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Abstract: In this paper, a performance comparison of several variations of the non-linear conjugate gradient method

has been investigated. Neural Network-based prediction models for life insurance sector have been developed and

their training has been done with a variety of first and second order algorithms to find an efficient training algorithm,

but keeping the focus on conjugate gradient based methods. Traditional second order methods require computation of

second order derivatives and need to compute hessian for quadratic termination; which is a tedious and memory

consuming task. Here we employ conjugate gradient methods which bypass the computation of hessian, but still

achieve quadratic termination and thus prove to be memory efficient.
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1. INTRODUCTION

Prediction modeling is gaining popularity and plays an important role in all the important areas. It is concerned

with the prediction of future probabilities or trends, and to analyze these trends a  variety of traditional statistical

methods and modern methods are available with their own pros and cons. Applications based on traditional

methods like regression techniques, decision trees based prediction, naïve baye’s classifiers etc. have been

developed in the recent years. But due to their limitations to deal with and learn the complex data which is

usually present in real life situations; we have a need to develop new methods. Novel techniques like neural

networks, genetic algorithms, evolutionary algorithms, fuzzy based techniques, support vector machine, hybrid

techniques [1] [2] are some of the new upcoming techniques and are in the development stage. In this paper, we

develop prediction models based upon artificial neural networks for the insurance sector and compare the

convergence behavior of first order and second order algorithms applied for the training of neural networks,

especially the conjugate gradient-based techniques.
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Neural networks can learn the complex relationships present in the real-life situations and fit well for the

development of prediction models. They can be tuned to learn the historical trends present in the large datasets

and adapt to new patterns without having any initial hypothesis. There exist a variety of ANN architectures and

a number of training techniques of first and second order to train the neural networks. In all the methods, the

main idea is to minimize the gradient of error function during training of the network and reach a state of

minimum gradient value.

Researchers have developed a variety of gradient-based techniques of first and second order for optimizing

network parameters to converge towards the minimum of multi-dimensional error gradient function [3]. Major

drawback in first order methods like steepest descent is that learning rate has a fixed value and if we keep the

learning rate low for the safe convergence then it takes a long time to achieve the minimum of error gradient and

if it is kept very high then solution can oscillate near point of convergence and will never converge. Even if the

learning rate is kept adaptive as in the case of adaptive learning or adaptive momentum techniques, convergence

is slow because of the absence of second order term [4].

On the other hand, second order conjugate gradient technique and its variations use the line search method

to adapt the learning rate parameter and also avoid the computation of second order hessian matrix; as done in

older techniques. Here we present a comparative study of various conjugate gradient techniques and other

second order methods. To investigate the performance and efficiency of conjugate techniques, we have developed

prediction models in MATLAB Neural Network Toolbox [5] and trained the neural networks by applying the

variety of training algorithms under consideration. Datasets have been imported from life insurance data warehouse

to develop and test the models.

2.  LITERATURE REVIEW

First order algorithms like gradient descent and its alternatives fail to find the solution even for slightly non-

linear cases. These methods take very long time to converge and therefore are not beneficial in such kind of

practical situations [6]. In addition, when error surface is highly multi-dimensional and irregular, then

convergence becomes very difficult and unattainable, as these methods employ a smaller and fixed step size

for learning [4].

Instead, second order methods like Newton, quasi–Newton, Levenberg Marquardt, conjugate gradient

variations and similar methods are preferred [7], which are more efficient while training in non-linear cases [8-

10]. Second order derivatives enhance the speed of convergence and achieve faster learning in comparison to

other methods, which only utilize first order derivatives. Newton’s method computes the second order derivatives

of Taylor’s approximation as hessian matrix and therefore finds out the point of minimum much faster than first

order methods [11,12]. This utilizes the curvature information to search a more direct route towards the point of

minima. But computation of higher order derivatives in hessian consumes more memory space and creates a

problem when weight vector and input vector are very large in size [13,14].

For an improvement, quasi–Newton methods evaluate an approximation for the hessian, but these methods

need more computations during each iteration and which in turn may increase the convergence time [15,16]. In

Gauss–Newton method sum of squared function values is minimized to avoid the tedious and memory consuming

computation of second order derivatives, but the main disadvantage is that estimation results strongly depend on

upon the initial selection of the input parameters.

Conjugate gradient methods (CGM) prove superior to quasi–Newton methods in computational terms,

when the neural network weight vector is large in size because it bypasses computation of second order derivatives

[17]. CGM searches the required solution by moving along successive conjugate non-interfering directions

without spoiling minimization during previous steps [18]. It utilizes line search technique to calculate the optimal

step size for the next iteration and moves along the search direction by taking a jump on the path of descent. Line
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search eliminates the need to evaluate memory consuming hessian matrix of second derivatives, but the

involvement of line search offers a bottleneck in all iterations.

Levenberg Marquardt Algorithm (LMA) denotes an interpolation between Gauss–Newton method and

steepest descent method and is considered as a trust region approach for Gauss–Newton method [19]. LMA is

more robust than Gauss–Newton method because it converges towards minimum even if its starting point is

faraway from the point of final convergence. This technique provides a numerical solution to the problems,

which are generally non-linear in nature.

As suggested by researchers, the computation of parameter to decide for new orthogonal directions is

possible in a number of different ways giving rise to different variations of conjugate methods [20]. The scaled

conjugate gradient method (SCGM) avoids the complex and time-consuming line search along conjugate directions

in each of iteration, by combining the trust region approach from the LMA with the CGM approach resulting in

improved convergence. But, estimation of the second order derivatives may be an expensive step in SCGM [21].

3. METHODS APPLIED

3.1. Conjugate gradient methods

Quadratic approximation for the error function ( )kE W  in a neighboring point of 
kW , till second order term is

given by Taylor’s expansion as shown below:
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Because of a large number of weights in the weight vector, it is very time-consuming and takes more

memory to compute second-order derivatives ( )kE W , the hessian.

Therefore, to avoid computation of hessian, second order conjugate gradient methods perform a line search

along conjugate directions in every iteration to search for optimal step size and to minimize the performance

function and thus achieve faster convergence than simple gradient descent directions. Researchers have developed

many variations of CGM and to define scalar ‘Z’ (as given in following equations); which decide for the selection

of the next search direction [20,22]. Variations like Fletcher-Reeves, Polak-Ribiere, Powell-Beale, Hestenes-

Stiefel, Daniel, Dai-Yuan and some new variations like Hager-Zhang variation are usually applied. CGM consumes

comparatively less memory for problems involving large data sets but their convergence is poor in comparison

to Newton or quasi–Newton methods due to the involvement of line search in every step.

Methods of conjugate gradients are capable of training any neural network provided that derivative functions

exist for weights, inputs, and transfer functions. Back-propagation technique of supervised learning is applied to

compute derivatives of performance function with respect to the weights and bias variables X
k+1 

in the successive

iteration. New gradient points are computed according to eqn. 1. [5, 23]:

1 1*k k kX X a dX   (1)

Where, the parameter ‘a’ is calculated by a suitable line search algorithm to minimize the performance

along the new search direction dX
k+1

. In the first iteration, starting search direction dX
0
 is kept as negative of the

initial gradient value. But in the succeeding iterations, new search directions are computed from the new gradient

values and from the previous search directions, according to eqn. 2. [5, 23]:

1 1k k kdX gX Zd    (2)

Where ‘gX
k+1

’ is the current gradient and the direction selection parameter  ‘Z’ can be calculated in several

different ways giving rise to a variety of conjugate variations.
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3.1.1. Fletcher-Reeves update [24]

For the Fletcher-Reeves variation of the conjugate gradient, computation of ‘Z’ is done as shown in eqn. 3. [20]

2
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|| ||

|| ||

kg
Z

g

 (3)

3.1.2. Polak-Ribiere update [24]

For the Fletcher-Reeves variation of the conjugate gradient, computation of ‘Z’ is done as shown in eqn. 4. [20]
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The memory requirements for Polak-Ribiere Update (it computes four vectors) are slightly more than

Fletcher-Reeves (it computes three vectors).

3.1.3. Powell-Beale restarts

In conjugate gradient based methods, to improve the efficiency of the algorithm, the search direction is reset to

the negative of current gradient value periodically when the number of network parameters becomes equal to the

number of iterations. But researchers have also proposed other reset methods. Powell suggested a modification

of the Beale restart and the technique restarts depending on orthogonality left for the new search direction

becomes very less. This is implemented using the following inequality [20]:

' 2

1 1| | 0.2 || ||k k kg g g  (5)

3.2. Scaled conjugate gradient descent

A computationally expensive line search is required [25] in all iterations by conjugate gradient methods discussed

so far. Moller [26] suggested the solution for avoiding the time-consuming line search in scaled conjugate

gradient method (SCGM) by combining the model-trust region approach with the conjugate-gradient approach.

[27] Memory requirements for SCGM are similar to Fletcher-Reeves variation of CGM. The algorithm trains

any neural network as long as derivative functions exist for weight, net input, and transfer functions. Back-

propagation is applied to compute derivatives of performance function with respect to the weights and bias

variables X
k+1 

in the successive iteration. SCGM depends on the computation of conjugate directions but avoids

time-consuming line search in every iteration. In addition, this method avoids the tedious and memory consuming

computation of hessian; done in traditional second order methods [21, 26].

4. EXPERIMENTAL OBSERVATIONS AND RESULTS

4.1. Training the predictive models based on ANN

To compare the performances of algorithms under consideration, a number of model simulations have been

developed and tested with varying parameters in MATLAB Neural Network Toolbox [5]. To develop and test the

prediction models large datasets from life insurance data warehouse have been taken. First order algorithms like

traingd, traingda, traingdm and second order methods like tarincgp, traincgf, tarincfb, tarinscg, trainlm have

been tested for their performance.

For experimentation initially, an MLP net object in neural toolbox has been configured with predictor

inputs and predicted outputs, hidden layers of neurons, transfer functions, and training method under consideration.
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Datasets have been prepared for training, validation and testing purpose. During training of network model,

performance and error gradient plots have been investigated for optimal results.

4.2. Results and graphs obtained

Best results achieved for each of the conjugate methods have been shown in Table 1.

Table 1

Experiment results of employing different conjugate gradient algorithms

TrainingAlgorithm Training Min. Neurons Final Training Training Starting Final

function gradient in hidden epochs time per- gradient gradient

layer formance value value

Conjugate gradient traincgp 1e-05 20 97 0:06:24 .0374 0.514 .01280

(Polak–Ribiere update)

Conjugate gradient traincgf 1e-05 20 62 0:05:16 .0401 0.634 .00255

(Fletcher–Reeves update)

Conjugate gradient traincgb 1e-05 20 39 0:02:52 .0400 0.433 .00301

(Powell-Beale update)

Scaled conjugate gradient trainscg 1e-05 20 517 0:24:21 .0149 .716 9.77e-06

Experiment results with MATLAB (Neural Network Toolbox) software.

Training performance for conjugate gradient methods based upon Mean Squared Error (MSE) and error

gradient plots have been presented in the following figures. As shown in figures 1 and 2, performance and

gradient plots have been observed to analyze the respective convergence and behavior of different conjugate

(a) (b)

(c) (d)

Figure 1: Training performance graph with (a) Conjugate gradient Polak–Ribiere update

(b) Fletcher –Reeves update (c) Powell-Beale update (d) Scaled conjugate gradient learning
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methods to achieve the minimum of error gradient. Figures 1(a) to 1(d) demonstrate MSE versus numbers of

epochs plots during the training of network with conjugate algorithms.

Figures 2(a) to 2(d) demonstrate error gradient curves for the training process. A target value of minimum

error gradient ‘1e-05’ was set for all the training algorithms. All first order methods failed to achieve the set

target of minimum error, second order conjugate algorithms have partially achieved the set target and scaled

conjugate gradient was able to converge completely toward the set target.

As shown above in Figure 1(d) for scaled conjugate method has taken 517 iterations to reach the target

gradient.

(a) (b)

(c) (d)

Figure 2: Error gradient graph with (a) Conjugate gradient Polak–Ribiere update (b) Fletcher –Reeves update

 (c) Powell-Beale update (d) Scaled conjugate gradient learning [Figures1 and 2 have been plotted in MATLAB

Neural Network Toolbox R2012a, V.7.14.0.739.]

5. CONCLUSION

In this research, multilayer feed forward neural network have been trained with four different variations of

conjugate gradient methods and to evaluate their relative performances. The performance of Scaled Conjugate

Gradient method (SCGM) comes out to be the best for the given datasets and it has converged well toward the

set target value of minimum gradient. The method has shown a performance value 0.0149 and reached the

gradient value of 9.77e-06. On the other hand, it has been observed that first order techniques like steepest

descent and its variations are not able to achieve the set target even in 1000 epochs. It has been found that even

if conjugate methods using the line search could not completely converge toward the set target of the order of 10 -

5, but they have reached very near to the set target value. Second best performance has been shown by Fletcher–

Reeves update which reached a minimum gradient of 0.00255, but Powell-Beale and Polak–Ribiere updates are

also very close. Hence, the models trained with second order conjugate methods can be used effectively for the

predictive data mining.
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