# Pseudo-Differential Operators Associated with the Bessel Type Operators-II 

## B. B. Waphare


#### Abstract

In this paper we define a symbol $a(x, y)$ by using inverse Hankel type transform. The pseudo differential type operator $G(x, D)$ associated with the Bessel type operator $\Delta_{\alpha, \beta}$. in terms of this symbol is also defined and it is shown that the pseudo differential type operator is bounded in a certain Sobolev type space associated with the Hankel type transform. Finally some properties of symbols are discussed.


AMS Subject Classification: Primary 46E30, 46F12, Secondary 44A15, 44A35.
Keywords: Bessel type operator, Hankel type transform, pseudo differential type operator, Sobolev type spaces, and Schwartz's theory of Fourier transformation.

## 1. Introduction

In recent years many authors have extended Hankel transformation

$$
\begin{equation*}
\left(h_{\mu} \phi\right)(x)=\int_{0}^{\infty}(x y)^{\frac{1}{2}} J_{\mu}(x y) \phi(y) d y \tag{1.1}
\end{equation*}
$$

to distributions belonging to $H_{\mu}^{\prime}$, the dual of the test function space $H_{\mu}$ satisfying certain condition on $\mathrm{I}=(0, \infty)$. Zemanian [12] has considered these transformations in his monograph. Waphare [9] has investigated Hankel type transformation

$$
\begin{equation*}
\left(h_{\alpha \beta} \phi\right)(x)=\int_{0}^{\infty}(x y)^{\alpha+\beta} J_{\alpha-\beta}(x y) \phi(y) d y \tag{1.2}
\end{equation*}
$$

and has been extended to distributions belonging to the dual space $H_{\alpha, \beta}^{\prime}$ consisting of all complex valued infinitely differentiable functions $\phi$ defined on $I=(0, \infty)$ satisfying

$$
\begin{equation*}
\rho_{m, k}^{\alpha, \beta}(\phi)=\sup _{x \in I}\left|x^{m}\left(x^{-1} D_{x}\right)^{k}\left(x^{2 \beta-1} \phi(x)\right)\right|<\infty \tag{1.3}
\end{equation*}
$$

for every $m, k, \in \mathbb{N}_{0}$, where $D_{x}=\frac{d}{d x}$.

Zaidman [11] studied a class of pseudo differential operators using Schwartz's theory of Fourier transformation. Pseudo differential type operators associated to a numerical valued symbol $a(x, y)$ were studied by Waphare [9]. One formula for such an operators appears as follows:

$$
\begin{equation*}
\left(h_{\alpha, \beta, a} u\right)(x)=\int_{0}^{\infty}(x y)^{\alpha+\beta} J_{\alpha-\beta}(x y) a(x, y) U_{\alpha, \beta}(y) d y \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{\alpha, \beta}(y)=\left(h_{\alpha, \beta, \alpha} u\right)(y)=\int_{0}^{\infty}(x y)^{\alpha+\beta} J_{\alpha-\beta}(x y) u(x) d x ;(\alpha-\beta) \geq-1 / 2 \tag{1.5}
\end{equation*}
$$

The symbol $a(x, y)$ is defined to be the complex valued infinitely differentiable functions on $I \times I$. which satisfies

$$
\begin{equation*}
(1+x)^{q} \mid\left(x^{-1} D_{x}\right)^{i}\left(y^{-1} D_{y} y^{p} a(x, y) \mid \leq K_{p, i, m, q}(1+y)^{m-p}\right. \tag{1.6}
\end{equation*}
$$

for all $q, i, p \in \mathbb{N}_{0}$ and $m$ is a fixed real number, and where $D_{y}=\frac{d}{d y}$.
The class of all such symbols is denoted by $H^{m}$. If $a(x, y)$ satisfies (1.6) with $q=0$, then the symbol class will be denoted by $H_{\mathrm{c}}^{m}$. Clearly $H^{m} \subset H_{\mathrm{C}}^{m}$.

## 2. Notations and Terminology

We shall use the notation and terminology of Waphare [9]. The differential operators $\Delta_{\alpha, \beta}$ is defined by

$$
\begin{align*}
\Delta_{\alpha, \beta} & =\Delta_{\alpha, \beta, x}=x^{2 \beta-1} D_{x} x^{4 \alpha} D_{x} x^{2 \beta-1} \\
& =(2 \beta-1)(4 \alpha+2 \beta-2) x^{(\alpha+\beta-1)}+2(2 \alpha+2 \beta-1) x^{4 \alpha+4 \beta-3} D_{x}+x^{2(2 \alpha+2 \beta-1)} D_{x}^{2} \tag{2.1}
\end{align*}
$$

Notice that for $\alpha=\frac{1}{4}+\frac{\mu}{2}, \beta=\frac{1}{4}-\frac{\mu}{2}$, (2.1) reduces to

$$
x^{-\mu-\frac{1}{2}} D_{x} x^{2 \mu+1} D_{x} x^{-\mu-\frac{1}{2}}=S_{\mu}=D_{x}^{2}+\frac{\left(1-4 \mu^{2}\right)}{4 x^{2}}
$$

which is a differential operator studied by Zemanian [12] and many authors later on.
From Waphare [9], we know that for any $\phi \in H_{\alpha, \beta}$

$$
\begin{equation*}
h_{\alpha, \beta}\left(\Delta_{\alpha, \beta} \phi\right)=-y^{2} h_{\alpha, \beta} \phi \tag{2.2}
\end{equation*}
$$

$$
\begin{gather*}
\left(x^{-1} D_{x}\right)^{k}\left(x^{2 \beta-1} \theta \phi\right)=\sum_{i=0}^{k}\binom{k}{i}\left(x^{-1} D_{x}\right)^{i} \theta\left(x^{-1} D_{x}\right)^{k-i}\left(x^{2 \beta-1} \phi\right)  \tag{2.3}\\
\Delta_{\alpha, \beta, x}^{r}=\sum_{j=0}^{r} b_{j} x^{2 j+2 \alpha}\left(x^{-1} D_{x}\right)^{r+j}\left(x^{2 \beta-1} \phi(x)\right) \tag{2.4}
\end{gather*}
$$

where $b_{j}$ are constants depending only on $(\alpha-\beta)$.
We also need a lemma due to Haimo [1] for the Hankel type convolution transform.

Lemma 2.1: Let $\Delta(x, y, z)$ be the area of a triangle with sides $x, y, z$ if such a triangle exists. For fixed $(\alpha-\beta) \geq-\frac{1}{2}$, set

$$
\begin{equation*}
D(x, y, x)=2^{2(\alpha-2 \beta)}(\pi)^{-1 / 2}\left(\Gamma ( 3 \alpha + \beta ) ^ { 2 } [ \Gamma ( 2 \alpha ) ] ^ { - 1 } ( x y z ) ^ { - 2 ( \alpha - \beta ) } \left[\Delta(x, y, z]^{-4 \beta} .\right.\right. \tag{2.5}
\end{equation*}
$$

if $\Delta$ exists and zero otherwise.
We note that $D(x, y, z) \geq 0$ and that it is symmetric in $x, y, z$ and from Waphare [9, equation (2.10)], we have

$$
\begin{equation*}
\int_{0}^{\infty} i(z t) D(x, y, z) d \mu(z)=i(x t) i(y t) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
d \mu(x)=\frac{1}{2^{\alpha-\beta} \Gamma(3 \alpha+\beta)} x^{4 \alpha} d x \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
i(x)=2^{\alpha-\beta} \Gamma(3 \alpha+\beta) x^{-(\alpha-\beta)} J_{\alpha-\beta}(x) \tag{2.8}
\end{equation*}
$$

Refering to Pathak and Pathak [6, p. 311, (1.14)], we can obtain

$$
\begin{equation*}
J_{\alpha-\beta}(x \xi) J_{\alpha-\beta}(x \lambda)=\frac{1}{2^{\alpha-\beta} \Gamma(3 \alpha+\beta)} \int_{0}^{\infty}(x \lambda \xi)^{\alpha-\beta} z^{-(\alpha-\beta)} J_{(\alpha-\beta)}(z x) D(\xi, \lambda, z) d \mu(z) \tag{2.9}
\end{equation*}
$$

Now we define the space $L_{\alpha, \beta}^{p}(I), 1 \leq p<\infty$, as the space of those real valued measurable functions on I for which

$$
\begin{equation*}
\|f\|_{p}=\left[\int_{0}^{\infty}|f(x)|^{p} d \mu(x)\right]^{\frac{1}{p}}<\infty \tag{2.10}
\end{equation*}
$$

$L_{\alpha, \beta}^{\infty}$ is the space of all real valued measurable functions on $I$ for which

$$
\begin{equation*}
\|f\|_{\infty}=\underset{0<x<\infty}{\operatorname{ess} \sup }|f(x)|<\infty \tag{2.11}
\end{equation*}
$$

If $f \in L_{\alpha, \beta}^{1}(I)$ then its associated function $f(x, y)$ is defined by

$$
\begin{equation*}
f(x, y)=\int_{0}^{\infty} f(z) D(x, y, z) d \mu(z), 0<x, y<\infty \tag{2.12}
\end{equation*}
$$

We shall require a Lemma due to Haimo.
Lemma 2.2 (Haimo): Let $f$ and $g$ be functions of $L_{\mu}^{1}(I)$ and let

$$
\begin{equation*}
f \# g(x)=\int_{0}^{\infty} f(x, y) g(y) d \mu(y), 0<x<\infty \tag{2.13}
\end{equation*}
$$

Then the integral defining $f \# g(x)$ converges for almost all $x, 0<x<\infty$ and

$$
\begin{equation*}
\|f \# g\|_{L^{1}} \leq\|f\|_{L^{1}}\|g\|_{L^{1}} \tag{2.14}
\end{equation*}
$$

## 3. Pseudo-Differential Type Operator $G(x, D)$

The symbol $a(x, y)$ is defined as the Hankel type transform

$$
\begin{equation*}
a(x, y)=x^{2 \beta-1} \int_{0}^{\infty}(x \lambda)^{\alpha+\beta} J_{\alpha-\beta}(x \lambda) W(\lambda, y) d \lambda \tag{3.1}
\end{equation*}
$$

where $W(\lambda, y)$ is a complex valued measurable function on $I \times I$. such that $W(\lambda, y)$ is $\lambda$-measurable for all $y \in I$ and

$$
\begin{equation*}
|W(\lambda, y)| \leq k(\lambda) \quad \text { for all } \quad y \in I, \lambda \in I \tag{3.2}
\end{equation*}
$$

where

$$
k(\lambda) \in L_{\alpha, \beta}^{1},(\alpha-\beta) \geq-\frac{1}{2}
$$

Note that as

$$
\left|x^{\alpha+\beta} J_{\alpha-\beta}(x)\right| \leq A_{\alpha, \beta} \quad \text { for } \quad(\alpha-\beta) \geq-\frac{1}{2}
$$

the integral (3.1) exists under the assumption (3.2).
Let $G$ denote the set of all $a(x, y)$ on $I \times I$. such that (3.1) and (3.2) hold.

For $a(x, y) \in G$, define the pseudo-differential type operator

$$
\begin{equation*}
G(x, D) u(x)=\int_{0}^{\infty}(x y)^{\alpha+\beta} J_{\alpha-\beta}(x y) a(x, y) U_{\alpha, \beta}(y) d y \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{\alpha, \beta}(y)=\int_{0}^{\infty}(x y)^{\alpha+\beta} J_{\alpha-\beta}(x y) u(x) d x,(\alpha-\beta) \geq-\frac{1}{2} \tag{3.4}
\end{equation*}
$$

Now for $\left|\chi^{\alpha+\beta} J_{\alpha-\beta}(x)\right| \leq A_{\alpha, \beta}$, using (3.1), we have

$$
\begin{aligned}
|G(x, D) u(x)| & =\left|\int_{0}^{\infty}(x y)^{\alpha+\beta} J_{\alpha-\beta}(x y)\left[x^{2 \beta-1} \int_{0}^{\infty}(x \lambda)^{\alpha+\beta} J_{\alpha-\beta}(x \lambda) W(\lambda, y) d \lambda\right] U_{\alpha, \beta}(y) d y\right| \\
& =\left|x^{-1+2 \beta}\right| \int_{0}^{\infty}(x \lambda)^{\alpha+\beta} J_{\alpha-\beta}(x \lambda) d \lambda \int_{0}^{\infty}(x y)^{\alpha+\beta} J_{\alpha-\beta}(x y) W(\lambda, y) U_{\alpha, \beta}(y) d y \mid \\
& \leq \int_{0}^{\infty} \int_{0}^{\infty} A_{\alpha, \beta}^{2} x^{2 \beta-1}|W(\lambda, y)|\left|U_{\alpha, \beta}(y)\right| d \lambda d y \\
& \leq x^{2 \beta-1} A_{\alpha, \beta}^{2} \int_{0}^{\infty}|k(\lambda)| d \lambda \int_{0}^{\infty}\left|U_{\alpha, \beta}(y)\right| d y<\infty
\end{aligned}
$$

because $k(\lambda) \in L^{1}(I)$ and $U_{\alpha, \beta}(y) \in H_{\alpha, \beta}(I)$
Definition 3.1 (Sobolev Type Space): The space $G_{\alpha, \beta, p}^{s}(I) \in \mathbb{R},(\alpha-\beta) \in \mathbb{R}$ is defined as the set of all those elements $u \in H_{\alpha, \beta}^{\prime}(I)$ which satisfy

$$
\begin{equation*}
\|u\|_{G_{\alpha, \beta, p}^{s}}=\left\|\eta^{s+2 \beta-1} h_{\alpha, \beta} u\right\|_{p}<\infty \tag{3.5}
\end{equation*}
$$

Theorem 3.2 (Boundedness for $G(x, D)$ : $\operatorname{Let}(\alpha-\beta) \geq-\frac{1}{2}$. Then

$$
\begin{equation*}
\|G(x, D) u\|_{G_{\alpha, \beta, 1}^{0}} \leq\|K\|_{L^{1}}\|u\|_{G_{\alpha, \beta, 1}^{0}}, u \in H_{\alpha, \beta}(I) \tag{3.6}
\end{equation*}
$$

Proof: By using (3.3) and (1.5) we have

$$
G(x, D) u(x)=\int_{0}^{\infty}(x y)^{\alpha+\beta} J_{\alpha-\beta}(x y) a(x, y)\left(h_{\alpha, \beta} u\right)(y) d y
$$

where

$$
a(x, y)=x^{2 \beta-1} \int_{0}^{\infty}(x \lambda)^{\alpha+\beta} J_{\alpha-\beta}(x \lambda) W(\lambda, y) d \lambda
$$

Now we make use of Fubini's theorem to change the order of integration and obtain

$$
\begin{aligned}
G(x, D) u(x) & =\int_{0}^{\infty}(x y)^{\alpha+\beta} J_{\alpha-\beta}(x y)\left[x^{2 \beta-1} \int_{0}^{\infty}(x \lambda)^{\alpha+\beta} J_{\alpha-\beta}(x \lambda) W(\lambda, y) d \lambda\right] U_{\alpha, \beta}(y) d y \\
& =\int_{0}^{\infty} \int_{0}^{\infty} x^{2 \beta-1}(x y)^{\alpha+\beta}(x \lambda)^{\alpha+\beta} W(\lambda, y) U_{\alpha, \beta}(y) C_{\alpha, \beta} \\
& \times \int_{0}^{\infty}(x \lambda y)^{\alpha-\beta} z^{(\alpha-\beta)} J_{\alpha-\beta}(z x) D(y, \lambda, z) d \mu(z) d \lambda d y
\end{aligned}
$$

where

$$
\begin{aligned}
C_{\alpha, \beta}= & \frac{1}{2^{\alpha-\beta} \Gamma(3 \alpha+\beta)} \\
G(x, D) u(x)= & \int_{0}^{\infty} \int_{0}^{\infty} x^{2 \beta-1}(x y)^{\alpha+\beta}(x \lambda)^{\alpha+\beta} W(\lambda, y) U_{\alpha, \beta}(y) \\
& \times C_{\alpha, \beta} \int_{0}^{\infty}(x \lambda y)^{\alpha-\beta} z^{-(\alpha-\beta)} J_{\alpha-\beta}(z x) D(y, \lambda, z) C_{\alpha, \beta} z^{-\alpha} d z d \lambda d y \\
= & \left(C_{\alpha, \beta}\right)^{2} \int_{0}^{\infty}(z x)^{\alpha-\beta} J_{\alpha-\beta}(z x)\left[\int_{0}^{\infty} \int_{0}^{\infty} y^{2 \alpha} U_{\alpha, \beta}(y) \lambda^{2 \alpha} W(\lambda, y) D(y, \lambda, z) d \lambda d y\right] z^{2 \alpha} d z
\end{aligned}
$$

Now by inverse Hankel type transform, we have

$$
\begin{aligned}
& \int_{0}^{\infty}(z x)^{\alpha+\beta} J_{\alpha-\beta}(z x) G(x, D) u(x) d x \\
= & z^{2 \alpha}\left(C_{\alpha, \beta}\right)^{2} \int_{0}^{\infty} \int_{0}^{\infty} y^{2 \alpha} U_{\alpha, \beta}(y) \lambda^{2 \alpha} W(\lambda, y) D(y, \lambda, z) d \lambda d y
\end{aligned}
$$

Thus we obtain

$$
h_{\alpha, \beta}[G(x, D) u(x)](z)=z^{2 \alpha} \int_{0}^{\infty} \int_{0}^{\infty} \lambda^{2 \beta-1} y^{2 \beta-1} W(\lambda, y) D(y, \lambda, z) U_{\alpha, \beta}(y) d \mu(\lambda) d \mu(y)
$$

Now we can use (3.2) to obtain

$$
\begin{aligned}
& \left|h_{\alpha, \beta}[G(x, D) u(x)](z)\right| \\
\leq & z^{2 \alpha} \int_{0}^{\infty} \int_{0}^{\infty} \lambda^{2 \beta-1} k(\lambda) D(y, \lambda, z) y^{2 \beta-1}\left|U_{\alpha, \beta}(y)\right| d \mu(y) d \mu(\lambda) \\
= & z^{2 \alpha}\left(K \# V_{\alpha-\beta}\right)(z)
\end{aligned}
$$

where

$$
K(\lambda)=\lambda^{2 \beta-1} k(\lambda)
$$

and

$$
V_{\alpha-\beta}(y)=y^{2 \beta-1}\left|U_{\alpha, \beta}(y)\right|
$$

Hence

$$
\begin{aligned}
& \int_{0}^{\infty} z^{2 \beta-1}\left|h_{\alpha, \beta}[G(x, D) u(x)](z)\right| d \mu(z) \\
\leq & \int_{0}^{\infty}\left(K \# V_{\alpha-\beta}\right)(z) d \mu(z)
\end{aligned}
$$

Finally applying (3.1) and (2.14) we get

$$
\|G(x, D) u(x)\|_{G_{\alpha, \beta, 1}^{0}} \leq\|K\|_{L^{1}}\|u\|_{G_{\alpha, \beta, 1}^{0}}
$$

## 4. Symbol Related Properties

A. Assume that $x^{2 \alpha} a(x, y) \in L^{1}(I)$ for fixed $y \in(0, \infty)$ and $(\alpha-\beta) \geq-\frac{1}{2}$

Let us define

$$
W(\lambda, y)=\int_{0}^{\infty}(x \lambda)^{\alpha+\beta} J_{\alpha-\beta}(x \lambda) x^{2 \alpha} a(x, y) d x
$$

$W(\lambda, y)$ is the same as $a_{\eta}(y)$ in Waphare [9]. Now from Waphare [9, equation (5.2)] we know that for $(\alpha-\beta) \geq-\frac{1}{2}, r \in \mathbb{N}_{0}$,

$$
|W(\lambda, y)| \leq C_{r, m, q}(1+y)^{m} \lambda^{2 \alpha}\left(1+\lambda^{2 r}\right)^{-1}
$$

Now if $a(x, y) \in H^{0}$, then

$$
\begin{equation*}
|W(\lambda, y)| \leq k(\lambda), \quad \text { for all } \quad y \in I \quad \text { and for all } \lambda \in I . \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
k(\lambda)=C_{r, q} \lambda^{2 \alpha}\left(1+\lambda^{2 r}\right)^{-1} \in L^{1}(I) \tag{4.2}
\end{equation*}
$$

Conversely suppose that

$$
\begin{equation*}
k(\lambda) \in L^{1}(I) \quad \text { and } \quad|W(\lambda, y)| \leq k(\lambda) \tag{4.3}
\end{equation*}
$$

Then by inverse Hankel type transform the symbol $a(x, y)$ is defined by

$$
\begin{equation*}
a(x, y)=x^{2 \beta-1} \int_{0}^{\infty}(x \lambda)^{\alpha+\beta} J_{\alpha-\beta}(x \lambda) W(\lambda, y) d \lambda \tag{4.4}
\end{equation*}
$$

The integral (4.4) exists under the assumption (4.3) because

$$
\left|x^{\alpha+\beta} J_{\alpha-\beta}(x)\right| \leq A_{\alpha, \beta}, \quad \text { for } \quad(\alpha-\beta) \geq-\frac{1}{2}
$$

## B. Variable Separable form of the Symbol

Let $a(x, y)=a(x) b(y)$, where $\lambda^{2 a} h_{\alpha, \beta}[a(x)](\lambda) \in L^{1}$ and $b($.$) is bounded measurable$ function on $I$.

$$
|b(y)| \leq M, \quad y \in I .
$$

Since

$$
x^{2 \alpha} a(x)=\int_{0}^{\infty}(x \lambda)^{\alpha+\beta} J_{\alpha-\beta}(x \lambda) h_{\alpha, \beta}\left[x^{2 \alpha} a(x)\right](\lambda) d \lambda
$$

and

$$
\lambda^{2 \alpha} h_{\alpha, \beta}\left[a(x)(\lambda) \in L^{1}(I),\right.
$$

therefore

$$
x^{2 \alpha} a(x, y)=\int_{0}^{\infty}(x \lambda)^{\alpha+\beta} J_{\alpha-\beta}(x \lambda)\left[h_{\alpha, \beta} x^{2 \alpha} a(x)\right](\lambda) b(y) d \lambda
$$

Thus we get

$$
\begin{equation*}
W(\lambda, y)=h_{\alpha, \beta}\left[x^{2 \alpha} a(x, y)\right](\lambda)=h_{\alpha, \beta}\left[x^{2 \alpha} a(x)\right](\lambda) b(y) \tag{4.5}
\end{equation*}
$$

Since

$$
|b(y)| \leq M,
$$

and

$$
|W(\lambda, y)| \leq M\left|h_{\alpha, \beta}\left[x^{2 \alpha} a(x)\right](\lambda)\right| \in L^{1}(I),
$$

therefore $W(\lambda, y)$ in (4.5) is measurable function on $I \times I$, for all $y \in I$.
Therefore (4.3) is clearly verified with

$$
K(\lambda)=M\left|h_{\alpha, \beta}\left(x^{2 \alpha} a(x)\right)(\lambda)\right|
$$

Thus by Theorem 3.2, we have

$$
\|G(x, D) u(x)\|_{G_{\alpha, \beta, 1}^{0}} \leq\|K\|_{L^{1}}\|u\|_{G_{\alpha, \beta, 1}^{0}}
$$

where

$$
\begin{aligned}
K(\lambda) & =\lambda^{2 \beta-1} k(\lambda) \\
& =\lambda^{2 \beta-1} M h_{\alpha, \beta, 1}\left(x^{2 a} a(x)\right)(\lambda) .
\end{aligned}
$$

## REFERENCES

[1] D. T. Haimo, Trans, Amer. Math. Soc., 116 (1965), 330-75.
[2] I. I. Hirschman, J. Anal. Math., 8 (1960-61), 307-36.
[3] E. L. Koh, and A. H. Zemanian, SIAM J. Appl. Math. 16(5) (1968), 945-57.
[4] L. Schwartz, Theorie'des Distributions, Hermann, Paris (1978).
[5] R. S. Pathak, Integral Transforms of Generalized Functions and Their Applications, Gordon and Breach Science Publishers, (1997).
[6] R. S. Pathak, and S. Pathak, Certain Pseudo-Differential Operator Associated with the Bessel Operator, Indian J. Pure Appl. Math., 31(3) (2000), 309-317.
[7] R. S. Pathak, and P. K. Pandey, J. Math Anal. Appl., 215 (1997), 95-111.
[8] I. N. Sneddon, The Use of Integral Transform, McGraw-Hill Books Co., New York (1972).
[9] B. B.Waphare, Pseudo-Differential Operators Associated with Bessel Type Operators-I (Communicated).
[10] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, (1958).
[11] S. Zaidman, Ann Mat.Pura Appl., 92(4) (1972), 345-99.
[12] A. H. Zemanian, Generalized Integral Transformations, Interscience, New York, (1968).

## B. B. Waphare

MAEER's MIT Arts, Commerce \& Science College (MIT ACSC)
Alandi (D), Tal: Khed, Dist: Pune, India
E-mails: bbwaphare@mitpune.com, principal@mitacsc.com

