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Abstract. Exponential estimates for exit from a ball of radius r by time T for
solutions of the two-dimensional stochastic Navier-Stokes equations are first de-
rived, and then studied in the context of Freidlin-Wentzell type large deviations
principle. The existence of a similar estimate is discussed for a suitable class of
stochastic evolution equations with multiplicative noise.

1. Introduction

The stochastic Navier-Stokes system has been an important and active area
of research, and has received considerable attention in recent years. The in-
troduction of randomness in the Navier-Stokes equations arises from a need to
understand (i) the velocity fluctuations observed in wind tunnels under identical
experimental conditions, and (ii) the onset of turbulence. Random body forces
also arise as control terms, or from random disturbances such as structural vi-
brations that act on the fluid. It was originally the idea of Kolmogorov (see
Vishik and Fursikov [12]) to introduce white noise in the Navier-Stokes system
in order to obtain an invariant measure for the system.

The two-dimensional stochastic Navier-Stokes equation perturbed by an ad-
ditive noise (driven by a Wiener process) can be written as an abstract evolution
equation as follows:

du (t) + [νA u (t) + B(u (t))]dt = f(t)dt + Σt dW(t) (1.1)

with viscosity coefficient, ν > 0, external body force, f, and initial data, u(0),
specified, and operators A, B are defined in Section 2. The objectives of this
paper consist in obtaining (i) exponential estimates on certain exit times associ-
ated with the solution u, and (ii) their optimality from the standpoint of large
deviations principle. Specifically, for any fixed r > 0, define

τr := inf{t ∈ [0, T] : |u(t)| > r},
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namely, the first time of exit for the solution from the r-ball in a suitable Hilbert
space. We also consider the time of exit from the r-ball for enstrophy of the
solution when the energy of u stays bounded.

In general, exponential estimates for exit times for a class of stochastic evolu-
tion equations were obtained systematically by Chow and Menaldi [2]. Inspired
by their work, we find a connection to such estimates and a Freidlin-Wentzell
type large deviations result (in the small noise asymptotics) for the stochastic
Navier-Stokes system (1.1). It should be noted that equation (1.1) does not have
a small parameter

√
ε in front of the noise term; however, we prove that the

solution is a continuous function of a scaleable process, and use the continuous
mapping theorem to obtain the large deviations result. The latter result pro-
vides us a method to measure the optimality of the exponential estimates for the
solution.

The content of this article is organized as follows. The functional analytic
setup of stochastic Navier-Stokes equations as an abstract evolution equation is
given in Section 2. Exponential estimates for exit times are presented in Sec-
tion 3 based on the energy equality. Section 4 establishes the connection of the
exponential estimates to the large deviation principle. In Section 5 the exponen-
tial estimates for exit times are derived for a class of SPDEs with multiplicative
noise.

2. Stochastic Navier-Stokes Equation

In this section, we express the Navier-Stokes equation using appropriate func-
tion spaces. Let G be a bounded open domain in R2 with a smooth boundary
∂G. For t ∈ [0, T], consider the stochastic Navier-Stokes equation for a viscous
incompressible flow with no-slip condition at the boundary:

∂u
∂t

+ (u · ∇)u− ν∆u +∇p = f(t) + Σt
dW(t)

dt
(2.1)

and
∇ · u = 0 (2.2)

with initial and boundary data

u(t, x) = 0 ∀ x ∈ ∂G, and ∀ t ≥ 0

u(0, x) = u0(x) ∀ x ∈ G

where u is the two-dimensional velocity vector field, ν > 0 is the viscosity co-
efficient and p denotes the pressure field and is a scalar-valued function. The
function f is an external body force, and W is a Wiener process taking values
in a suitable function space. Later, we will provide more details on W and the
noise coefficient Σ.

To study the stochastic Navier-Stokes system (2.1), (2.2), we first write the
stochastic partial differential equation in the abstract (variational, or evolution)
form on suitable function spaces. For the functional analytic setup and the math-
ematical details, we refer the reader to Ladyzhenskaya [6] and Temam [10]. Let
V be the space of two-dimensional vector functions u on G which are infinitely
differentiable with compact support strictly contained in G, satisfying ∇ · u = 0.
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For any fixed α ∈ R, we can define the restriction of the standard Sobolev space
Wα,2 to those divergence-free 2D-vectors by letting Vα denote the closure of V in
Wα,2.

We will use the shorthand notations H := V0, V := V1, and L2(G), W1,2
0 (G),

etc. to denote two-dimensional vector functions on G with each coordinate in
the scalar versions of L2(G), W1,2

0 (G), etc. For instance, we simply have

W1,2
0 (G) = {u ∈ L2(G, R2) : ∇u ∈ L2(G, M2 (R)), u|∂G = 0}

where M2 (R) denotes the space of 2× 2 real matrices.
Denoting by n the outward normal vector on ∂G, the following characteriza-

tions of spaces H and V are well-known, and will be convenient:

H := {u ∈ L2(G) : ∇ · u = 0, u · n|∂G = 0},

V := {u ∈W1,2
0 (G) : ∇ · u = 0}.

Let V′ be the dual of V. We will denote the norm in H by | · |, and its
inner product by (·, ·). By [10] we have the dense, continuous and compact
embedding:

V ⊂→ H ≡ H
′ ⊂→ V

′
.

Let D(A) = W2,2(G) ∩ V. Define the linear operator A : D(A) → H by
Au = −Π∆u, where Π denotes the Leray projection of L2(G) into H. Since V =

D(A1/2), we can endow V with the norm ‖u‖ =
∣∣∣A1/2u

∣∣∣ which is equivalent to

the W1,2-norm by the Poincaré inequality. From this point on, ‖·‖ will denote
the V-norm. The pairing between V and its dual V′ will be denoted by 〈·, ·〉.
The operator A is known as the Stokes operator and is positive, self-adjoint with
compact resolvent. The eigenvalues of A will be denoted by 0 < λ1 < λ2 ≤ · · · ,
and the corresponding eigenfunctions by e1, e2, · · · form a complete orthonormal
system for H. It is known (cf. [6]) that there are values c, c′ > 0 such that

lim
j→∞

j
λj

= c > 0 and
∥∥∥ej

∥∥∥
L4(G)

≤ cλ1/4
j for all j.

Define b(·, ·, ·) : V ×V ×V → R by

b(u, v, w) =
2

∑
i,j=1

∫
G

ui (x)
∂vj

∂xi
(x)wj (x) dx.

This allows us to define B : V × V → V′ as a continuous bilinear operator
such that 〈

B(u, v), w
〉
= b(u, v, w) for all u, v, w ∈ V.

Note that b(u, v, w) = −b(u, w, v). We will denote B(u, u) by B(u) which
satisfies the following estimate:∥∥B(u)

∥∥
V′ ≤ 2|u| ||u|| (2.3)

by setting a constant that depends on the domain G as 1. Let U be a real sep-
arable Hilbert space. We assume that u0 is H-valued, and is independent of
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W, a U-valued Wiener process with nuclear covariance operator Q. Then space
U0 = Q1/2U is a Hilbert space with inner product,

(u, v)0 = (Q−1/2u, Q−1/2v)U ∀ u, v ∈ U0. (2.4)

Let | · |0 denote the norm in U0. Clearly, the imbedding of U0 in U is Hilbert-
Schmidt since Q is a trace class operator.

Let LQ be the space of linear operators S such that SQ1/2 is a Hilbert-Schmidt
operator from U to H. Define the norm on space LQ by

|S|2LQ
:=
∥∥∥SQ1/2

∥∥∥2

L2
= tr (SQS∗)

where L2 stands for the Hilbert Schmidt norm of the operator. The noise coeffi-
cient Σ : Ω× [0, T]→ LQ is assumed to be predictable with

E

∫ T

0
tr{ΣtQΣ∗t }dt < ∞. (2.5)

We also assume that f(s) is V
′
-valued for each s ∈ [0, T], and

∫ T
0

∥∥f(s)
∥∥2

V′ ds < ∞.
By applying projection Π to each term of the Navier-Stokes system, and in-

voking the Leray decomposition of L2(G) into divergence free and irrotational
components, we write the system (2.1) and (2.2) as

du (t) + [νA u (t) + B(u (t))] dt = f(t)dt + Σt dW(t). (2.6)

This is to be understood in the integral form

u (t) = u (0)− ν
∫ t

0
A u (s) ds−

∫ t

0
B(u (s))ds +

∫ t

0
ΣsdW(s) +

∫ t

0
f (s)ds. (2.7)

The existence and uniqueness of solutions of the stochastic Navier-Stokes
equation (2.6) has been studied under a variety of hypotheses and levels of gen-
erality by several authors ( e.g. [1, 3, 4, 7, 9]). We base our work on the following
theorem due to Viot [11].

Theorem 2.1. (Viot) Let E(|u0|2) < ∞ and f ∈ L2(0, T; V
′
). Suppose that there exists

a positive constant C such that |ΣsQ1/2|2L2
≤ C for all s ∈ [0, T]. Then there exists a

solution of the martingale problem posed by (2.7), and the solution is pathwise unique.

The martingale solution guaranteed by the above theorem is a weak solution
of (2.7) in the sense of stochastic analysis and partial differential equations. Since
the solution is pathwise unique, a result of Yamada and Watanabe (Proposition
5.3.20 in [5]) allows us to conclude that the solution u is a strong solution in the
sense of stochastic analysis.

The solution u lies in L2(Ω; C(0, T; H)) ∩ L2(Ω× (0, T); V), and if the initial
value u(0) satisfies E|u(0)|4 < ∞, and f ∈ L4([0, T]; V′), then there exists a
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constant C(T, ν) > 0 that depends on T and ν such that

E

(
sup

0≤s≤T
|u(s)|4 +

∫ T

0
|u(s)|2

∥∥u(s)
∥∥2 ds

)

≤ C(T, ν)

(
1 + E|u(0)|4 +

∫ T

0

∥∥f(s)
∥∥4

V′ ds

)
(2.8)

(cf. Proposition 2.3 of [9]).

3. Exponential Inequalities

We begin by proving an exponential inequality for the energy of the solution
u of equation (2.7) when it exceeds a threshold r > 0 by time T. The first result
is quite in the spirit of the work of Chow and Menaldi [2].

Proposition 3.1. Assume that there exists a positive constant C such that

(i) for all s ∈ [0, T],
∥∥∥ΣsQ1/2

∥∥∥2

L2
≤ C, and

(ii)
∫ T

0

∥∥f(s)
∥∥2

V′ ds ≤ C.

Then, for any given r > 0, the solution u of (2.6) satisfies

P{ sup
0≤t≤T

|u(t)| > r} ≤ exp{K + CT − r2 exp{−2CT}} (3.1)

where K := |u(0)|2 + C
8ν .

Proof. By the Itô formula,

|u(t)|2 + 2ν
∫ t

0

∥∥u(s)
∥∥2 ds = |u(0)|2 + 2

∫ t

0
〈f(s), u(s)〉ds + 2

∫ t

0
(u(s), ΣsdWs)

+
∫ t

0
tr (ΣsQΣ∗s )ds

≤ |u(0)|2 + 1
8ν

∫ t

0

∥∥f(s)
∥∥2

V′ ds + 2ν
∫ t

0

∥∥u(s)
∥∥2 ds + ηt

+ 2
∫ t

0

∥∥∥Q1/2Σ∗s u(s)
∥∥∥2

U0
ds +

∫ t

0
tr (ΣsQΣ∗s )ds (3.2)

where we have used the notation

ηt := 2
∫ t

0
(u(s), ΣsdWs)− 2

∫ t

0

∥∥∥Q1/2Σ∗s u(s)
∥∥∥2

U0
ds.

By the hypotheses,
∥∥∥Q1/2Σ∗s u(s)

∥∥∥2

U0
≤
∥∥∥ΣsQ1/2

∥∥∥2

L(U;H)
|u(s)|2 ≤ C|u(s)|2 yield-

ing thereby

|u(t)|2 ≤ K + ηt + 2C
∫ t

0
|u(s)|2ds + Ct (3.3)
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where K := |u(0)|2 + C
8ν . By Gronwall inequality, we write,

|u(t)|2 ≤ K + ηt + Ct +
∫ t

0
(K + ηs + Cs)2C exp{2C(t− s)}ds

≤
[

K + sup
0≤s≤t

ηs + Ct

]
exp{2Ct}. (3.4)

Hence, for any fixed r > 0, we obtain,

P{ sup
0≤t≤T

|u(t)| > r} ≤ P{(K + sup
0≤t≤T

ηt + CT) exp{2CT} > r2}

= P{ sup
0≤t≤T

ηt > r2e−2CT − K− CT}

= P{ sup
0≤t≤T

exp{ηt} > exp{r2e−2CT − K− CT}}

≤ exp{K + CT − r2 exp{−2CT}}

by the basic martingale inequality, and the proof is complete. �

Exponential estimates for the maximum of enstrophy of the solution u over
the interval [0, T] are difficult to obtain under our general setup. Here we content
ourselves with the following related estimate on the supremum of s

∥∥u(s)
∥∥2 over

[0, T] when
∫ T

0 (|u(s)|2 + 1)
∥∥u(s)

∥∥2 ds remains bounded. It is worthwhile to note

that E
∫ T

0 (|u(s)|2 + 1)
∥∥u(s)

∥∥2 ds is finite, and hence
∫ T

0 (|u(s)|2 + 1)
∥∥u(s)

∥∥2 ds
remains bounded with a large probability. The following result once again il-
lustrates the simplicity and the wide applicability of the methods of Chow and
Menaldi [2].

Proposition 3.2. Suppose there exists a finite constant C > 0 such that

(i) for all s ∈ [0, T],
∥∥∥ΣsQ1/2

∥∥∥2

L2
≤ ν

T , and

(ii)
∫ T

0 ‖fs‖2
V′ ds ≤ C.

Then, for any given K > 0 and r > 0, there exists a constant C1 > 0 such that

P

{∫ T

0
α(s)ds ≤ K, sup

0≤s≤T

s
2

∥∥u(s)
∥∥2

> r2

}
≤ exp

(
C1 − r2e−K

)
. (3.5)

where α(s) = 2Cν (|u(s)|2 + 1)
∥∥u(s)

∥∥2 with Cν = 27
4ν3 .

Proof. From equation (2.6), one obtains,

√
tu(t) +

∫ t

0

√
s{νAu(s) + B(u(s))}ds

=
∫ t

0

√
sf(s)ds +

∫ t

0

√
sΣsdWs +

∫ t

0

u(s)
2
√

s
ds.
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By the Itô formula, one obtains

t
2

∥∥u(t)
∥∥2

+ ν
∫ t

0
s|Au(s)|2ds +

∫ t

0
s〈B(u(s)), Au(s)〉ds

=
∫ t

0
s〈f(s), Au(s)〉ds +

∫ t

0
s(Au(s), ΣsdWs) +

1
2

∫ t

0
s tr(ΣsQΣ∗s )ds

+
1
2

∫ t

0
(u(s), Au(s))ds. (3.6)

Note that

|〈B(u(s)), Au(s)〉| = |b(u(s), u(s), Au(s))|
≤ |u(s)|L4(G)|∇u(s)|L4(G)|Au(s)|

≤ |u(s)|1/2∥∥u(s)
∥∥ |Au(s)|3/2.

Using this estimate in equation (3.6) gives

t
2

∥∥u(t)
∥∥2

+ ν
∫ t

0
s|Au(s)|2ds

≤
∫ t

0
s|u(s)|1/2∥∥u(s)

∥∥ |Au(s)|3/2ds +
∫ t

0
s|f(s)||Au(s)|ds +

∫ t

0
(sAu(s), ΣsdWs)

+
1
2

∫ t

0
s tr(ΣsQΣ∗s )ds +

1
2

∫ t

0

∥∥u(s)
∥∥2 ds

≤ ν

2

∫ t

0
s|Au(s)|2ds + Cν

∫ t

0
s|u(s)|2

∥∥u(s)
∥∥4 ds +

2
ν

∫ t

0
s|f(s)|2ds

+
∫ t

0
(sAu(s), ΣsdWs) +

1
2

∫ t

0
s
∥∥∥ΣsQ1/2

∥∥∥2

L2
ds +

1
2

∫ t

0

∥∥u(s)
∥∥2 ds. (3.7)

Thus, by taking Cν > 1/2, we have,

t
2

∥∥u(t)
∥∥2

+
ν

2

∫ t

0
s|Au(s)|2ds

≤ Cν

∫ t

0
{s|u(s)|2

∥∥u(s)
∥∥2

+ 1}
∥∥u(s)

∥∥2 ds +
∫ t

0
{2

ν
s|f(s)|2

+
1
2

s
∥∥∥ΣsQ1/2

∥∥∥2

L2
}ds +

∫ t

0
(sAu(s), ΣsdWs). (3.8)

Define the processes At :=
∫ t

0 {Cν

∥∥u(s)
∥∥2

+ 2
ν s|f(s)|2 + 1

2 s
∥∥∥ΣsQ1/2

∥∥∥2

L2
}ds, and

ηt :=
∫ t

0 (sAu(s), ΣsdWs)− 1
2

∫ t
0 s2|Q1/2Σ∗s Au(s)|2ds. From these definitions, we

write (3.8) as

t
2

∥∥u(t)
∥∥2

+
ν

2

∫ t

0
s|Au(s)|2ds

≤ At + ηt +
∫ t

0

s
2

α(s)
∥∥u(s)

∥∥2 ds +
1
2

∫ t

0
s2|Q1/2Σ∗s Au(s)|2ds (3.9)

with α(s) = 2Cν (|u(s)|2 + 1)
∥∥u(s)

∥∥2.
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Using the condition |Q1/2Σ∗s |2 ≤ ν
T for all s ≤ T, we obtain

t
2

∥∥u(t)
∥∥2 ≤ At + ηt +

∫ t

0

s
2

α(s)
∥∥u(s)

∥∥2 ds (3.10)

and by a Gronwall argument, we conclude that

t
2

∥∥u(t)
∥∥2 ≤ At + ηt +

∫ t

0
e
∫ t

s α(r)dr(As + ηs)α(s)ds

≤ sup
s≤t

(As + ηs)

(
1 + e

∫ t
0 α(r)dr

∫ t

0
e−
∫ s

0 α(r)drα(s)ds
)

≤ sup
s≤t

(As + ηs)e
∫ t

0 α(r)dr. (3.11)

Hence, we conclude that

P

{∫ T

0
α(s)ds ≤ K, sup

0≤s≤T

s
2

∥∥u(s)
∥∥2

> r2

}

≤ P

{
sup

0≤s≤T
(As + ηs)eK > r2

}

≤ P

{
AT + sup

0≤s≤T
ηs > r2e−K

}

= P

{
sup

0≤s≤T
eηs > exp{r2e−K − AT}

}
≤ exp

{
C1 − r2e−K

}
, (3.12)

where C1 = CνK + T( 2C
ν + ν

4 ). �

4. Connection to Large Deviations

Here, we study exit times of solutions of stochastic Navier-Stokes equations
from the r−ball by using small noise asymptotics provided by large deviations
theory. It is worthwhile to point out that the analysis is carried out despite the
fact that the stochastic equations do not have a small parameter in the noise
term.

Consider the unique solution z(t) of

dz + Azdt = ΣtdWt, (4.1)

with z(0) = 0. Define v := u− z, and notice that

∂v
∂t

=
∂u
∂t
− ∂z

∂t

= (−Au− B(u) + f (t) + Σt
dW
dt

)− (−Az + Σt
dW
dt

)

= −A(u− z)− B(u) + f (t) = −Av− B(v + z) + f
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Therefore, with z given, solving for u− z would be equivalent to solving for v
in

∂v
∂t

+ Av + B(v + z) + f = 0 (4.2)

with initial data v(0) = u0 ∈ H. Note that equation (4.2) is a non-random,
nonlinear partial differential equation and is solved for each ω, where ω enters
the equation through z(ω).

From a priori bounds, one can easily show that (similar to Proposition 2.3 in
[9]),

E

(
sup

0≤t≤T
|z(t)|2

)
+ E

(∫ T

0

∥∥z(t)
∥∥2 dt

)
≤ K(ν, T, C)

where K(ν, T, C) is a finite constant that depends on ν, T, and C that appear in
the hypotheses made in Proposition 3.1. Hence, one obtains that almost surely,
z ∈ C0([0, T]; H) ∩ L2(0, T; V).

Lemma 4.1. Given a function ϕ ∈ C0([0, T]; H) ∩ L2(0, T; V), let map Λ : ϕ 7→ vϕ

be defined by
∂vϕ

∂t
+ Avϕ + B(vϕ + ϕ) + f = 0 (4.3)

for t ∈ [0, T], with vϕ(0) = u(0). Then Λ is a continuous map from C0([0, T]; H) ∩
L2(0, T; V) to the space C([0, T]; H) ∩ L2(0, T; V).

Proof. Consider functions ϕ1 and ϕ2 in C0([0, T]; H)∩ L2(0, T; V), and denote the
corresponding solutions of equation (4.3) as v1 and v2, respectively. Let

wi := vi + ϕi for i = 1, 2.

Then, by the energy equality,

|v1(t)− v2(t)|2 + 2ν
∫ t

0

∥∥v1(s)− v2(s)
∥∥2 ds

= 2
∫ t

0
〈B(w1(s))− B(w2(s)), v1(s)− v2(s)〉ds. (4.4)

By the basic properties of the bilinear operator B, we have,

〈B(w1(s)), v1(s)− v2(s)〉 = 〈B(w1(s), w2(s)), v1(s)− v2(s)〉
+ 〈B(w1(s), ϕ1 − ϕ2), v1(s)− v2(s)〉

which enables us to write the integrand on the right side of (4.4) (suppressing
the time parameter s) as

〈B(w1)− B(w2), v1 − v2〉
= 〈B(w1 −w2, w2), v1 − v2〉+ 〈B(w1, ϕ1 − ϕ2), v1 − v2〉
= 〈B(v1 − v2, w2), v1 − v2〉+ 〈B(ϕ1 − ϕ2, w2), v1 − v2〉

+ 〈B(w1, ϕ1 − ϕ2), v1 − v2〉. (4.5)
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Thus the integral on the right side of (4.4) can be split into three integrals,
each of which is bounded as follows: First, consider∣∣∣∣∫ t

0
〈B(v1(s)− v2(s), w2(s)), v1(s)− v2(s)〉ds

∣∣∣∣
≤ ν

6

∫ t

0

∥∥v1(s)− v2(s)
∥∥2 ds +

3
ν

∫ t

0
|v1(s)− v2(s)|2

∥∥w2(s)
∥∥2 ds (4.6)

by applying the properties of B and Young’s inequality.
Next, consider the expression∣∣∣∣∫ t

0
〈B(ϕ1(s)− ϕ2(s), w2(s)), v1(s)− v2(s)〉ds

∣∣∣∣
≤ ν

6

∫ t

0

∥∥v1(s)− v2(s)
∥∥2 ds +

3
ν

∫ t

0

∥∥ϕ1(s)− ϕ2(s)
∥∥2

L4(G)

∥∥w2(s)
∥∥2

L4(G) ds

≤ ν

6

∫ t

0

∥∥v1(s)− v2(s)
∥∥2 ds +

3
2ν

∫ t

0
|ϕ1(s)− ϕ2(s)|2

∥∥w2(s)
∥∥2 ds

+
3

2ν

∫ t

0

∥∥ϕ1(s)− ϕ2(s)
∥∥2 |w2(s)|2ds

≤ ν

6

∫ t

0

∥∥v1(s)− v2(s)
∥∥2 ds +

3
2ν

[
sup

0≤s≤T
|ϕ1(s)− ϕ2(s)|2

∫ t

0

∥∥w2(s)
∥∥2 ds

+ sup
0≤s≤T

|w2(s)|2
∫ t

0

∥∥ϕ1(s)− ϕ2(s)
∥∥2 ds

]
. (4.7)

Finally, by the same reasoning employed in obtaining (4.7), we have∣∣∣∣∫ t

0
〈B(w1(s), ϕ1(s)− ϕ2(s)), v1(s)− v2(s)〉ds

∣∣∣∣
≤ ν

6

∫ t

0

∥∥v1(s)− v2(s)
∥∥2 ds +

3
2ν

[
sup

0≤s≤T
|ϕ1(s)− ϕ2(s)|2

∫ t

0

∥∥w1(s)
∥∥2 ds

+ sup
0≤s≤T

|w1(s)|2
∫ t

0

∥∥ϕ1(s)− ϕ2(s)
∥∥2 ds

]
. (4.8)

Using bounds (4.6), (4.7) and (4.8) in equation (4.4), we obtain upon simplifica-
tion,

|v1(t)− v2(t)|2 + ν
∫ t

0

∥∥v1(s)− v2(s)
∥∥2 ds

≤ 6
ν

∫ t

0
|v1(s)− v2(s)|2

∥∥w2(s)
∥∥2 ds

+
3
ν

(
sup

0≤s≤T
|ϕ1(s)− ϕ2(s)|2

) ∫ t

0
(
∥∥w1(s)

∥∥2
+
∥∥w2(s)

∥∥2
)ds

+
3
ν

(
sup

0≤s≤T
|w1(s)|2 + sup

0≤s≤T
|w2(s)|2

) ∫ t

0

∥∥ϕ1(s)− ϕ2(s)
∥∥2 ds. (4.9)

Dropping the second term on the left, and applying the Gronwall inequality, we
obtain
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|v1(t)− v2(t)|2

≤ 3
ν

(
sup

0≤s≤T
|ϕ1(s)− ϕ2(s)|2

)
×
∫ t

0
(
∥∥w1(s)

∥∥2
+
∥∥w2(s)

∥∥2
) exp

(6
ν

∫ t

s

∥∥w2(r)
∥∥2 dr

)
ds

+
3
ν

(
sup

0≤s≤T
|w1(s)|2 + sup

0≤s≤T
|w2(s)|2

)
×
∫ t

0

∥∥ϕ1(s)− ϕ2(s)
∥∥2 exp

(6
ν

∫ t

s

∥∥w2(r)
∥∥2 dr

)
ds. (4.10)

If ϕn → ϕ in C0([0, T]; H) ∩ L2(0, T; V), as n → ∞, it is simple to obtain an
upper bound uniform in n for sup0≤t≤T |wn(t)| and

∫ T
0

∥∥wn(s)
∥∥ ds, where wn :=

vn + ϕn. Hence, (4.10) allows us to conclude that vn − v → 0 in C0([0, T]; H),
and we use this result to estimate (4.9) to justify that vn − v → 0 in L2(0, T; V)
as well. The continuity of the map Λ has thus been proven.

�

For each h ∈ L2(0, T; U0), we will use the notation G0(
∫ ·

0 h(s)ds) to denote the
set of all solutions of the equation

dx(t) + Ax(t)dt = Σth(t)dt

with x(0) = 0.
For each ε > 0 , let zε denote the solution of

dzε(t) + Azε(t)dt =
√

εΣtdWt

for 0 ≤ t ≤ T with zε(0) = 0. Then zε(t) =
√

ε
∫ t

0 St−sΣsdWs where S is the
semigroup generated by A. It is well-known (cf. [9]) that the large deviations
rate function for the family {zε} is given by,

I(x) = inf
{h∈L2(0,T;U0):x∈G0(

∫ ·
0 h(s)ds)}

1
2

∫ T

0
|h(s)|20ds.

Define the map Γ from C0([0, T]; H) ∩ L2(0, T; V) to C([0, T]; H) ∩ L2(0, T; V) by

Γ(z) = z + Λ(z).

Then Γ is continuous by Lemma 4.1, and uε = Γ(zε) for all ε > 0. Hence, by the
contraction mapping principle, {uε} satisfies the large deviation principle large
deviations principle with rate function

J(A) = inf
x ∈ Γ−1(A)

I(x)

for any Borel set A in C([0, T]; H) ∩ L2(0, T; V), and in particular,

lim sup
ε→0

ε log P{uε ∈ Bc
r} ≤ −J(Bc

r). (4.11)
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Thus, for any given δ > 0, there exists an ε1 > 0 such that for all 0 < ε ≤ ε1,

P{uε ∈ Bc
r} ≤ exp{−1

ε
(J(Bc

r)− δ)}.

That is,

P{z ∈ 1√
ε

Γ−1(Bc
r)} ≤ exp{−1

ε
(J(Bc

r)− δ)}. (4.12)

Let A denote the set Γ( 1√
ε
Γ−1(Bc

r)). Then (4.12) can be written as

P{u ∈ A} ≤ exp{−1
ε
(J(Bc

r)− δ)}.

We have thus proved the following theorem:

Theorem 4.2. For any given r > 0 and δ > 0, there exists a large positive constant
ρ0, such that for all ρ ≥ ρ0 if we define the set Aρ := Γ(ρΓ−1(Bc

r)), then solution u of
equation (2.6) satisfies

P{u(t) ∈ Aρ} ≤ exp{−ρ(J(Bc
r)− δ)} (4.13)

where Br = {h ∈ C([0, T]; H) : sup
0≤t≤T

|h(t)|2 < r},

J(Bc
r) = inf

x∈Γ−1(Bc
r )

I(x),

and

I(x) = inf
{h∈L2(0,T;U0):x ∈ G0(

∫ ·
0 h(s)ds)}

1
2

∫ T

0
|h(s)|20ds.

Remark 4.3. (i) In case ρ0 = 1, A1 coincides with Bc
r , and the theorem gives the

rate of decay as J(Bc
r). Also, if we can ascertain the existence of an R such that

Bc
R ⊆ Aρ0 , the above result leads to a simpler inequality.

(ii) Since we know, by Proposition 3.1 that the rate of decay is of the order of r2,
we can follow the above procedure by considering the set

Fr = {x : J(x) ≤ r2}

for r > 0 and define the set Gr as any open neighborhood of Fr. Then given any
δ > 0, there exists an ε1 > 0 such that for all ε < ε1, we have

P{uε ∈ Gc
r} ≤ exp{−1

ε
(J(Gc

r )− δ)}

≤ exp{−1
ε
(r2 − δ)}

by the definition of Gr. Thus, we can conclude that

P{u ∈ Γ(
1√
ε

Γ−1(Gc
r ))} ≤ exp{−1

ε
(r2 − δ)}. (4.14)
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5. Exponential Inequalities for a Class of Evolution Equations

This section is devoted to the study of exponential inequalities for class of
stochastic evolution equations. Here, the equation and the functional analytic
setup differ from the previous sections. The class of equations that we consider
below requires strong hypotheses on the operators, and hence, do not include
the Navier-Stokes system.

Let (H0, (·, ·)0) be a real separable real Hilbert space and (H, (·, ·)) a Hilbert
space containing H0 such that the embedding i : H0 → H is Hilbert Schmidt.
Consider the equation

dX(t) + [LX(t)− G(t, X(t))]dt = Σ(t, X(t))dW(t), X(0) = x,

where x ∈ H0 and W(t) is a cylindrical Wiener process in H0. The above equa-
tion is to be understood in its mild form

X(t) = Ttx +
∫ t

0
Tt−sΣ(s, X(s))dWs +

∫ t

0
Tt−sG(s, X(s))ds, (5.1)

where x ∈ H0.
The following assumptions are made on the operators L, G and Σ.
(1) L is a densely defined linear operator on H0 such that L−1 is a bounded

self-adjoint operator with discrete spectrum, and Tt = e−tL is a contrac-
tion semigroup on H0.

(2) The maps G : [0, T]× H0 → H0 and Σ : [0, T]× H0 → L(H0, H0) have the
following smoothness and growth properties. Let {φk} be a complete
orthonormal system of eigenvectors of L with eigenvalues {λk}. Then
there exist real sequences {ak}, {bk} such that for all k ≥ 1, t ∈ [0, T] and
h, h1, h2 ∈ H0:

|(G(t, h), φk)0|2 ≤ a2
k(1 + ‖h0‖2

0),

‖Σ∗(t, h)φk‖2
0 ≤ b2

k(1 + ‖h‖
2
0),

|(G(t, h1)− G(t, h2), φk)0| ≤ ak‖h1 − h2‖0,

‖Σ∗(t, h1)− Σ∗(t, h2))φk‖0 ≤ bk‖h1 − h2‖0,

and
∞

∑
k=1

a2
kλ−1

k = C1 < ∞,
∞

∑
k=1

b2
k λ

γ
k = C2 < ∞,

for some 0 < γ < 1.
Suppose E exp(sup0≤t≤T ‖X(t)‖0) < ∞. It is clear that for r > 0,

P{ sup
0≤t≤T

‖X(t)‖2
0 > r} = P{exp( sup

0≤t≤T
‖X(t)‖2

0) > er}

≤ 1
er E exp( sup

0≤t≤T
‖X(t)‖2

0). (5.2)

The above is an exponential inequality, and thus the study of exponential in-
equality for the X(t) itself can be transformed into the study of the expectation
of exp(X(t)). If E exp(X(t)) < ∞, then X(t) is called exponentially integrable.
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We investigate the exponential integrablilty of the function sup0≤t≤T ‖X(t)‖2
0 in

this section.
In the proof of Theorem 5.2, we employ a result in [8], and we state here for

the convenience of the reader.

Theorem 5.1 (Theorem 1.3 in [8]). Assume that there exist a measurable function
k : [0, T]→ R+ and a number γ ∈ (0, 1] such that

‖Tt−s‖L2(H) ≤ k(t− s), 0 ≤ s < t ≤ T, (5.3)

and

κ :=
∫ T

0
s−γk2(s)ds < ∞. (5.4)

Then there exist constant K̃ < ∞ and λ̃ > 0 such that

E exp
( λ̃

|||ψ|||2∞
sup

0≤t≤T
‖
∫ T

0
Tt−sψ(s)dWs‖2

)
≤ K̃

holds for every ψ satisfying

|||ψ|||∞ := sup
(s,ω)∈[0,T]×Ω

‖ψ(s, ω)‖L(H0,H) < ∞. (5.5)

Theorem 5.2. Assume that

(i) there is a γ ∈ (0, 1] such that ∑∞
k=1 λ

γ−1
k < ∞, and

(ii) sup(s,ω)∈[0,T]×Ω ‖Σ(s, ω)‖L(H0,H) < ∞.

Then, for any r > 0, the solution X(t) to (5.1) satisfies (5.2).

Proof. Set k(s) := ∑∞
i=1 e−2λis, and ψ(s, ω) := Σ(s, ω). It is not hard to see that

(5.5) is satisfied automatically.
Let us verify (5.4). For γ ∈ (0, 1], consider the integral∫ T

0
s−γk2(s)ds =

∫ T

0
s−γ(

∞

∑
i=1

e−2λis)2ds

≤
∞

∑
i=1

∫ T

0
s−γe4λisds.

Taking t = 4λis, we have∫ T

0
s−γk2(s)ds ≤

∞

∑
i=1

∫ T

0
s−γe4λisds

≤
∞

∑
i=1

(4λi)
γ−1

∫ ∞

0
tγe−tdt

=
∞

∑
i=1

(4λi)
γ−1Γ(γ + 1)

is finite by assumption and Γ(γ + 1) is finite for γ ∈ (0, 1]. Moreover,

‖Tt−s‖2
L2(H) =

∞

∑
i=1
‖Tt−sφi‖2 ≤

∞

∑
i=1

e−2λi(t−s)‖φi‖2 =
∞

∑
i=1

e−2λi(t−s) = k(t− s).
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Thus, (5.3) and (5.4) are satisfied. Hence, the theorem implies

E exp(
λ̃

|||Σ|||2∞
sup

0≤t≤T
‖
∫ t

0
Tt−sΣ(s, Xs)dWs‖2

0) ≤ K̃. (5.6)

In order to estimate the third term in (5.1), consider∥∥∥ ∫ t

0
Tt−sG(s, Xs)ds

∥∥∥2

0
≤
∫ t

0
‖Tt−sG(s, Xs)‖2

0ds

=
∫ t

0

∞

∑
k=1

(Tt−sG(s, Xs), ek)
2
0ds

=
∫ t

0

∞

∑
k=1

e−2λk(t−s)(G(s, Xs), ek)
2
0ds

≤
∫ t

0

∞

∑
k=1

e−2λk(t−s)a2
k(1 + ‖Xs‖2

0)ds

Since Xs ∈ C0([0, T]; H0), sups ‖Xs‖2
0 ≤ C. Therefore,∥∥∥ ∫ t

0
Tt−sG(s, Xs)ds

∥∥∥2

0
≤
∫ t

0

∞

∑
k=

e−2λk(t−s)a2
k(1 + ‖Xs‖2

0)ds

≤ C
∫ t

0

∞

∑
k=1

e−2λk(t−s)a2
kds (5.7)

= C
∞

∑
k=1

a2
k

1
λk

(e−2λk(0) − e−2λkt) (5.8)

is finite. In view of (5.6) and (5.8), one infers from (5.1) that

‖Xt‖2
0 ≤ 3‖Ttx‖2

0 + 3
∥∥∥∥∫ t

0
Tt−sG(s, Xs)ds

∥∥∥∥2

0
+ 3

∥∥∥∥∥
∫ f

0
Tt−sΣ(s, Xs)dWs

∥∥∥∥∥
2

0

≤ C1 + C2 + 3 sup
0≤t≤T

∥∥∥∥∫ t

0
Tt−sΣ(s, Xs)dWs

∥∥∥∥2

0
.

It follows from the convexity of exponential function that

exp(λ sup
t
‖Xt‖2

0) ≤
1
2

e2λ(C1+C2) +
1
2

exp
(

6λ sup
0≤t≤T

∥∥∥∥∫ t

0
Tt−sG(s, Xs)dWs

∥∥∥∥2

0

)
.

Taking expectation, one has

E exp(λ sup
0≤t≤T

‖Xt‖2
0)

≤ 1
2

e2λ(C1+C2) +
1
2

E exp

(
6λ sup

0≤t≤T

∥∥∥∥∫ t

0
Tt−sG(s, Xs)dWs

∥∥∥∥2

0
)

)
≤ C,

where C denotes a generic constant. Also, the above inequality implies that
sup

0≤t≤T
‖Xt‖2

0 is exponentially integrable, which completes the proof. �
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