nk(Y

nk
u − Lu)

−]du (4.25)

Because of the weak convergence, we have

lim
k→∞

∫ T

0

(Yu − Lu)[nk(Y
nk
u − Lu)

− − gu]du = 0 (4.26)

By the monotone convergence theorem and (4.24), it follows that

lim
k→∞

|

∫ T

0

(Yu − Y nk
u )[nk(Y

nk
u − Lu)

−]du|

≤ lim
k→∞

(
∫ T

0

(Yu − Y nk
u )2du

)
1

2

(
∫ T

0

[nk(Y
nk
u − Lu)

−]2du

)
1

2

= 0 (4.27)
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Combining (4.26) and (4.27) we obtain
∫ T

0

(Yu − Lu)dKu = lim
k→∞

∫ T

0

(Y n
u − Lu)dK

nk
u ≤ 0

As Yu ≥ Lu, (4.17) follows. The proof of a) is complete.
b) Next we prove that the unique solution process Yt of (4.3) can be given the

representation (4.4). We do this by adapting the argument used in [9] to our setting:
First note that if τ ∈ T H

t,T , then by (4.2) we have

Yτ = ξ +

∫ T

τ

f(s, Ys)ds− (MT −Mτ ) +KT −Kτ (4.28)

Subtracting (4.28) from (4.2) and taking conditional expectation with respect to
Ht we get

Yt = E[

∫ τ

t

f(s, Ys)ds+ Yτ +Kτ −Kt|Ht]

≥ E[

∫ τ

t

f(s, Ys)ds+ Lτχτ<T + ξχτ=T |Ht].

Since τ ∈ T H
t,T was arbitrary, this proves that

Yt ≥ esssupτ∈T H

t,T
E[

∫ τ

t

f(s, Ys)ds+ Lτχτ<T + ξχτ=T |Ht]; t ∈ [0, T ] (4.29)

On the other hand, if we define

τ̂t = inf{s ∈ [t, T ];Ys = Ls}

then τ̂t ∈ T H
t,T and

E[

∫ τ̂t

t

f(s, Ys)ds+ Lτ̂tχτ̂t<T + ξχτ̂t=T |Ht]

= E[

∫ τ̂t

t

f(s, Ys)ds+ Yτ̂t +Kτ̂t −Kt|Ht] = Yt

Here we have used that
Kτ̂t −Kt = 0,

which is a consequence of the requirement (vi) of Definition 4.1, i.e. of the equation
∫ T

0

(Yt − Lt)dKt = 0.

This completes the proof of b).
To prove c) we use the following result:

Skorohod Lemma. Let x(t) be a real càdlàg function on [0,∞) such that x(0) ≥ 0.
Then there exists a unique pair (y(t), k(t)) of càdlàg functions on [0,∞) such that

(i) y(t) = x(t) + k(t)
(ii) y(t) ≥ 0
(iii) k(t) is càdlàg and nondecreasing, k(0) = 0
(iv)

∫∞

0 y(t)k(dt) = 0.
The function k(t) is actually given by

k(t) = sups≤tx
−(s) (4.30)

where x−(s) = max(−x(s), 0).
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We say that (y, k) is the solution of the Skorohod problem. Comparing with
Definition 4.1 we see that if we put

y̌(t) = YT−t − LT−t = ξ +

∫ T

T−t

f(s, Ys)ds− (MT −MT−t)− LT−t +KT −KT−t,

(4.31)

x̌(t) = ξ +

∫ T

T−t

f(s, Ys)ds− (MT −MT−t)− LT−t, (4.32)

k(t) = KT −KT−t, (4.33)

then (y(t) = y̌(t+), k(t), t ≥ 0) solves the Skorohod problem described in Definition
4.1 for x(t) = x̌(t+). By (4.30) we conclude that Kt is given by

KT −KT−t

= max
s≤t

(ξ +

∫ T

T−s

f(u, Yu)du− (MT −MT−s)− LT−s)
−; t ∈ [0, T ] (4.34)

Since the unique solution Kt of the RBSDE (4.1) is in particular a solution of the
corresponding Skorohod problem and this solution is unique and given by (4.34),
we can conclude that (4.34) defines Kt as an H-adapted process. This completes
the proof of c) and hence the proof of Theorem 4.2. �

Remark 4.3. A discussion of the Snell envelope and the associated local time in a
semimartingale context can be found in [11].

5. Application to Finance

Let Bt = Bt(ω) andN(dt, dz) be a Brownian motion and an independent Poisson
random measure, respectively, on a probability space (Ω,F , P ). We let ν(dz) :=
E[N([0, 1], dz)] be the Lévy measure of N and we put

Ñ(dt, dz) = N(dt, dz)− ν(dz)dt.

We assume that
∫

R

ζ2ν(dζ) < ∞.

We refer to [14], Chapter 1 for more information about stochastic calculus for Itô-
Lévy processes.

Let Ft = σ(Bs, Ñ(ds, dz); s ≤ t) be the σ-algebra generated by Bs and Ñ(ds, dz)
for s ≤ t, and let F = {Ft}t≥0 be the corresponding filtration. We may regard Ft

as the information obtained by a person observing Bs and Ñ(ds, dz) up to time
t. If a person has more information than this, she is called an insider (at least in
a financial market context). We represent such inside information by a filtration
H = {Ht}t≥0 where Ht ⊇ Ft for all t ≥ 0. We assume that {Ht}t≥0 and {Ft}t≥0

are right-continuous and contain all sets of P -measure 0.
If the initial condition or some of the coefficients of a stochastic differential equa-

tion driven by dBt and Ñ(dt, dz) are Ht-adapted and not necessarily Ft-adapted,
the corresponding stochastic integrals are anticipating. Then it is necessary to
specify what type of anticipating integral one is using. In this section we study a
problem about optimal consumption of an insider in a financial market, and in this
context we choose to represent the anticipating integrals as forward integrals. See
e.g. [6][13] or the monograph [7] for a motivation for the use of the forward integral
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in the context of insider trading, and see [17] for the basic properties of the forward
integral.

Now suppose we have a cash flow Xt = X(λ)(t) given by

dXt = Xt−

[

(µt − λt)dt+ σtd
−Bt

+

∫

R

θ(t, z)Ñ(d−t, dz)
]

;X0 > 0; 0 ≤ t ≤ T (5.1)

where µt, σt and θ(t, z) are given bounded Ht-predictable processes, θ > −1, and

d−Bt, Ñ(d−t, dz) indicates that we use a forward integral interpretation. Here
c(t) := λtXt is the consumption rate, λt being our relative consumption rate. We
assume that we are given a family AH of admissible controls λt ≥ 0 included in the
set of Ht-predictable processes, where Ht ⊇ Ft is a given filtration.

By the Itô formula for forward integrals the solution Xt of (5.1) is given by

Xt = x exp

[
∫ t

0

{µs − λs −
1

2
σ2
s

+

∫

R

[log(1 + θ(s, z))− θ(s, z)]ν(dz)}ds+

∫ t

0

σsd
−Bs

+

∫ t

0

∫

R

log(1 + θ(s, z))Ñ(d−s, dz)

]

; 0 ≤ t ≤ T. (5.2)

We assume that AH satisfies the following conditions:

(i) For all λ, β ∈ AH with β bounded there exists δ > 0 such that λ+yβ ∈ AH

for all y ∈ (−δ, δ).

(ii) For all t0 ∈ [0, T ], h > 0 with t0 + h ≤ T and all bounded measurable α(ω)
the control βs(ω) := α(ω)ξ[t0,t0+h](s) is in AH.

Let U1, U2 be given utility functions. We assume that U1, U2 are increasing
and concave C1 functions on (0,∞) and that x → ∂Ui

∂x
is strictly decreasing with

limx→∞
∂Ui

∂x
= 0; i = 1, 2. Consider the problem to find Φ and λ∗ ∈ AH such that

Φ = sup
λ∈AH

J(λ) = J(λ∗), (5.3)

where J(λ) is given by

J(λ) = E[

∫ T

0

e−ρsU1(λsXs)ds+ e−ρTU2(XT )];

where T > 0, ρ > 0 are given constants.
To study this problem we use a perturbation argument: Suppose λ is optimal.

Choose β ∈ AH, δ > 0, and consider

g(y) := J(λ + yβ) for y ∈ (−δ, δ)
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Since λ is optimal we have g′(0) = 0. Hence

0 =
d

dy
E
[

∫ T

0

e−ρsU1

(

(λs + yβs)X
(λ+yβ)
s

)

ds

+e−ρTU2(X
(λ+yβ)
T )

]

y=0

= E
[

∫ T

0

U ′
1

(

(λs + yβs)X
(λ+yβ)
s

)

e−ρs

{βsX
(λ+yβ)
s + (λs + yβs)

d

dy
X(λ+yβ)

s }ds

+e−ρTU ′
2(X

(λ+yβ)
T )

d

dy
X

(λ+yβ)
T

]

y=0
(5.4)

Now, by (5.2),

d

dy
X

(λ+yβ)
t = X

(λ+yβ)
t

[

−

∫ t

0

βrdr
]

(5.5)

Hence, (5.4) gives

E
[

∫ T

0

e−ρsU ′
1

(

λsX
(λ)
s

)

{βsX
(λ)
s − λsX

(λ)
s

[

∫ s

0

βrdr
]

}ds

−e−ρTU ′
2(X

(λ)
T )X

(λ)
T

∫ T

0

βrdr] = 0 (5.6)

By the Fubini theorem,
∫ T

0

hs

∫ s

0

βrdrds =

∫ T

0

(

∫ T

s

hrdr)βsds

Hence (5.6) can be written as

E
[

∫ T

0

{e−ρsU ′
1

(

λsX
(λ)
s

)

X(λ)
s −

∫ T

s

U ′
1(λrX

(λ)
r )λrX

(λ)
r e−ρrdr

−e−ρTU ′
2(X

(λ)
T )X

(λ)
T }βsds] = 0 (5.7)

Now apply this to

βs := α(ω)χ[t,t+h](s) (α Ht −measurable)

for a fixed t ∈ [0, T ). Then (5.7) becomes

E
[

∫ t+h

t

{e−ρsU ′
1

(

λsX
(λ)
s

)

X(λ)
s −

∫ T

s

U ′
1(λrX

(λ)
r )λrX

(λ)
r e−ρrdr

−e−ρTU ′
2(X

(λ)
T )X

(λ)
T }αds] = 0 (5.8)

Differentiating w.r.t. h at h = 0 and using that (5.8) holds for all Ht -measurable
α, we get

E
[

{e−ρtU ′
1

(

λtX
(λ)
t

)

X
(λ)
t −

∫ T

t

U ′
1(λrX

(λ)
r )λrX

(λ)
r e−ρrdr

−e−ρTU ′
2(X

(λ)
T )X

(λ)
T }|Ht] = 0 (5.9)

Define
Yt := e−ρtU ′

1

(

λtX
(λ)
t

)

X
(λ)
t (5.10)

ξ := e−ρTU ′
2(X

(λ)
T )X

(λ)
T (5.11)
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f(t, y, ω) = λty. (5.12)

Then (5.9) can be written

Yt = E[ξ +

∫ T

t

f(s, Ys, ω)ds|Ht]; t ∈ [0, T ]. (5.13)

This is an equation of the type considered in Section 2. Hence we can apply the
results of that section to study (5.13).

By Theorem 3.3 the solution of (5.13) is

Yt = E
[

ξ exp(

∫ T

t

λsds)|Ht

]

= E
[

e−ρTU ′
2(X

(λ)
T )X

(λ)
T exp(

∫ T

t

λsds)|Ht

]

,

which combined with (5.10) gives

exp(−ρt+

∫ t

0

λsds)U
′
1(λtX

(λ)
t )X

(λ)
t

= E
[

exp(−ρT +

∫ T

0

λsds)U
′
2(X

(λ)
T )X

(λ)
T |Ht

]

; t ∈ [0, T ].

Note that

exp(

∫ t

0

λsds)X
(λ)
t = X

(0)
t ,

whereX
(0)
t is the solution of (5.1) when there is no consumption (λ = 0). Therefore,

if we write Zt = X
(0)
t we have the following:

Theorem 5.1. The relative consumption rate λ is optimal for problem (5.3) if and
only if the following holds:

exp(−ρt)U ′
1(λtX

(λ)
t )Zt = E

[

exp(−ρT )U ′
2(X

(λ)
T )ZT |Ht

]

; t ∈ [0, T ]. (5.14)

Equation (5.14) gives a relation between the optimal consumption rate

ct = λtX
(λ)
t

and the corresponding optimal terminal wealth X
(λ)
T . In some cases this can be

used to find both. To see this, note that by (5.14) we get

U ′
1(ct) = exp(ρ(t− T ))E

[

U ′
2(X

(λ)
T )

ZT

Zt

|Ht

]

or

ct = I1(exp(ρ(t− T ))E
[

U ′
2(X

(λ)
T )

ZT

Zt

|Ht

]

), (5.15)

where I1 = (U ′
1)

−1, the inverse of U ′
1. Substituting (5.15) into the equation (5.1)

we get

dX
(λ)
t = X

(λ)
t−

[

µtdt+ σtd
−Bt +

∫

R0

θ(t, z)Ñ(d−t, dz)
]

− ctdt. (5.16)

The solution of this equation is

X
(λ)
t = X0Gt −

∫ t

0

Gt

Gs

csds, (5.17)
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where

Gt = x exp

[
∫ t

0

{−
1

2
σ2
s +

∫

R0

[log(1 + θ(s, z))− θ(s, z)]ν(dz)}ds

+

∫ t

0

σsd
−Bs +

∫ t

0

∫

R0

log(1 + θ(s, z))Ñ(d−s, dz)

]

; t ≥ 0. (5.18)

Hence, putting t = T in (5.17) we get

X
(λ)
T = GT (X0 −

∫ T

0

cs

Gs

ds)

= GT (X0 −

∫ T

0

1

Gt

I1(
exp(ρ(t− T ))

Zt

E
[

U ′
2(X

(λ)
T )ZT |Ht

]

)dt), (5.19)

which is an equation for the optimal terminal wealth X
(λ)
T . We do not know how

to solve this equation in general. However, there are some solvable cases:

Corollary 5.2. Suppose
U2(x, ω) = K(ω)x (5.20)

where K is a bounded FT -measurable random variable. Then the optimal terminal

wealth X
(λ)
T is given by

X
(λ)
T = GT (X0 −

∫ T

0

1

Gt

I1(
exp(ρ(t− T ))

Zt

E
[

ZTK|Ht

]

)dt) (5.21)

and the corresponding optimal consumption rate ct is given by (5.15)

Corollary 5.3. (Complete future information)

Suppose that Ht = FT for all t ∈ [0, T ]. Then the optimal terminal wealth X
(λ)
T is

a solution of the equation

X
(λ)
T = GT (X0 −

∫ T

0

1

Gt

I1(exp(ρ(t− T ))
ZT

Zt

U ′
2(X

(λ)
T ))dt) (5.22)

and the corresponding optimal consumption rate ct is given by (5.15).

Example 5.4. Suppose U1(x) = K1(ω)
1
γ
xγ and U2(x) = K2(ω)

1
γ
xγ , where Ki(ω)

are bounded FT -measurable random variables and γ ∈ (−∞, 1)\{0}. Suppose that
Ht = FT for all t ∈ [0, T ]. Then

I1(y) =
( y

K1

)
1

γ−1

So (5.22) becomes

X
(λ)
T = GT

(

X0 −

∫ T

0

1

Gt

(K2

K1
exp(ρ(t− T ))

ZT

Zt

)
1

γ−1X
(λ)
T ))dt

)

which gives

X
(λ)
T =

GTX0

1 + (K2

K1

)
1

γ−1

∫ T

0
GT

Gt

(

exp(ρ(t− T ))ZT

Zt

)
1

γ−1 dt
(5.23)

Thus we see that even with complete information about the future, the optimal
consumption problem has a finite solution. This is in contrast with the optimal
portfolio problem, which gives an infinite value even in the case of a slightly ad-
vanced information flow, i.e. with Ht = Ft+δ(t) for some δ(t) > 0. See e.g. [1][6][12].
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A special case:
If U1(x) = lnx, U2(x) = K lnx (K constant ) then (5.13) simplifies to

Yt = E[Ke−ρT +

∫ T

t

λsYsds|Ht] (5.24)

By (5.10)

Yt =
e−ρt

λt

Hence, by (5.24),
e−ρt

λt

= Ke−ρT +
1

ρ
(e−ρt − e−ρT )

This gives the optimal consumption rate

λt = λ∗
t =

ρ

1 + (ρK − 1)eρ(t−T )
(5.25)

This case was solved in [13]. However, the method in [13] does not apply to
other cases than the logarithmic utility case.
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