
1 Cori Lab, Dept of ISE, PESIT, Visvesvaraya Technological University, Emails: manu.a.ravi@gmail.com; manu_ar@nitk.ac.in
2 Senior IEEE Member, Director and professor, CORI Lab, ISE Dept, PES-University, Email: vk.agrawal@pes.edu
3 Vice Chancellor, PES University, BSK 3rd Stage, 100 Feet ring road, Bangalore, Karnataka, India-560085, Email: vice.chancellor@pes.edu
4 Dean, Research and Industry Incubation Centre, Professor, Department of Information Science and Engineering, Dayananda Sagar

College of Engineering, Bangalore Karnataka, India, Email: sumavdsce@gmail.com

Exploring Cloud Computing
Technological Test Debt
Manu A.R.1 *, Vinod Kumar Agrawal2,
K.N. Bala Subramanya Murthy3 and Suma V.4

ABSTRACT

Technical debt (TD) arises in web-based cloud computing ecosystems when the stakeholders both intentionally or
inadvertently formulate and execute their technical choices and decisions in return for the instantaneous gains or
profit in the Cloud service project. Among the various dimensions of the Tech debt, important dimension is quality
control and tech test debt or test debt [1]. This work gives a general idea of test debt, in the cloud ecosystem, with
its causes and issues that are responsible for the test debt. Also, this paper presents some planned approaches for
repaying the test debt in cloud business. This work also offers methods to find the “test smells” which cause decay
of the computing system and steps to overcome the test debt. In addition, this work presents various case studies to
show how re-factoring reduces the test debt in engineering systems. This is done at various stages such as service
level agreements, designs, architecture, code and test script for repaying the accrued technical debt. Test debt is a
growing topic and is in its infant stage. This work will be of broader importance for IT industries and academic
research in the area of cloud computing service security.

Keywords: Cloud computing test debt, Cloud service debt, Security debt, Architectural debt, Cloud service debt,
Cloud technical debt, Test smells, Code testing, white box testing.

1. INTRODUCTION

Tech debt (TD) is a metaphorical and allegorical notion coined by Ward Cunningham in the 1990’s. The
technical debt heaps up due to diverse stakeholders possibly getting into debt troubles due to execution of
their decisions for short term profits in the cloud market which result in additional rework. The debt piles
up due to the technical decisions executed by stakeholders for their interim gains in their service offerings
due to cloud market competency, time pressure to meet the customer demands and rising cost in the market.
The test dimension of tech debt [1] in the cloud computing ecosystem or market is recognized as “Cloud
computing technical Test Debt” or “cloud service test debt” (CSTD). TD has various scopes (associated
factors) in practice it is progressively significant to the organization [1] in cloud market that offers the large
range of complex service components and maintains the expanding computing systems.

In this work, we present an outline of CSTD and the manuscript is planned as follow: In the next
section, we present the concise introduction to TD with the reference cloud computing ecosystem. In section
2, we discuss the causes contributing to the CSTD. In section 3, we present the key approaches for
administering of CSTD. In section 4, we present a few case studies for managing CSTD in real time cloud
production environment, and finally, in section 5, we wrap up with the note on future directions of research
on CSTD for Cloud computing system resources.

ISSN: 0974-5572I J C T A, 10(9), 2017, pp. 327-351
© International Science Press

328 Manu A.R., Vinod Kumar Agrawal, K.N. Bala Subramanya Murthy and Suma V.

1.1. Cloud computing technological debt [CCTD]

Cloud computing technical debt [CCTD] causes accumulation of arrears and this, results in paying of
unbalanced interest due to past evasion of loan repayment in terms of technical work. In the short-term,
CCTD will be profitable, but in the long run, it results in irreparable damage like bankruptcy due to the
accumulation of huge debt. The CCTD accrued due to the stakeholders by consciously or accidentally
formulating their incorrect or non-favorable technological choices. These choices made without any
knowledge or assessments due to market pressure, vendor’s competition, time schedule slippage etc. result
in TD [1]. This incurring CCTD in short run business is profitable, but damages in the long run, if not paid
back regularly over time. The interest on the arrears piles up over an epoch of time and ultimately resulting
in the circumstances where the stakeholder may not be able to pay back the accrued monetary debt. This
results in fiscal insolvency/bankruptcy, leading to business ruin.

CCTD is similar to monetary debt, which the stakeholders get trapped into fiscal debt whence they
borrow/take a loan. The arrears don’t cause any issues till they repay the loan. If they fail to repay the loan,
the sum-interest piles up over time duration and they may not be in a position to pay back the debt. This
results in fiscal insolvency. If the cloud stakeholders do not address and tackle CCTD using standard
benchmarked methodologies, processes, guidelines, and measures. It will lead to “Cloud computing service
tech bankruptcy and ruin their cloud business under the arrears stack [1]”.

In literature we find lots of research on TD and its impact of the computing business in various ways. In
the original paper [2] author coined TD and discussions are made on its impact on the computing business
corporations. If neglected, TD it leads to complexities [3], inability to meet the demand of end users by way
of poor production, increasing cost [4], affects the quality and security, and other non-functional requirements
(NFR) with a debt load. With restricted time period and market constraints, with increase in TD has a
negative influence on the coding team’s confidence and enthusiasm [5]. Based on our interaction with
industry experts, our literature survey and our own industry experience, we present well-known root causes
for TD, in a cloud computing system they are:

• Schedule time pressures, service delivery time pressures. Budget constraints, cost to company
constraints [3-4].

• Rise of unfinished work within time precedent products/services and version releases/sprints. Lack
of understanding on what to be delivered as a service to meet customer expectations.

• Inability to follow the standard cloud computing service architecture, design and development
cycle.

• Unskilled engineers/resources experience to handle the cloud service architecture, design, and coding
the services.

• Lack of proper documentation, derisory testing and bug fixes.

• Inability to follow standard Quality assurance, Quality control procedures, Processes and Guidance
on testing activities.

• Lack of proper test suite, test strategies, test plan, test actions, test cases, test repositories, and test
scripts due to unexpected deadlines in service offerings. Testing executed on-fly and thrown out of
gear due to quick fix solutions in the service offerings.

• Over usage legacy/proprietary code/platform in the cloud. Lack of proper interface between the
open source and legacy systems of cloud computing services and overdue and late refactoring.

• Failing to follow or absence of dev-ops continuous integration methods and automation rules,
compliances and other out of control factors.

Exploring Cloud Computing Technological Test Debt 329

• Lack of co-ordination between teams, and other cloud service stakeholders. Cloud service developers,
sys-admins and testers face difficulty in the last-minute due to unexpected, delivery time of the
cloud service on fly deployment. This is due to market competition, management decision to roll
out cloud service product at the last moment, lack of communication in advance to testers with
tasks without delay.

• Missed tests or “solve it later” surface with deficit test coverage, oversized user stories, scenarios,
and short sprints. A Service delivery pressure plays the vast role behind large accumulation of
technical debt in QA practice.

• With the Sudden surge in accessing the cloud service using several smart thick and thin clients
platforms, the complexity and difficulty for the developers and testers to design and test the cloud
services code to support multiple languages, platforms and hardware devices and in more networking
sites it has to be leveraged and tested.

• Unwarranted time consumption in penetration testing, system testing, service virtual configuration,
testing, web testing, security testing, release testing, app service compatibility testing, service and
compliance testing.

• Lack of service UI testing in some browsers types and versions, platforms, devices and scripts’
growing with each test sprint, and causes delay in the release cycle leading to loss of time-to-
market.

• The escalating expenses of hiring - testers and testing resources required to test the service are
doubled due to the growing complexity and increased demand of cloud service. Testing effort many
a times is wasted in chasing false positives, with respect to functional and non-functional
requirements. Delayed refactoring results in CSTD.

• Amplified effort in the cloud service development and testing efforts. It goes with the territory, and
following quick and improper approach. Insufficient automation and testing tools and methods
lead to the CSTD.

• Mounting complexity of cloud service offering and implementation, results in tracking the test
cases and bugs is a challenge. Failure in reacting to the incident occurs, and results in non-proactive
approach to identify and measure defect results in cloud computing system failures.

• Cloud computing system (CCS) development organizations and their stakeholders fails to comply
and upgrade their skills on QA and competencies to the last levels desired as per industry benchmarks,
standards, processes, rules, regulations and guidelines.

1.2. Engineering process vulnerabilities leading to CCTD

The work on test debt was originally carried out in [1][6-7] but still more research is needed to explore test
debt dimension of TD. The testing plays a vital role in SDLC and cloud service life cycle in terms of Cloud
service functional and NFR’s. Test debt impact should have a more focal point in fabricating the cloud
services with the industry benchmark milieu. CSTD arises due to using the shortcuts with incorrect and
immature decisions during testing activities. Conventionally, both academia and industry research experts
are concentrating more on technical debt arising due to code debt, service design debt, and even cloud
service architecture debt dimensions. Pragmatic and realistic supervision of CCTD is vital to govern other
dimensions of debt arrears with obligation such as “cloud computing system (CCS) infra service debt”.
“CSTD” accrued due to testing done by test engineers by using shortcuts and not complying with the
standards, along with live industry bench marked best practices and processes for testing, validation, tracking,
reporting for the defects and bug fixes [1]. Not executing the unit test cases, or test scripts from test oracle

330 Manu A.R., Vinod Kumar Agrawal, K.N. Bala Subramanya Murthy and Suma V.

is a structure of shortcut, to gain the short-term profit to speed up the coding and releasing the sprint or
product. Missing the unit test either intentionally or ignoring to execute the test results leads to CCTD.

Figure 1 shows the scope and dimensions of CCTD. Traditionally, code debt or program debt or
implementation debt is researched in [6 - 9]. Object oriented design debt is presented in [3] [9], architecture
debt is found in [5-10]. In addition Technical Debt (TD) management and pragmatic control of TD are
given in [10]. [10] Lists scope and degree of TD, the same methodologies that apply to dimensions of
CSTD. With cloud service specifications and design transformed to service implementation code, service
testing, building, documentation, infra versioning etc.

2. CLOUD SOFTWARE TESTING DEBT

Cloud computing service testing is a process of finding, assessing, auditing, and root-finding of bugs,
defects, vulnerabilities, issues, errors, and failures in cloud computing service software. It is a verification
done to bring out the internal and external (behavior), performance, code security of the service and
application software (s/w) against functional and nonfunctional requirements. This is the implementation
and execution of the test cases against the cloud service s/w requirements to find the defects. Neglecting,
the testing process completely or partially, doing under testing, and over testing, without the optimized
testing leads to the CSTD. There is no clear-cut adoption of test debt and its dimensions have not been
studied and well researched in the literature [1][5][7]. CSTD generally occurs when testers execute the
tests using shortcuts, incorrect or non optimal decisions for short-interim benefits to speed up the testing
process as part of the software service development process. Short-term decisions in the long run have an
adverse impact on the business due to execution of faster and hurried wrong shortcut decisions. This leads
to the test dimension of TD [1]. Figure 2 shows the prominent scope of cloud computing technical debt
with examples.

2.1. Significance of Test Debt in cloud computing

Let us consider the case in the cloud computing ecosystem, where the Small and Medium Enterprises
(SME’s) and many of start-up corporations pilot to test debt due to executing the crosscut decisions and
their negligence’s on trivial testing issues. Consequently, SME’s strive for continued existence owing to
more CSTD, in order to be first to market and release the service product in market early. This is due to

Figure 1: Showing the various debts of CCTD

Exploring Cloud Computing Technological Test Debt 331

increased market competition, to show their existence among the competitors, and to get the credit of
“foremost carter gain” [1]. The SME start up’s concentrate completely on developing new attractive,
customized and creative features due to time pressures and schedule to market early. When it comes to
testing with verification, validation, auditing and accounting the products, the programmers and testers use
shortcuts and resort to the least common features/ scenarios/ stories/ epics, perform drastic and ad-hoc
testing and do not do wide and ample testing the service or product. However, the SME’s stakeholders to
prove their existence with larger corporations with the creative development team, design the service in
short comparative period, finally, develop and design the working service or product, and ends up naively
gaining the real share in the market. But their success is limited to, a short period, but not sustainable due
to incurring of huge TD, in the first release version. Explicitly over the precise dimension of Test Debt of
cloud services for first version SME team fails to design scripts and execute the automated tests. The
testing is executed with reduced test coverage leads to CSTD.

Below are various well-known dimensions of the CCTD with illustrations in the table:

With the intention to win and being the first to capture the market and to ship the product first in the
cloud marketplace by neglecting the coverage of test scenarios results is high-test debt. In future releases
the SME’s are ought to focus on repaying the incurred CSTD by devoting profoundly on testing the unreliable
product service offered over the cloud. More delays and lacking to focus on paying back the debt results in
business ruin of SME’s [1] due to the heavy debt incurred by the development and progression of the
product will become standstill and become unreliable, leading to Cloud computing service test debt. In
order to avoid inefficient service or supplying unreliable product to the end users SME’s should focus on
repaying technical test debt and avoid technical bankruptcy and business ruin.

Technical Debt Dimensions Causes and types with illustrations

Cloud Service Level Agreement Debt Over trusting, under trusting the vendor, SLA Smells, Misconceptions and
logical fallacies, applications of randomness due to a cloud environment.

Cloud computing service requirement debt CRS, SRS, FS guidelines, rules, policy violations, SRS smells, FS Smells,
inconsistent styles, violations of SRS, CRS, FS constraints, Randomness
coming from the initial conditions. SRS smells, CRS smells, user experience
smells- simple work flows violations, help cues unavailability, non consistent
design, usability testing, delayed re factoring performance smells - no quick
response, non high availability, no continuity in services, non clustering,
violation of stress/load/stability test suite and its allied principles, last minute
specification changes percolating through the time and budget without
documentation. Requirement decay, requirement smells, requirement entropy.

Cloud computing service architectural Debt Architecture Smells [duplicate design artifacts, unclear role of involved
stakeholders and interfacing entities, inexpressive or complex architecture, the
entire thing in architecture is centralized, over generic design, asymmetric
architectural structure and behavior of entities, dependency cycles, redundant
dependencies, implicit dependencies], lacking modularity, architectural
patterns and anti-patterns violations, Architecture Functional spec guidelines,
rules, policy violations, principles violations, modularity violations, tight and
loose coupling violations, interface violations, non portability and uncertainty
in architecture. Failure to build the loosely coupled components, architectural
flaws, architectural weakness, danger signals of architectural defects, faults,
error, mistakes, wrong assumptions, fault patterns, change smells, architectural
mismatch, architectural bad smells, contraindicated patterns, structural
anomalies and problems, spoiled patterns, non functional requirements,
technology and architectural constraints [11].

Cloud computing service Design Debt Design rules violations, OOD principles and interface violations, modularity
violations, Design smells, violations of design constraints, uncertainty in
design, and forms, Design critics, structural problems, design problem

332 Manu A.R., Vinod Kumar Agrawal, K.N. Bala Subramanya Murthy and Suma V.

symptoms, design defects, problem patterns, malignant patterns, indicators of
design problems, violations of design heuristics, distorted design patterns,
design pattern defects, design dis-harmonies, structural flaws, quality defects,
design flaws, design inconsistencies, spoiled patterns, design principles
violations [5].

Cloud computing service Code Debt Code smells, violations of coding standards and styles, guidelines, and
principles. Failing to follow web standards, glue or duplicate code,
architecturally relevant code smells, platform – OS inconsistency, Browser
inconsistency, language inconsistency to support the feature’s implementation,
Infrastructure Code smells, PAAS code smells, SAAS code smells, Storage as
a service code smells, Infrastructure, Configuration code smells, lacking of
tools and services, Software System, Production code, Apply traditional
software engineering practices, static analysis tools violations, inconsistent
coding styles, code decay and code entropy. Common code smells- Class-level
smells: Cyclomatic complexity [2], Programming: (unplanned intricacy, exploit
at a space, shade faith, Boat newscaster, hectic waiting: overriding CPU,
Caching crash, Cargo cult programming, Coding by exclusion, Comment
Inversion, Design pattern, Error hiding Stack trace, Hard code, Magic-
numbers, Lava flow, Lasagna code, Magic strings, repetitive patterns and sub
strings over again, Shotgun surgery, Loop-switch succession, Soft code:
Spaghetti code) [3 - 10].

Cloud computing Service test debt Comprehensive coverage, brittle or missing test coverage violation, lacking
tool and automation support, lack of relevant test suites, duality defects,
quality flaws, quality issues - [testing error, testing defects, testing issues,
testing failures, testing mistakes, aging symptoms, lack of tests, insufficient
and inadequate coverage] testing decay, test entropy. Improper test design
Measures and tests. Practical measures of randomness discrete transforms, and
complexity, A TEST is “cursed” or “blessed”, Boy or girl paradox. Software
rot, Data degradation [10], rarely used code. Rarely updated code-
Dependency hell, dormant rot or active rot, [14-15] removing dead code,
reinventing the wheel, software components, creeping futurism, Facing a dead-
end, Stuck in a rut, entropy rate, nary entropy. Redundancy (information
theory).

Cloud computing service configuration Configuration management tools: Ansible, Chef, Engine, Puppet, GIT tool,
debt [11] Docker container flaws, configuration smells, no tools to detect configuration

smells, leading to configuration debt execution configuration smells include:
Deprecated statement usage, incomplete task, long statements, missing default
case, missing conditional and improper alignment, misplaced attributes, invalid
property value, unguarded values, improper quote usage, duplicate entity.
Design configuration smells – [Multifaceted Abstraction are not cohesive,
Unnecessary Abstraction or module, Imperative Abstraction, Missing
Abstraction- resources and language elements are not encapsulated, Duplicate
Block, Deficient Encapsulation, Insufficient Popularization, Unstructured
Module- repository structure, Dense Structure, dense dependencies, Weakened
Modularity- a module with high coupling and low cohesion, Broken
Hierarchy] ,configuration decay, configuration entropy. Abstraction inversion,
Ambiguous viewpoint, Object-oriented analysis and design (OOAD), IPC-
inter-process communication, Gold plating, Inner-platform effect, [11-15]
Configuration management: [Dependency hell:, DLL hell: derisory supervision
of (DLLs) dynamic-link libraries, precise Microsoft Windows OS, expansion
conflict -Mac OS X, versions, JAR hell: JAR files, Java class loading files,
etc.] [16].

(contd...Table)

Technical Debt Dimensions Causes and types with illustrations

Exploring Cloud Computing Technological Test Debt 333

2.2. Common Sources of CSTD

In order to tackle the test debt, it is vital to distinguish what the test debt encompasses of, how to spot it,
and, how to tackle its existence in a computing system. CSTD mainly occurs due to the lack of tests,
scripts/test cases in test oracle, lack of test coverage, or improper and wrong tests epics/ stories/ sprints/
releases/ versions of the test code base oracle/suite. In general, the factors contributing to the tech debt also
in turn add to test-debt as well [1]. IT teams owing to rising costs, cloud market pressure, time schedule
limit to deliver faster value based services to their stakeholders, and increase their customers wow factor.
Typically, in such circumstances, lacking business domain skill, lacking knowledge about the CSTD, the
testing teams sacrifice the industry benchmarked testing procedures and best practices contributing to
accruing of the test debt. Shortage of trained and experienced testing expert engineers, due to cloning of
tests (test scripts and test cases), redundant service with increased complexity, sins of development
incomprehensible test scenarios, over sized test cases adds to CSTD. In addition, long methods in the test
scripts, short and incomprehensible naming conventions of the test cases leads to CSTD. Deeply nested
logic with tight coupling features. Also, shotgun surgery, data clumps, lazy class features, feature envy,
missing or inadequate exception handling and test scenarios, missing security checks and testing features,
insecure constructs, lack of fallback procedures, missing input and output validation, lacking to follow
standards and procedures contribute to the CSTD.

Amplified quality degradation occurs, due to failure to execute quality control actions [17] comprises
of - Reviewing the CCS agile user epics, stories, incidents, use-cases, test scenarios, into test cases, and test
scripts. Failure to do architectural review, design-inspections and walk-throughs of code and test case
results in test debt. Failure to execute acceptance test case scenarios from the end user perspective at user
site results in CSTD. Unskilled test engineers, untrained developers on unit testing during their academics
who become skilled on job at writing unit or automated test scripts, with inexperienced resources adds to
mounting CSTD. Agile process in CCS includes the process of refactoring, rewriting if necessary, walk-
throughs, inspections, reviews, dev-ops continuous integration, improvement and software, automated decay
testing as alleviation strategies. Derisory or undocumented CRS, SRS, FS, and other specs, test cases, test
scenarios, test scripts, etc. With deprived test coverage, deprived test scenarios, deprived test configuration,
deprived test practices, deprived requirement trace ability matrices, deprived code quality and execution
practices as noted from our experiences lead to mounting CSTD.

Cloud computing service security debt Security, safety, defense protection– merged with confidentiality, privacy,
secrecy, authenticity, legitimacy, integrity, veracity, reliability, continue-ability,
availability governance and technical, locality jurisdictional, legal and
operational domains. Legally authorized and Electronic Discovery,
Compliance and Auditing, accounting, privacy of information Life-cycle
supervision, and Portability and Interoperability. Testing smells, test script
entropy, test script rotting.

Cloud service business debt Comprehensive in all business use cases, scenarios, browser/ language/
platform support, super user/admin rights, business pressures, release soon
without necessary changes and testing comprising the uncompleted changes
and lack of process understanding, lack of collaboration, lack of understanding
the business process, lack of the knowledge, lack of ownership, lack of
alignment to standards, poor technological leadership, scope doping, risk of
losing market, lacking the state-of-the-art technology.

Documentation debt: No records for significant concerns, poor citations, archaic documentation, no
support and help documentation, no standards in documentation [1].

(contd...Table)

Technical Debt Dimensions Causes and types with illustrations

334 Manu A.R., Vinod Kumar Agrawal, K.N. Bala Subramanya Murthy and Suma V.

Inadequate CCS service management, deficient metrics, deprived adherence to industry bench marked
processes, practices, guidelines, standards, policies, rules and regulations adds to CSTD. Poor engineering
elicits take account of poor CCS requirement specs, poor CCS High level design [HLD], and poor
architectural design [17-19] CCS service complexity, incomplete requirement specs and lacking field skill-
set and knowledge mounts to CSTD. CSTD brings out cascading consequences of shortcut choices executed
in CCS services or in the broad spectrum due to deadline schedules and/or market pressures in resourcing
the services. Testing entities lacking skills or testing infrastructure lacuna, lack in poor test automation
tools, scripts. And besides inaccessible knowledge, poor test script reporting experience, resulting in huge
bugs, and defect counts. This is exploited by attackers and end-users and business competitors. Measuring
CCS service QOS metrics, or dimensions or indices comprise: test code re-usability, platform or test code/
script portability, maintainability, affordability, serviceability, security, continuity, integrity. And all the
“ilities”, includes effectiveness, unpredictability, changeability, measure-ability, dependability and test ability
etc. Each instance breaching any one of the CCS-QOS metrics or indices, incurs more CAPEX and OPEX
to fix the CCTD in later stages. Lacking in value leads to multi-dimensional CSTD, a lacking in Business
Intelligence (BI) Testing, domain intelligence testing, lacking in out-of-box thinking, lacking to establish
multiple test scenarios. Testers lack understanding and creative thinking and fail to analyze all the possible
scenarios for all new features, enhancements, integration, UI updates etc. contributes to the accruing test
debt in a real time production environment in the cloud ecosystem.

The tester creates test cases, sanity check lists and required test information so that when the service
build comes to testing, they are equipped with their testing parameters and environment configured for
testing. Testers apply all of their creativity to test the functionality, explore each and every possible scenario
and conflicts. Many times, it turns into extremely tough to locate the origin of the bug i.e. it may be a
coding bug, documentation bug, architectural design bug or may not be a bug even. But it’s the job of the
tester to report every bug. A good developer is one who takes feedback in a positive and constructive
manner, diagnoses the problem, and debugs it. But developers often avoid conflicts and that causes hindrance.
The ‘like’ factor may be different, but it surely helps in understanding and mapping uncovered areas of
testing. By choice or by chance of known for quality of bug or for quantity of bugs, non-emphasizing on
manual testing or automation tests leads to the CSTD.

2.3. Methods to repay CSTD

The tester needs to test the system under test (SUT) or service under test from diverse allied viewpoints
with end user expectations, their perspectives, and other stakeholder business perceptions, write the test
script with proper testing mind set. Adequate testing the CCS services and finding bugs, reporting it and
finally following the defects with domain thoughts, needs to be done. Tester need to work towards betterment
with QOS of CCS by taking into account special aspects like utility aspects, security concert, GUI etc,
request and response time, stability, thick and thin client complexity. In addition, CCS testing starts with
the writing, preparing and writing the test plan, preparing the manual and automation test strategy processes,
identifying the test scenarios, user stories, use cases. It also consists of testing feasibility, epics/stories
identification writing the test cases, coding automation testing script, execution of test cases, reporting and
tracking of bugs and document preparation, writing the test reports. Preparing the test summary reports
over the test life cycle is followed. The overall testing activity involves productive work to make CCS more
effective and of better quality and contribute to the continuous improvement of the product by accepting
the customer needs to QOS.

A good tester is one who understands patron needs, learns and knows the marketplace, hottest trends,
has in-depth pertinent knowledge about the product and client’s business. He can put himself in customers’
shoes and test the product to make sure good quality control and quality assurance of the product. CCS
service testing is concerned learning with faster testing and execution of innovative exploratory testing,

Exploring Cloud Computing Technological Test Debt 335

using new ideas to interpret broad-spectrum behavior using power of analysis and critical thinking. Also,
he should write the Test case or Test script using new tools and techniques in real life to test the product by
fixing priority and investigate the test data and analyze the results. The tester should not have number
mania by increasing the test scenario counts and scripting count without effective coverage. This is the
cause for accruing test debt. The test case number mania is only to satisfy the customer and or the organization
managed to impress them that they have good test coverage and huge set of test cases maintained without
proper test quality.

Inadequate testing infra, improper configuration of the testing environment, lack of proper knowledge
about the cloud testing ecosystem, non availability of automation tools, progression, modus operandi add
to test debt. Outdated test automation tool version, test framework, language version, platform version
with older setup. This results in postponing of tests, failure to replace with the new framework, the newer
version, updates, and patches. And, also, inadequate test planning, insufficient test strategy, design, testing
effort estimation errors, test cycle planning etc. contribute to accruing of test debt. We inscribe a test script
for the corresponding service code program. The Test engineers write these test scripts and store in a suite
in the same language as the source code. The testers or developers execute these test scripts as unit test
programs which connect to the main programs and sprint as the programs. If there is any CRS/BS change
or bug fix in the main source code, then, the changes are implemented in the source code. Further a
modification is done in the test script, and test script to rerun from the beginning to run the test suite. If bug
is detected at an early stage the investment cost of bug fix will be less. If testing process is delayed, the
price of bug fixes increases exponentially.

Figure 2: shows prominent scope of cloud computing technical debt with examples.

336 Manu A.R., Vinod Kumar Agrawal, K.N. Bala Subramanya Murthy and Suma V.

2.3.1. Various SDLC cycle consideration of Test debt

1. The degree of gathering cloud service business requirements, cloud service specifications (CRS are
transformed to service implementation business language software requirement specification, (SRS) and
functional specifications etc. 2. Failure to make Feasibility Study by the team consisting of cloud service
stakeholders, marketing executives, managers, business and market analysts, system architects, finance
executives, HR, developers and testers. They have to verify for: - technical achive-ability, - economical
viability, - resource feasibility platform, with all 4 wares feasibility etc. Ignoring to test each document in
each phase leads to accruing of CCTD. 3. Design and architecture: Failure to follow the design and
architecture principles [12], violation of standards [20], violation to document proper interfaces between
modules. Usage of shortcuts to craft service design and architecture leads to smells resulting in design debt
and architecture debts. Metrics for architecture debt are established in [8]. Patterns and Anti-patterns are
closely associated with the design and architecture debt resulting in Tech debt [5]. 4. Coding / Programming:
— done by cloud service developers, including - senior coders, junior coders, etc. Failure to understand
and non compliance to the coding standards lead to coding debt [18] [20]. 5. Testing: negligence for testing
activity and violation to follow the standards and guidelines in manual testing, agile testing and automation
testing [6] leads to test debt [7]. 6. Cloud service/application/resource configuration debt [11]. Installation
debt-accrue due to poor action by installation engineer’s and failure to follow dev-ops process and method
leads to configuration debt. 7. Failure to offer proper service and maintenance results in maintenance debt:
- if the patron locates the errors, failures, defects and bugs and are not fixed and reported back to offer the
assured QOS assigned in SLA’s, it results in Tech debt. As customer requests the vendor back for service
error changes and bug fixing, in accumulation to trifling business changes like addition, removal or transforms
of foremost features in the CCS which lead to tech debt if not properly maintained.

In cloud service backtracking for service requirement is not feasible, i.e., customer flexibility may not be
realizable as he cannot reverse and make the changes in the service spec and Service Level Agreements (SLA)
once the design stage is reached. Transforming SLA’s and service requirements leads to the amendments in
service architecture, and design of the service. Thus, bugs, vulnerabilities, defects creep up. And finally, it
results in the service failure of the cloud service design and cloud service architecture. This leads to transforming
and re factoring the cloud service code. Moreover, it results in more bugs and vulnerabilities leading to
CCTD. Thus, the requirements are generally free-zed once the design of the service is started.

Major drawbacks include testing is a small phase, and it is done after service coding, so the SRS, Service
design, and service architecture are not tested. If there is a bug/error/fault in the requirement spec, it creeps and
crawls till the end and leads to lots of re-work, and re factoring [15]. If neither the service - requirements do
change, nor do SLA, nor does CCS service architecture and CCS service design and CCS code do not change,
we get steady secured well-tested and validated with good QOS CCS services accessible to the cloud patrons.

Testing is the process of validating the correctness precision, completeness, and QOS, - because, the way
test engineers check/verify and validate the service or product assorted from the way customers use the service
or product. And testing the SLA, service requirements, design, and architecture is very important to avoid the
vulnerabilities, defects, errors, bugs, failures at the early stage of service configuration. Testing activity calls
for the tester to have good patience, be creative, open-minded and committed to test the product. They need to
think and act from an end-user perspective. Testing lessens the unraveled bugs, if bugs are not reported it’s
not the proof of precision and accuracy of the product, rather than it’s the marking of the testing activity as not
proper. Non-appearance of fault is a myth and does not fulfill the end customers requirements and necessities.

2.3.2. Verification/constructive action and Validation/destruction model [verification and validation]

As all the SDLC activities take place, the testers test the CRS in parallel to developers by using the method
of reviewing, inspection, testing, agile scrum meetings and walk-through on CRS. Testing is done a) for

Exploring Cloud Computing Technological Test Debt 337

inconsistency in the service prerequisites/specs. b) for misplaced service prerequisites /conditions and or
requirements. c) for erroneous vigilance of service specifications. The testing team assesses the CRS,
locates, classifies and catalogues and categorizes faults, and defects and reports to the customer seeking the
corrected requirement spec. Then, it updates the CRS, SRS and Functional Spec (FS). In the next stage, the
testing team reviews the SRS.

The testers continue testing each document simultaneously and verify from the end-user acceptance
perspective and business perspective and tests SRS. The tester checks assesses, evaluates SRS aligned with
CRS - All CRS are transformed into SRS, checked for interface issues, checked for security implementation
properties and tested whether SRS is defined properly or not. Also, tester evaluates SRS for software,
hardware, firmware, virtual ware compatibility issues in SRS. The testing team evaluates every factor of
the SRS, and whether the CRS is transformed accurately to SRS or not. It tests and confirms each end-to-
end system testing scenarios in the SRS. Later, in next stage they review HLD- architecture where, it is
tested for any violation of the architectural principles, guidelines, compliance’s, rules, regulations, and
violations which may lead to architecture debt. Testers also check for the integration of data between the
modules, and interface issues in HLD. In the next stage, testers evaluate LLD (Low level design), test it
from the functionality testing perspective, and check for the design principle violation which may lead to
Design debt. The coding team starts coding the service product. The testing team experts cart tests, the code
from black box testing tasks perspective. All the above processes are verification activities to avoid the bug
creeping to into next stages in downward direction. After coding, the coders do code unit testing, also
named as WBT or glass box testing or structural testing. It is also called transparent testing (path testing,
loop testing, conditional testing, memory leakage testing, penetration testing, code security testing etc).
Also, gray-box testing all this is verification activities to deliver the right artifact in precise time and
accurately consign, with the right quality. Here, the coders verify each and all LOC (line of code) for
correctness, syntax, grammar etc. after WBT. The CCS software (s/w) is launched to the testing team to do
black box testing [BBT].

Advantages of V and V model includes: Verification is construction type activities and validation are
destruction type activities performed to ensure product safety, and service safety. Here, testing starts at
premature stages of cloud service development. This evades descending or surging or creeping of bugs, and
viruses which in turn lessen a lot of rewriting, reworking and refactoring activities. Testing is performed at
each stage of service/ product development, Deliverables take place in parallel. This model incurs huge
investment since right from beginning, the testing activities are performed. It invites more documentation
work. We go for V&V models in the following situations: for long-term service development, complex
computing service offerings, and when a customer expects a very high quality of service within stipulated
time frame, under marketing schedule pressures, and time schedules with service delivery on the fly.

3. CSTD CATALOGING

There are many facets that adds to CCTD. We catalogue CCTD based on the depth and brand of testing
executed in a cloud environment.

3.1. Unit testing or White box testing (WBT)

In WBT various short cut methods are followed to execute the unit testing which gets added to CCTD debt.
The unit testing for software coded service is done throughout the programming (coding) of an application
or service. By isolating a sector of code and validating it for its correctness [21]. Normally, the developers/
coders who code their own module in a particular language are thoroughly aware of their own modules or
components they have developed. But they are not aware of the other modules developed by other coders;
also they are not aware of the same module developed for multiple platforms using polyglot programming

338 Manu A.R., Vinod Kumar Agrawal, K.N. Bala Subramanya Murthy and Suma V.

languages developed by other coders for other platforms. If the coder debugs and does WBT on the other
modules or complete modules other than the ones he developed, then, the coder with negligent or does not
have in-depth knowledge of the complete modules. If he executes the WBT script, it leads to CSTD. It is
preferable that scripting and execution of WBT is done by test engineer, since he is well aware of coding
standards, including the language platform in which the WBT scripts are scripted in multiple languages.
Also he is well versed in debugging the source code and locating bugs using his own knowledge on business
domain and technical scenarios and find the bugs without any bias and offer the justice to the customer. If
the developer, does the testing there are chances of missing the scenarios and making the testing procedure
using short cuts and make the residual defects to creep in the service leading to the CSTD. So, the test
engineer as a separate entity with multiple programming, scripting and domain skill and end-to-end testing
knowledge helps to lower the bugs from scooping with shallow and wide in-depth tests of the services [4].
Appropriate unit testing made throughout the programming stage saves both time and money in the end. If
neglected with thrifty on WBT, it leads to more bug fixing costs during the Black box testing. Neglecting
the WBT using shortcuts leads to accruing of Test debt.

• It leads to insufficient, pathetic and poor unit tests scenarios, missing scenarios, wrong scenarios,
conflicts in the scenarios and test script source code, change in the scenarios, test cases and test
scripts.

• Lacking to use automation tools support in cloud environment leads to test debt. In such a case, the
concealed bugs linger for a long time. If the missing bugs are caught in black box system testing or
user acceptance testing, it takes longer time to fix the defect incurring more cost for fixing the bugs.

• Ambiguous and vague unit test cases/scripts lead to difficulty in documentation and create difficulty
in exploring the functionality of the CCS code under test.

• Cloud service production code under unit testing with exterior dependencies using public or hybrid
cloud, should execute independently, by isolating external dependencies, failing which it results in
slow execution of unit test scripts.

• Unrelated business need in SaaS app code trying to connect to, access the PaaS code and IaaS code
in a virtual environment and the DSaaS code, etc. unit test as a result of external rationale network
failure slow down the unit test, leads to accruing test debt. Inappropriate claim [1] in unit test
scenario, wrong assumptions results in test debt.

• Just to create and impress the end user and management on the number mania the dev-ops team
adopts a bad practice of writing the unit test cases without the obligatory claims to boost up and
increase the unit test case coverage without adding any value to the test suite, and test framework.
Some wrongly asserted testing, scenarios consume an extra time to debug and repair the source code.

• Failure to execute the unit test code in isolation from source code by using copy and paste, the
function/ procedure/object of source code to its own unit testing code without scripting the code in
testing environment to erstwhile in its natural environment. By separating the code facilitates to
discover needless dependencies linking the code being tested and other units.

3.2. Exploratory or probing or groping or expert Testing

The expert testing (or innovative testing) and its consequences to test debt is reported in [23]. It is informal,
and non-documented testing. It does not rely on a formal testing methodology. It is a random method of
testing the application using the tester’s domain knowledge and intuition, using creative, explored innovative
scenarios, instead of formal test design strategies. The exploratory testing (ET) involves creative,
unconstrained, unbounded, innovative, and cost-effective characteristics. It uses both negative and positive
scenarios. And expertise testing is done by testers in security and penetration testing, vulnerability assessment

Exploring Cloud Computing Technological Test Debt 339

testing, to dig and mine the vulnerabilities and unearth the bug risks. Nevertheless, over relying on exploratory
and ad-hoc testing can destabilize the documented and formal value and efficacy of the procedure and
object testing strategy. ET is the process of detection, innovation, and research and learning. This underlines
the individual tester freedom and accountability. Test cases/scripts are not documented well in advance,
and are written on the fly over testing with its spontaneous creative thinking with system adaptability and
learning. It fails to set up Bug Taxonomy, root cause analysis, test charter, and time box thinking.

The factors of exploratory testing or expert testing leads to the CSTD, Exploratory testing is informal
and non-documented, which increases extra effort and resources in terms of CAPEX, and OPEX. As the
complexity in cloud computing environment increases the coverage is difficult with the complex and
distributed environment using the testing benchmarks. Testers use shortcuts to make a decision on progressive
steps of action or pattern. In exploration testing, process of test plan, investigation, and design test suite
execution, are completed as one and immediately. It is usually based on testers thinking progression, and
creativity. In the ET there are no prescribed standards or planned test approaches to execute the test strategy.
It is an adhoc testing helps in detecting hidden bugs. ET involves only a defect report / defect log [1]. ET is
a concurrent and instantaneous progression of system test design and test implementation and executions
are all performed in one short time. It is suitable for short-term testing, but not right for the longer execution
time, and replication of failure scenario is hard, it is hard to decide when to stop testing the product, it
incurs a vicious exploratory work and it adds to cstd some of them are listed below.

• Expert investigative testing involves huge testing effort, with increased CCS complexity. It is harder
to follow the complete system coverage, and is hard to track the CCS under test.

• Testers cannot adapt well structured testing approach with inaccurate assessments. It is difficult to
understand, track, manage, and watch the testing progression.

• Factors which affect exploratory testing are: testing strategy, existing tools and services resources
to carry testing, tester’s role, responsibility. Knowledge and skills (includes good listening, guiding,
tracking, interpretation, judgment, opinion, documenting and coverage, rapid feedback, creative,
critical thinking and assorted ideas).

• Re-execution or retesting or of tests suite oracle [1] or strategy or scenarios or scripts or frameworks
or cases is complicated and pricey. Expensive results in undocumented and uncovered features and
functionalities with high possibility of missing components or scenarios, along with schedule slippage
and increasingly contribute to the CSTD. Exploratory testing is beneficial at tight schedule and non
availability of the requirement specs, compared to procedural manual and automated testing
methodologies.

• Some factors contributing to CSTD are: Inaccurately explored or wrong understanding of the
application, CCTD is due to result of the execution is based on missing, wrong, and conflicting test
oracle in exploratory testing suites, leading to extraneous rework and more residual defects affecting
the longevity of the product or cloud service maintenance expenditures and leads to more repayment
of the accrued debt due to missing features.

• Inexperienced and untrained test engineers contribute more to accruing CSTD, due to lack of domain
knowledge or understanding the applications. They fail to test the application or service with effective
approach and documented methodology. Due to lower test set suite and inconsistent test oracle
inaccuracy, it results to addition of residual bugs [1].

• Non-existence of proper documentation work of SRS, CRS, BS or FS leads to CSTD, while,
executing the exploratory testing based on available code. It jeopardizes the knowledge management
with low implementation and maintenance costs and affects the speed and agility, and performance
of the business.

340 Manu A.R., Vinod Kumar Agrawal, K.N. Bala Subramanya Murthy and Suma V.

• Due to poor documentation and proof reading past logs of test suite are not maintained, it’s an
unplanned testing strategy, causing CSTD. In order to avoid scheduling slippages the testers take
shortcuts to meet the cut-off date leading to test debt.

3.3. Manual Testing in cloud computing system

It is a laborious complex, and monotonous process of executing the test cases. It is a course progression of
finding, assessing, auditing, root finding and manually spotting bugs, defects, vulnerabilities, issues, errors,
failures and security threats in cloud computing service software. In general, a tester manually executes the
test cases as specified in the test specification based on requirement spec in the form of CRS, FS, BS, and
SRS. The common cause which contributes to accumulation of of test debt from manual testing is: Limited
testing due to the time schedule and resource constraints, marketing pressure, and management pressure to
release the product early to the market. Due to this the tester may have to carry out his testing job without
doing complete and ample tests execution. Hence, they use shortcuts and execute only selected subset of
the tests to release the service with the possibility of not detecting the residual defects. Due to usage of
inappropriate test case design techniques with out proper test planning and strategies leads to CSTD. The
test cases is designed using various test cases design techniques with lot of discrepancies via a diverse
mixture of data combinations to execute the test suite. Testers use the shortest route or path to execute the
important test scenarios, identify and document in test set oracle with residual bugs flourishing in the CCS
under test.

The qualities of the test cases depend on the re-assessment in quality control and finding the issues in
test case for missing test cases, misplaced, misunderstood test cases. Due to time and market pressure, test
engineers skip the tests review. Missing tests review and halt processing of finding vulnerabilities and
increase the effort and cost expenditure of maintaining the test cases. The course of action of testing the
behavior and system functionality against the requirement spec is known as BBT or functional testing:
Over testing for all the junk values of test cases may lead to the CSTD, Under testing the application may
lead to the CSTD, whereas optimized testing, and positive testing and negative testing are desirable.

The test case and test requirement should be 1) Unitary (solid, interconnected, cohesive) - address one
thing at a time uniquely, 2) Complete - the test case should be fully stated without any missing information
and test data. 3) Consistent -Test cases should be reliable, consistent and should not contradict with one
another, maintainable. 4) Non-Conjugated and infinitesimal - the test requirement and test case should be
atomic with only assured conjunctions. 5) Traceable - the test requirement should meet all stakeholders
needs and is convincingly documented. 6) It should be concurrent, and up to date. 7) Unambiguous it
should be concise and does not give a choice to technical jargon’s, acronyms, etc. with facts, not subjective
and objective opinions. 8) Mandatory - defined characteristic be ameliorated. 9) Verifiable, through one of
4 possible methods - inspection, demonstration, walk-through, audits, review’s, sprint meetings, evaluations,
test or analysis. Violation of the above characteristics leads to the CSTD.

3.4. Integration testing [IT]

Testing the data flow using the connection linking and bridging two or more features is known as integration
testing. It requires exploring the requirements and knows the application, systematically about how each
component and its feature works, and discovers all the potential scenarios. After prioritizing the scenarios,
the tester should execute the scenarios bridging the user interface between the applications for testing the
data flow. If the bugs are detected, they are reported to the dev-ops team to fix the bugs or defects. Here, we
have to do both positive and negative values and type of integration testing. In IT, we do two types of
integration testing 1. Incremental IT {IIT} IIT is of two types, namely bottom-up IT and top down IT. 2.
Non - incremental combination Testing.

Exploring Cloud Computing Technological Test Debt 341

In these types of testing, testers, incrementally affix and conduit the components and test for the interface
and information flow between the CCS application components called IIT. Whereas in top-down IT, testing
starts from one component regarded as parent module bridging the interface with another module regarded
as child modules. It is incrementally added to check the data flow between the bridged interface using the
relationship between parents and child module and is called as top-down IT. In Bottom-up IT, tests initiated
from earlier last child module to its earlier parent module by incrementally adding the modules and tests
with the data flow between modules. In Non - incremental IT, whence there is a complex data flow and
whence it is difficult to set up the parent and child relationship between the modules, we test all the possible
ways of data flow between modules. It is known as Non-Incremental IT or Big-Bang testing method. Here,
we coalesce complete modules and do IT. In this method whence there is a chance of missing to test the
connection and difficulty to do the root-cause analysis of the bug occurrences and its origin. If any one
parent or child module is under development then we simulate the non-resistant module to do IT we use
simulator called as Stub which is a dummy module to send or receive the data and the connection created
to check the data flow is known as driver. This creates the test environment and helps to communicate data
flow and prepares and performs the analysis of the report and sends the report, this contributes to CSTD.

3.5. System testing (ST)

ST is an end-to-end testing by navigating through all possible scenarios in all vertical and horizontal directions
by simulating the test environment like real-time production environment. Once the build arrives to the
testing team after WBT, testing team tests all the basic features using smoke testing and then test new
features done as functional or component testing, then does integration testing. And, retests all the fixed
defects, tests the unchanged old existing features to make sure that it is not broken, in the new build and
retests only fixed defects. Once System testing is started the least features are ready and all the basic
functionalities are working. We test the product in the environment similar to production environment,
when there is no critical show stopper, blocker bugs, and before the release deadline date.

Once the build is handed over to testing team the build is compiled, compressed and installed in testing
server in cloud ecosystem and testers start doing the system test cases. When the new builds are given we
should uninstall the old build and do installation of new build and execute the system test cases. After
installing the build software and testing the application , the testing team finds blocker bugs and then it is
reported back to developers, they immediately fix the bug within middle of the cycle and another modified
fixed build comes within that cycle which is known as re-spin. Without fixing the blocker bug it is not
possible for testers to start testing the software further. If there is more number of re-spins in a cycle it is a
clear sign of the more test debts being created. The testers locate bugs and report it to the coders. Then
coders fix the bug in source code, compile it and compress it to executable format and send the build to the
testing team as a patch file. Test engineers install the patch file replace the code with a defect, with new
patch file [which is a modified program]. The build in compressed format include: .zip file, .tar file, .rar
file, .jar file, .war files. We execute test cases for a standalone application, web application, and client-
server application. More number of patches is a clear sign of the accrued test debt.

3.6. Acceptance testing

End-to-End is testing done by end users before accepting the application when it’s delivered to the customer
the testing executed from the client side. This ensures the software in real-time business scenario or situations.
In this testing, we check for the test debts test for some features, complexity of the features etc. If the
customer finds the test debt, and critical bug, developers fix the bug and testers test it and re-install the
build, and patron performs the re-tests in terms of acceptance testing process and reuse the new fixed or
changed the CCS software. This process is known as hot fix. It happens with in few hours or 1 day, and
accrued test leads to more number of hot fixes and cost consumption will be more.

342 Manu A.R., Vinod Kumar Agrawal, K.N. Bala Subramanya Murthy and Suma V.

3.7. Cloud computing system software Automation Testing

Cloud computing system software programmed script based automation testing involves scripted testing
frameworks stored in test suite based on manual test cases or test scenarios identified earlier. The automated test
scripts are executed using automation tool and results are documented using the tools without manual effort, it
documents, analyses the results and gives the output in required format. If the testing processes are lacking to use
automation tool, it chips in to the CSTD. The cloud computing service needs the retesting and regression testing
process whence the service code is modified, altered or changed for bug fixes, or for implementing the new
customer requirements. Then, it requires automating the product or service to re-execute and re-test the service
code/build with new changes, impact area, bug fixes, using the automated tool and test scripts. If the test scenario
for automation testing is missing, it makes the automated regression testing, performance testing is difficult and
complex, and contributes to CSTD. As there will be a probability of residual bugs remaining in the service it
affects the QOS if not retested properly and thoroughly. This affects reputation of the service provider later if
reported by the customer. The main contributors of automation test debt are:

1. Even though the cloud is suitable for the test environment, if the application in not configured
properly it could lead to configuration anomaly. Test suite executed in such an environment would
lead to erratic results of the application. Choosing proper language for multi-tenant computing
systems with complex multi-behaviour of a computing system in multiple environment using diverse
software, hardware devices, firmware, virtual-ware devices computing systems is called for the
real computing systems due to multiple platforms, environments. In order to simplify the testers
use the shortcut by skipping to execute the automation script in all real test environments of virtual
systems, using emulators, simulators, real devices etc. which contributes to accretion of CSTD.

2. Failure to follow and non-adherence to testing, documentation, tracking and reporting standards,
increases the CSTD.

3. Failure to update test cases, retest and re-execute, as per modified/changed, re-factored patches,
updates, hot-fixes, re-spins and not fixing the broken test scenarios, decreases the quality of automated
test cases contributes to CSTD.

4. If the test scripts are not coded, and scripted manually to write the test scripts, and instead usage of
shortcut method of record and playback tools for testing the GUI has enormous drawbacks. If the
environment or platform or the browser is changed the recorded script may not work. It may create
the havoc of testing the application. It contributes for the accruing of CSTD via increased maintenance
effort and re-factors the test script.

5. Control and administration of automation CSTD. Overly dependency of automation tools also
contributes to the CSTD.

6. Automation testing is started once the system under test is stable and sound which is the prerequisite.
The vital principle of automation testing is to lessen outlay over an elongated period to make sure
that no fresh bugs are launched as the focused action executing the existing test cases.

7. In an agile ecosystem a regular sprint time taken in designing, coding, validation of designed script
with existing information is captured after typically 1-2 weeks to complete its execution and but
affording such period for an automation script is cumbersome and leads to test debt. Agile
methodology responds quickly to customer induced changes in business spec and is prone to frequent
changes, but automation does not lend itself to frequent changes in CRS which leads to test debt.

8. Selection of the automation tool for automation script execution is very crucial in terms of finance
and tool support which includes legacy and open source tools, failure to select a suitable tool leads
to test debt.

Exploring Cloud Computing Technological Test Debt 343

9. As Agile methodology highlights for regular open teamwork and united team interfaces with less
limiting policies it affects cohesion and collision within the team and non-conducive to the automated
test script execution.

4. MANAGING THE CLOUD TEST DEBT

Strategic debt is acquired intentionally for tactical and competition reasons (such as first to promote in
market release versions). Planned debt accrues on purpose for rapid gains and is-intended to pay back in the
interim. Unintended debt occurs accidentally due to lack of coder’s proficiency in coding, or lack of alertness
of TD. Incremental Debt: occurs due to Business pressures, time schedule, cost pressures, due to lack of
testing process understanding, lacking to build loosely coupled architecture components. In addition, lacking
paired collaboration, lacking in documentation, parallel development, delayed refactoring - to support future
requirements, as a project or service evolves. Lacking in alignment to testing standards, features, frameworks,
technology testing, lack of knowledge, lacking of ownership, poorer technical leadership, scope doping,
un-managed scope dimensionality reduction and shredding the dimensions leads to CCTD. The CSTD is
unavoidable in reality inevitable in cloud services that executes on fly schedule load, scalability and security
constraints in the public cloud and hybrid cloud. Knowing the symptoms of debt cause helps to prevent the
accruing debt. Last minute specification changes leads to CCTD. Interest payments, paying off the debt
back is essential for future maintenance for in progress development of the upstream computing project.
The first action is heightening alertness and understanding the test debt; by holding team meetings, trainings
relevant processes to discuss and focus on repaying existing test debt. Recognizing, cataloguing, discovering,
documenting, and tracking the test debt is important with prioritized effort to deal with it at first iteratively
formulate and re-factor to reduce the test debt. Incentivize team and create the culture to control the CSTD.

Accrued Debt is the main reason for missing the deadlines in completion of the testing schedules.
Cloud computing testing is executed on a web-based platform for various computing services like hardware,
firmware, application software, virtual-wares and other computing services remotely accessed using the
Internet. To resume control and cut the load of debt: craft a budget- assign and reserve funds for
‘requirements’. Assess test debt- collect and congregate all debt statements measured and find owing debt
measure, and interest rates to be paid back through refactoring this information will help to plan for payoff.
Adjust time, cost, and effort spending to pay back properly in the correct quantity. Communicate with all
the stakeholders to understand test debt and the goals to repay it back and take help to plan for the changes
to be made, so they can fully support those changes. Accounting for a debt helps in changing the principle
of debt accrual. Test Debt will be accounted for change impacts with the principal cost needed for concurrent
repayment of the loan. Unamortized fees credits for accrued debt, repaying the debt is important as part of
refactoring.

The entire cloud is visualized as an entire entity, based on its characteristics and user app service needs
testing to be carried out. Testing within the cloud: cloud service suppliers/producers/vendors can execute
testing within the own private cloud. Testing crosswise cloud: Testing cases are executed over all types of
cloud models. SAAS testing in the cloud: it includes performing both functional and non-functional tests.
The main focus of cloud testing is: Core component testing. The Apps include: functional testing, end-to-
end business system and workflows testing, Information security testing, Platform compatibility testing
include browser, OS, compatibility, etc.

Network testing includes: validating different communication network bandwidths, communication
network protocols and data transfer rate over network validation, network connectivity, and data integrity
testing etc.

Infrastructure testing includes: Backup and Disaster recovery testing, testing the secure connection
systems and testing the storage policies, regulatory compliances testing etc. Further cloud testing includes,

344 Manu A.R., Vinod Kumar Agrawal, K.N. Bala Subramanya Murthy and Suma V.

performance testing, continuous availability testing, compliance testing, security testing [VPN testing,
firewall testing, load and stress testing, scalability and elasticity testing, multi-tenancy support testing,
testing for hot-fixes, updates, patches and upgrades, migration testing, Interoperability testing, portability
testing, legacy system testing, open source compatibility testing etc.]

4.1. Challenges of cloud testing

It include: a) Security and privacy of data: Due to multi-tenancy nature, data theft risk persists. b) Updating
of patches and up gradation of application software, platform and server maintenance and changes on short
time notice to the customers. C) Difficulty in handling the interface version and compatibility. D) Difficulty
in integrating and migrating of the inbound and out-bound data from the customer’s network to SaaS point
and vice versa for enterprise application.

Factors affecting Cloud testing debt are interoperable, Performance quality functions, Compatibility,
and Usability. Difficulty in testing the end-to-end testing in a SaaS environment, simulating real-time and
virtual online test data, over diverse computing resources, difficulty in creating test harness, and test library
simulation, etc.

The main aspect in administering the CSTD subset is to track the CSTD and cyclically pay back the
incurred debt in a time bound manner to keep it under control from its impact. The primary solution is to
carry out attentive and realistic approach en route to assess and pay back TD. In some situations, it’s
beneficial to incur the debt as it allows the stakeholders to assemble their goals. For illustration it perhaps
may not be possible to completely execute the test cases to avoid the schedule slippage as a shortcut to
release the service to market. The testers may not address the finding and may not be able to track the
detected bugs which incur the debt. It requires proper planning to tackle such issues in future releases and
by monitoring and executing to pay back to settle the debt in a timely manner [1].

Another vital facet in the direction of controlling and supervising the CSTD is to avert and stopping the
accrual of CSTD. Preclusion is achieved by mounting alertness through the Developers, Dev-ops and
testing teams on CSTD and its impacts, pioneering pertinent ways, guidance, policies, bench marking the
industry practices, training. Creating awareness helps to prevent the accrual of CSTD. For illustration, the
clean room coding [9] [1], optimized coding practices, guidance and benchmarks are shared and allowed to
follow for test coding practices as well. If it’s currently not followed or pursued it may be fortified with
regular reviews, walk-through, and inspections with looping feedback to improve the QOS in testing practices.

5. Comprehensive practices to pay back CSTD

We can control the accrued CSTD by repaying the CSTD cyclically over a period, by estimating the degree
of CSTD and chart to repay it. But in practice it’s not feasible and it’s cumbersome and hard to stop
performing the testing activities and concentrating only on paying back the CSTD. But we need the
equilibrium with unbiased realistic and feasible way to pay back the CSTD by considering the account of
involved cloud stakeholders, using the entities feasible with organizational and technical dynamics. We try
to present below the major steps for repaying the accrued CSTD based on industry benchmarks practices
from our industry experience, academic literature studies and analysis.

1. Measure and enumerate [22] the CSTD, after getting the approval from the management to execute
the repayment of accrued CSTD. When the CSTD accrues over span of time, the technical
stakeholders and the team entities may need to spend their committed effort to repay for longer
duration with their continued effort, and focus attention to the extent of the depth CSTD sustained.
They should make measurement and capability of the CSTD using manual ways to quantify the
CSTD using Microsoft-excel sheets. This includes planning the schedule, with resources, and
coordination required to repay the CSTD [1].

Exploring Cloud Computing Technological Test Debt 345

2. Recompensing CCTD cyclically- In the cloud computing services, when the TD has not attained
crucial levels, it would be necessary for the involved stakeholders to repay the accrued debt in
regular short instalments. It - is desirable and pragmatic as part of the end release progression and
addition to the regular work. Using dev-ops test suite repository testers and development engineers
trained and directed to re-factor the test cases before they check in the test script or test case to the
central repository maintained to track the test cases.

3. Avoidance of the mounting CSTD: Planned advances for managing CSTD to avoid the rising TD in
potential. Test Driven Development (TDD) as a strategic approach to managing the accruing TD
involves writing the test cases using a strategic approach to write the test cases, execute test suite,
either manually or using automation tools, and re-factoring the test scripts [24].

6. Premeditated Approaches towards Managing CSTD

Premeditated approaches towards managing CSTD for practical supervision of CSTD, strategic methods
such as refactoring, test script and test suite, test plan, test framework, testing architecture, test strategy
should be followed. Major Industry specific benchmarked engineering practices linking methodologies, in
managing CSTD needs to be adopted.

6.1. Standard benchmarked efficient programming practices for writing test scripts

Development team codes the product offered as a service, in NIST defined cloud computing offerings as a
software coded service such as Infrastructure as a service, network as-s service, database as a service,
platform as a service code, aata storage as a service. But, the organization in cloud neglects the standards to
follow the same procedure with due importance of the coding practices to the test script automation. For
testing the product or service using automation, script involves more coding effort than the real coding
service which needs to test the product on all platforms. So, the testing code is written from the end-user
perspective. It involves testing both positive and negative conditions, and executed several times over
continued time, duration, and it needs to be tested for all functional components, test conditions, test
scenarios, cyclically iterated loops, test cases, etc. But, in reality the development team or test engineers or
management in the organization never give importance to test script to test the service. It requires urgent
need and attention across the industry to follow the standards benchmarked practices in managing coding,
and to design and architectural planning to cut the CSTD.

6.2. Pair testing

In an agile way, time-boxed development of test scripts and test cases needs to be initiated. Agility fetches
quicker pace of developing scripts, rationalized with varying customer needs. In short, time offered for
testing is narrow; do anything accessible with efficiency and effectively execute the tests. It is a technique
to be followed by a pair of people involved in testing activities to test the system under test (SUT) on the
same environment or computing system by continuous exchange of the ideas, knowledge and experience.
The pilot is accountable to do the tangible testing tasks, and actions executed. Whilst the co-pilot scrutinizes,
rate, reassesses and directs the pilot. The extent of activity is fixed with established scope, measurable goal,
executing actions as pilot and co-pilot by sticking to a goal. There will be no deviation from the extent of
the scope without over complicating and the KISS principle should be followed.

Pros of duo Testing: this includes enhanced knowledge, skill sharing, innate test case/script coding and
reviews, high accountability, better understanding of the domain with higher creativity with amplified
productivity. Use of Superior testing strategy, plans, methodology, time boxed action with real-time activities.
It also helps with healthier bug reporting and documentation, efficient knowledge sharing and training
technique, better coordination and reproduction of the bug with tracking activity.

346 Manu A.R., Vinod Kumar Agrawal, K.N. Bala Subramanya Murthy and Suma V.

In this practice of coding, multiple test engineers who code the scripts to test the product or service are
well versed in multiple domains, and platforms are aware and have the knowledge of the complete modules.
They have expertise in manual testing by performing end-to-end testing, at different versions and releases
of the service with in-depth knowledge about the product and with various programming skills in polyglot
programming practices. The multiple testers collaborate using the multilateral collaboration team who all
code together in multiple teams with joint team effort to design the test script to test the vast complex coded
service in the cloud called as driver team. And other team by working alongside is called as a pilot team in
parallel level to test script coding team to develop software. The Pilot team watches, and scrutinizes like a
watchdog and assists the driver team by observing the script with mutual understanding and in-depth
analyses observes and helps the driver team. Profits by using agile benchmarked practices embrace abridge
effective team collaboration, and communication, and reduced bugs. It also increases the test coverage and
analyzing the complete end to end scenarios and tests with better technological skills, increases the
responsibility of the involved teams. In Pair programming involves war room strategy and follow standards
in agile method and extreme programming methods, lean methods, and Kanban methods [25] [26]. Both
coders as drivers, testers as navigators share the same room and code the service software. Testers test
manually and write the test suite scripts to automate and test the code or service produced. If any issues are
detected by test engineers, the coders instantly converse together and fix the issues, by both cross checking
each other to suffice the bug, issues and resolve the matter cordially.

6.3. Clean room test script programming [27]

It is a hygienic coding practice in test scripting using good testing craftsmanship [1] [27]. It is very much
necessary to follow the clean room programming practices for writing test script and store in test suite with
clean, healthier coding practices to store, execute tests and update the defect. Defect reporting, documenting
method, defect management using the clean room testing practices helps in managing CSTD. Clean room
Coding [26] practices involve dynamic and static analysis, violation identifications, writing cryptic, standards,
and following common coding fashion, maintained in common test code base stored in the test suite [37].

6.4. Re factoring

“Performance is defending program revolution and renovation of the transaction over a period as per demand
and needs”, for writing the unit test script code, regression test script suite, load/performance testing script
suite. Refactoring the test script involves the alteration(s) of test script code appending, adjoining to the
existing test scripts, alterations or eliminations, delete conflicting test cases. It formulates and crafts the
existing test script code to enhance, improve, with comprehensively have better coverage with better
readability and easily maintainable. Refactoring [2] is principally executed as a good component measurement
to the test script coding process. Every time the cloud service source code changed due to changes in the
requirement, in business scenarios or due to bug fixing or due to enhancements etc. in order to have better
test suite management, test code coverage and maintenance. The same stratum should be followed for test
script code refactoring. The entire time test suite is pre-eminently executed every time it is handled. More
the refactoring is neglected or delayed, the more test code be used in the present structure which will adds
to the mounting CSTD.

6.5. Value based efficient Testing methods

It is a well planned, calculated, measured managing method involving value-based efficient, testing process
to manage CSTD.

• Ten minute construct code build/product/release: Rapid with swift, naive, and total builds are vital
for plummeting the spin time for structural changes to the service code in coders own local computing

Exploring Cloud Computing Technological Test Debt 347

machine for shipping service code to real-time production. A Thumb rule is to execute the whole
complete engineering process at a time slice duly by consuming 10 minutes to complete all the
processes of fabricating, design, assembling, testing and installing, and configuring, the cloud service
software. Initially it starts from code compiling into an executable file, compressed to a zipped
code with its linked libraries and its system files. Installation and configuration (registry set up,
linking the files and unzipping the executable file, platform setup, driver setup, copying, and installing
the files) into the test setup in cloud similar to production real-time environment and execute the
tests, running tests, boot up and start of the processes is done.

7. CASE STUDY 1

This case study concerns a software coded service offered over cloud computing with complex architecture
and design. This service it was executed in a cloud environment and worked for all Linux flavours, UNIX
flavours, Windows version, and MAC OS. And also, in multiple browsers and their versions using multiple
thick clients and thin clients with support Mobile OS’s typically Symbian OS, Android, IOS, Blackberry
OS, Microsoft Windows versions, flavours, etc. The application is offered as a service over the cloud
having 1000’s of API’s, assorted functions which have to be invoked in command line argument. This is
executed in client as front end and on the back-end servers. The application service was offered as a service
over the cloud. The service was released every three to six months with added changes in the code in every
release. The application was coded in CPP, Java, Python, Ruby, grails, groovy and Go Lang and other
various polyglot programming languages. There were various field experts in testing, leads and testers
associated with their roles in the organization. The test lead wrote test strategy, plans and the tests in a test
matrix executed, it was created earlier and was reused for current project which has not changed over the
time. The Manager checked and measured the progress by test cases executed by comparing with the
earlier report.

At that time the tester was assigned to run 10 tests, he executed the scripts in the vicinity. The tester did
not execute any of them as he noticed the critical blocker bugs and a few other areas uncovered which are
risky. The lead noted it and objected that there was no progress and none of the test cases are executed as
the test matrix was approved and he did not have any powers to ask for the change of scope of test to cover
the risky areas in the scope. Newly hired fresh graduate test engineers without domain knowledge and
testing expertise was deputed to test the product with short time. The tests were executed for a few days
without clarity. Later, they realized with experienced and followed an exploratory test approach by letting
the tester’s freedom, with responsibility and accountability for their work. The testing sessions were scripted
using test matrix over time based on new risk threats were noted.

The coding process used waterfall model, with only Black box testing done manually, when the new
features were added to the existing product, more bug fixes were incorporated, without WBT in the software.
No tools or advance techniques were used to improve the quality of the code/product with obsolete test
infrastructure. Delayed new hardware procurement was arduous and time-consuming in clouds due to the
start-up nature of the organization.

In the organization where we worked they were using the automated scripts initially using selenium
TEST NG, POM Apache, test engine and other hybrid frameworks. They also used GTest and Perl scripts,
with exposed API. CloudTest, SOAtest, HP Load Runner, Microsoft Azure, SOASTA, LoadStorm,
CloudTestGo, AppPerfect, Cloudslueth, CloudTestGo Jmeter etc. Unit tests were executed using CppUnit,
Cucumber and Robot, SONAR ICube, its open source code reporting tool to follow the degree and depth of
code roofed by the tests.

Later, management realized that the co-operation between the lead and the test engineers needs to be
established, with everyone in the team involved freely with accountability to do the testing tasks in making

348 Manu A.R., Vinod Kumar Agrawal, K.N. Bala Subramanya Murthy and Suma V.

the plan and changing it over time. As more bugs were found systematically the team took pride over
testing, with the updated test and bug reports and artifact delivered in good shape with clear hierarchy.

Having the traditional waterfall model does not fit well in agile without clarity. It is a bottleneck with a
weight for the corporation without clarity is a burden. When the tester stops caring, he starts using the short
cuts and ignores areas, even worsens the job of testing towards the negative missing valuable point. It
causes friction between end-user and service vendor distrusting each other. Boasting an investigative test
approach: Using the chaotic plans and charted terrain helps to adapt the flexible team and build available
test and plan. Being quick and agile makes it is easier to start executing the test cases. By decreasing the test
debt with team agility, composition and flexibility and team spends time on achieving the progress, gaining
momentum in the work. If new bug/risks are detected, they add to the charter missions, and contribute by
identifying new risk making the product under test more secured.

The focal crisis that worried team and the administration was that lots of bugs existed in the computing
system. Due to complexity, the Coders faced difficulty in making alterations due to no automated regression
tests in place. Tests are carried out using manual BBT, incurring considerable amount time and working
effort. Lack of automation tool for performing the unit/part serviceable test adds to the existing CSTD. The
progression was dispiriting to build up fancy cloud software code service due to lack of automation tool
sets, principles, actions, quality gauging measures for quality perfection. After apprehending the need of
CSTD, the management decided to use the automation tool. These changes took more time to use and
execute. This deferred the next service version release to the cloud market. These transforms were lucrative
to the customer service with reduced bugs. In addition, it helped the coding and testing team to gain confidence
with security implementation was met. With automation tool in place, the testing team got an opportunity
to increase the skill by learning the new automation tool, and helped to find new risky defects. This in turn
helped to decrease the test debt and increased the stability of the product, and the team had enough time to
focus on newer risky defects using the exploratory method. The usage of the automation tools provided
opportunity to use modernized cloud test infrastructure. This case study provides the knowledge of the test
debt and its impact by overcoming it using the automated tool driven strategy and successfully repaying the
debt using the exploratory testing, maintaining the agility with dev-ops team.

7.1. Case Study 2

The testers in a cloud agile dev-ops team must attempt to do it in a day or maximal two days, ahead of the
developers. Continuous Integration is the key for agile model. The test team ought to keep up an automated
and planned testing framework to readily integrate the new component, block, features, and modules as
business demands to fire the testing process in one go along with the existing one. The newly added functions,
also the bug fixed components, corrected build or release is expected, the test scripts and test data associated
and absolutely assorted, using a common test scripting language framework, common defect reporting and
documentation with rapid feedback, in acute “face to face” communication. Cloud computing is a new
panorama of prospect requires massive, dedicated infrastructure and resources. CCS requires increased
business complexity with technological innovation using virtualization, set-up costs, with operational
flexibility and scalability with less expensive test environments. Cloud-based testing has an issue with
respect to information security, lacking standards, hybrid and public clouds and other technical challenges
Client-server and web-based testing the diversity amid client-server testing, CCS are broadly divided into
two types: 2 and 3 - tiered application services offered over the cloud.

Considering the specific case to make PaaS as vulnerability testing ground: Construction of a cloud
security test bed is difficult, to assess, amalgamate, combine and define various security testing perceptions
in conflicting scenarios. PaaS testing ecosystem, is structured as a root for a security testing model to
appraise, assimilate, and label any security testing concepts, by linking concepts to PAAS scenarios. In the

Exploring Cloud Computing Technological Test Debt 349

app’s development phase tracks the application on the PaaS beginning from requirements through design
of cloud service programming and security testing to operation stages. The risk-control phase conducts the
trails of the processes of extenuating hazard from discovering infrastructure and assets to execute lucrative
maintenance. Risk is the chance of threat cause which leads to the lone or extra vulnerabilities.

The business progression phase allows the programmer/coder to control and protect apps in each PaaS
stage. PaaS testers recognize risks in application progression, and then craft risk-based loom to security
testing, including vulnerability assessments. Security testing model: Identifying the weakest link, in the
chain series by conducting pen testing, and relying on principles and frameworks in deficient techniques to
realize and name these three types of security issues: a) Security defect/flaws, at the PAAS apps design
stage. b) Security creepy-crawly bugs at the PAAS apps execution stage. c) Resource outages at the PAAS
platform stage.

Penetration testing: The penetration test conjures up the PAAS under attack. It tests the abuse of attacker
originated and detected vulnerabilities to expand auxiliary access to the PAAS and IAAS to get admission
to secret data access, and causes miss influence information records veracity, harms accessibility of the
CCS service, and harms the platform. Penetration testing is performed using automated tools and scripts. It
helps in testing the ability to react to the attacks and enact rightly. A security audit reveals threshold levels
that are not in place despite the earlier security tool approach to correct the problem.

Security review process: Compliance verification: Security review involves the process of verifying in-
house security applications to CCS mechanism using walk-through, scrum meet-ups, group discussion,
postmortem meetings, or retrospect- meeting, appraisal of the code or by assessment of CCS design and
CCS architecture mapping the reviewer logs testing using tools such as Nessus, Wireshark, N map etc. and
other tools.

Future Directions: The CCTD as an allegory has attained faster and wider recognition both in academic
and industry. CSTD is the part of CCTD, where the defects, flaws, errors, issues, failure, mistakes,
vulnerability, miscalculations, misbehavior, concerns, malfunctions, stoppage, breakdowns, crashing
malware’s, problems occur. Security issues in CCS domain are regularly effortlessly subjugated by attackers,
hackers, and ill motivated pupils to cause damage and harm the product or service. At present scenarios,
various vulnerabilities are increasing and leading to serious security debts, in turn leading to future
threats in CCS. Defense testing endeavors to depict those vulnerabilities, violating circumstances reliability;
input legitimacy and logic, accuracy close to the angle of attack vectors with the aim to abuse these
vulnerabilities to curtail threat of safety infringes and guarantee confidentiality, privacy, discretion, reliability
and accessibility of customer transactions. This work helps academics, students, researchers, industry
practitioners and security expert’s awareness to work on CSTD leading to CCTD, and its dimensions,
including code debt, architecture debt. “Test smells”, leads to the CSTD, in this vicinity, test readiness
frameworks and methods, where cloud testing community would tackle this CCTD. From an end-user
perspective - attack resistant product, better quality software, minimizes extra cost. testing - [CCS security
requirements, service test plans, architectural testing, design base testing, test scenarios, test defect review],
CCS security testing, finally CCS service deployment and maintenance helps in reducing CSTD[15] [16].

ACKNOWLEDGEMENTS

We thank Ganesh Samarthyam for timely advise and needful suggestion to complete this work in timely
manner.

REFERENCES
[1] Ganesh Samarthyam , Mahesh Muralidharan, Raghu Kalyan Anna, “Understanding Test Debt”, Trends in Software Testing,

Springer, 17 june (2016).

350 Manu A.R., Vinod Kumar Agrawal, K.N. Bala Subramanya Murthy and Suma V.

[2] W. Cunningham, The WyCash Portfolio management system, experience report, OOPSLA (1992).

[3] Jim Highsmith, “Zen and the Art of Software Quality”, Agile2009 Conference, (2009).

[4] Z. Li, P. Avgeriou, P. Liang, “A systematic mapping study on technical debt and its management”. J. Syst. Softw.
(2014).

[5] R.C. Martin, Clean code: a handbook of agile software craftsmanship, Prentice Hall, USA, (2009)

[6] K. Pugh, The risks of acceptance test debt. Cutter IT J. (2010).

[7] G. Suryanarayana, G. Samarthyam, T. Sharma, Refactoring for software design smells: managing technical debt (Morgan
Kaufmann/Elsevier, (2014)

[8] K. Wiklund, S. Eldh, D. Sundmark, K. Lundqvist, Technical debt in test automation. IEEE Sixth International Conference
on Software Testing, Verification and Validation (2013)

[9] A. Qusef, G. Bavota, R. Oliveto, A.D. Lucia, D. Binkley, Scotch: test-to-code traceability using slicing and conceptual
coupling. Proceedings of the 27th IEEE International Conference on Software Maintenance (2011).

[10] R.L. Nord, I. Ozkaya, P. Kruchten, M. Gonzalez, “In search of a metric for managing architectural debt”, Joint 10th
Working IEEE/IFIP Conference on Software Architecture (WICSA) and 6th European Conference on Software Architecture
(ECSA), Helsinki, Finland, August (2012).

[11] Tushar Sharma, Marios Fragkoulis and Diomidis Spinellis, “Does Your Configuration Code Smell?”, 2016 ACM. ISBN
978-1-4503-4186-8/16/05. MSR’16, May 14-15, (2016), Austin, TX, USA

[12] Grady Booch, Ivar Jacobson & Jim Rumbaugh (2000) OMG Unified Modeling Language Specification, Version 1.3 First
Edition: March 2000. Retrieved 12 August (2008).

[13] Jon Holt Institution of Electrical Engineers (2004), UML for Systems Engineering: Watching the Wheels IET, 2004,
ISBN 0863413544. p.58, (accessed on 30-11-2016)

[14] Jonas Söderström. “Onceability: The consequence of technology rot”, (accessed on 30-11-2016).

[15] Fowler, Martin (October 11, 2007). “What Is Refactoring”. (accessed on 30-11-2016).

[16] Amr Elssamadisy, Jean Whitmore, “Functional Testing: A Pattern to Follow and the Smells to Avoid”, ACM conference
Proceedings, (2006).

[17] A.D. Leon, M.F. Moonen, A. Bergh, G. Kok, “Refactoring test code”. The Technical report (CWI, Amsterdam, The
Netherlands, (2001).

[18] A. Martini, J. Bosch, M. Chaudron, “Architecture technical debt: understanding causes and a qualitative model”, 40th

EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA) (2014)

[19] A. Qusef, G. Bavota, R. Oliveto, A.D. Lucia, D. Binkley, “Scotch: test-to-code traceability using slicing and conceptual
coupling”, Proceedings of the 27th IEEE International Conference on Software Maintenance (2011).

[20] Jon Holt Institution of Electrical Engineers (2004), UML for Systems Engineering: Watching the Wheels IET, 2004,
ISBN 0863413544. p. 58, (accessed on 30-11-2016)

[21] S.M.A. Shah, M. Torchiano, A. Vetro, M. Morisio, “Exploratory testing as a source of technical debt”, IT Prof. 16,
(2014).

[22] K. Beck, Test-driven development: by example, Addison-Wesley Professional, USA, (2003).

[23] G. Campbell, Patroklos P. Papapetrou, SonarQube in action, Manning Publications Co., USA, (2013).

[24] L. Williams, R.R. Kessler, “Pair programming illuminated” , Addison-Wesley Professional, USA, (2003).

[25] Alister Cockburn, L. Williams, “The costs and benefits of pair programming. Extreme Programming Examined” (2000)

[26] S. Mancuso, “The software craftsman: professionalism, Pragmatism, Pride”, Prentice Hall, USA, (2014).

[27] W.F. Opdyke, Refactoring object-oriented frameworks, Ph.D. thesis, University of Illinois at Urbana-Champaign, Illinois,
(1992).

[28] S. Nachiyappan, S. Justus: “Cloud Testing Tools and Its Challenges: A Comparative Study”, 2nd International Symposium
on Big Data and Cloud Computing (ISBCC’15), Elsevier Science Direct - Procedia Computer Science volume 50, pp.
482 – 489, (2015)

[29] Matias Waterloo, Suzette Person, Sebastian Elbaum, “Test Analysis: Searching for Faults in Tests”, 30th IEEE/ACM
International Conference on Automated Software Engineering, pp. 149- 154, (2015).

[30] Arvinder Kaur, Kamaldeep Kaur and Shilpi Jain, “Predicting Software Change-Proneness with Code Smells and Class
Imbalance Learning”, Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept.
21-24, 2016, Jaipur, India, (2016).

Exploring Cloud Computing Technological Test Debt 351

[31] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, “An Empirical Investigation into the Nature
of Test Smells”, ACM, ASE 2016 Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, pp. 4-15, (2016).

[32] Fabio Palomba, Dario Di Nucci1, Annibale Panichella, Rocco Oliveto, Andrea De Lucia “On the Diffusion of Test Smells
in Automatically Generated Test Code: An Empirical Study”, SBST’16, ACM, Proceedings of the 9th International
Workshop on search-Based software testing pp 5-15, (2016).

[33] Gabriele Bavota, Barbara Russo, “A large-scale empirical study on self-admitted technical debt”, ACM, Proceedings of
the 13th International Conference on Mining Software Repositories, pp. 315-326, (2016).

[34] Amjed Tahir, July 2015, PhD thesis on: “A Study on Software Testability and the Quality of Testing In Object-Oriented
Systems”, UNIVERSITY OF OTAGO.

[35] Jerry Gao, Xiaoying Bai, and Wei-Tek Tsai, “Cloud Testing- Issues, Challenges, Needs and Practice”, Software Engineering
: An International Journal (SEIJ), Vol. 1, No. 1, pp. 9-23, SEPTEMBER (2011).

