Heterosis for grain yield and its component traits in pearl millet in different environments

Bhuri Singh ${ }^{1}$, K.C. Sharma ${ }^{1}$, G. K. Mittal ${ }^{2}$ and H. K. Meena ${ }^{1}$

Abstract

In the study ten parents were crossed, to determine the heterosis for grain yield and yield contributing traits in pearl millet using half diallel analysis. The magnitude of heterosis effect was high for grain yield, biological yield, dry fodder yield and harvest index; moderate for days to 50% flowering, days to maturity, productive tillers per plant, plant height, panicle length, panicle girth and test weight and low for protein content in all the three environments. Crosses 26-30 x 31-40, 26-30 x 71-75, 26-30 x RIB-135-144, 31-40 x RIB-20, 31-40 x 71-75, 31-40 x RIB-135-144, 31-40 \times 101-105, 41-50 x RIB-20, RIB-20 x 71-75, RIB-20 x RIB-135-144, 61-70 x 71-75, 61-70 x 101-105, 71-75 \times 51-60, 71-75 x 101-105 and RIB-135-144 x 101-105 were exhibited the significant heterobeltiosis for grain yield and related traits across the environments. This crosses could be exploited commercially heterosis for breeding programme.

Keywords: Pearl millet, heterosis, environments, diallel

INTRODUCTION

Pearl millet (Pennisetum glaucum (L.) R. Br.) is a stable diet for the vast majority of poor farmers and also form an important fodder crop for livestock population in arid and semi-arid region of India. It is a cross pollinated crop that originated in western Africa and was introduced to eastern Africa and the Indian sub-continent some 2000 years ago. Heterosis breeding has been recognized as the most suitable breeding methodology for augmenting yield in pearl millet. Selection of suitable parents and assessment of degree of heterosis in the resulting crosses forms an important step. According to Ramamoorthi and Nandarajan, (2001) heterosis breeding was ideal for increasing yield in pearl millet. An extensive survey of pearl millet literature showed 40 per cent average better parent heterosis for grain yield. Therefore the present investigation was conducted to study the extent of hybrid vigour in F_{1} for grain yield and its components.

MATERIALS AND METHOD

Ten inbred lines viz. 26-30, 31-40, 41-50, RIB-20, 6170, 71-75, 75-80, 51-60, RIB-135-144 and 101-105 were
crossed in a diallel fashion excluding reciprocals during kharif season 2011. Theses ten parents and their $45 \mathrm{~F}_{1}$'s were evaluated in randomized block design with three replications under three environments at Agronomy Research Farm, Jobner (Jaipur) during kharif season, 2012. Environment created by dates of sowing viz. $2^{\text {nd }} \mathrm{July}, 2012$ \{first date of sowing $\left.\left(\mathrm{E}_{1}\right)\right\}, 14^{\text {th }}$ July, 2012 \{second date of sowing $\left(\mathrm{E}_{2}\right)$ and $28^{\text {th }}$ July, 2012 \{third date of sowing $\left.\left(\mathrm{E}_{3}\right)\right\}$. Each entry was sown in a two row of 3.0 m length with row-to-row and plant-to-plant distances of 50 cm and 15 cm , respectively. The observation were recorded on five randomly selected plants from each replication and environment, for the characters namely; days to 50% flowering, days to maturity, productive tillers per plant, plant height, panicle length, panicle girth, biological yield per plant, dry fodder yield per plant, grain yield per plant, harvest index, test weight and protein content while, days to 50% flowering and days to maturity were recorded on plot basis. Heterosis expressed as percent increase or decrease in hybrid $\left(\mathrm{F}_{1}\right)$ over its mid parental value and a better parent value in the desirable direction was calculated according to Fonseca and Patterson, 1968).

[^0]
RESULT AND DISCUSSION

Wide range of variability exists among parents and their F_{1} hybrids for all the traits under study. Out of the 45 hybrids, the range of heterobeltiosis (as percent) in for characters in different environment were - 32.79 to14.88 in $\mathrm{E}_{1},-17.54$ to 7.83 in E_{2} and -17.06 to 8.67 in E_{3} (days to 50% flowering), -21.15 to 5.75 in $\mathrm{E}_{1},-18.25$ to 10.29 in E_{2} and -12.94 to 5.93 in E_{3} (days to maturity), -60.67 to 121.43 in $\mathrm{E}_{1},-55.88$ to 59.09 in E_{2} and -21.05 to 46.67 in E_{3} (productive tillers per plant), -16.35 to 69.95 in $\mathrm{E}_{1},-32.71$ to 45.69 in E_{2} and -24.03 to 59.00 in E_{3} (plant height), -16.18 to 59.30 in $\mathrm{E}_{1},-41.91$ to 77.32 in E_{2} and -39.16 to 49.24 in E_{3} (panicle length), -40.47 to 93.18 in $\mathrm{E}_{1},-53.95$ to 80.05 in E_{2} and -54.38 to 46.30 in E_{3} (panicle girth), -35.43 to 277.21 in $\mathrm{E}_{1},-31.11$ to 110.48 in E_{2} and -27.34 to 71.26 in E_{3} (biological yield per plant), -41.17 to 333.93 in $\mathrm{E}_{1},-39.69$ to 145.98 in E_{2} and -33.61 to 100.45 in E_{3} (dry fodder yield per plant), -2.28 to 101.78 in $\mathrm{E}_{1},-31.57$ to 82.41 in E_{2} and -36.66 to 113.85 in E_{3} (grain yield per plant), -65.67 to 71.15 in $\mathrm{E}_{1},-35.11$ to 90.39 in E_{2} and -45.89 to 76.26 in E_{3} (harvest index), -37.48 to 56.13 in $\mathrm{E}_{1},-26.94$ to 87.87 in E_{2} and 35.53 to 96.70 in E_{3} (test weight) and -32.29 to 23.31 in $\mathrm{E}_{1},-32.79$ to 15.74 in E_{2} and -33.62 to 28.73 in E_{3} (protein content) (table 1).

The significant desirable heterotic effects over their respective better parent were noticed in 34; 28 and 16 crosses for grain yield per plant in E_{1}, E_{2} and E_{3} environments (table 2) indicated that number of crosses exhibited differences in performance in different environments (sowing dates) for character studied. This is expected because of highly significant $\mathrm{F}_{1} \times$ environment interactions was observed. Similar result was found by Yadav (2006), Izge et al., (2007), Kumar and Singhania (2007), Chauhan et al., (2010) and Jethva et al., (2012).

Maximum heterobeltiosis percentage in environments of different characters were - 32.79 (26$30 \times$ RIB-20) in $\mathrm{E}_{1},-17.54$ ($71-75 \times 51-60$) in E_{2} and 17.06 (76-80 x RIB-135-144) in E_{3} for days to 50\% flowering, -21.15 (26-30 x RIB-20) in E_{1},-18.25 (RIB-20 $x 51-60)$ in E_{2} and $-14.52(41-50 \times 71-75)$ in E_{3} for days to maturity, 121.43 ($26-30 \times 41-50$) in $\mathrm{E}_{1}, 59.09$ (26-30 x 41-50) in E_{2} and 46.67(26-30 $\times 41-50$) in E_{3} for productive tillers per plant, -16.35(61-70 x RIB-135144) in E_{1}, $-32.71(61-70 \times 71-75)$ in E_{2} and -24.03(71-75 x 51-60) in E_{3} for plant height, 59.30 ($71-75 \times 101-105$) in $E_{1}, 77.32(26-30 \times 31-40)$ in E_{2} and $49.24(26-30 \times 31-$ 40) in E_{3} for panicle length, 93.18 (41-50 $\times 71-75$) in E_{1}, 80.05 ($26-30 \times$ RIB-20) in E_{2} and 46.23(41-50 x RIB-135144) in E_{3} for panicle girth, $277.21(41-50 \times 71-75)$ in E_{1}, 110.48 ($26-30 \times$ RIB-20) in E_{2} and 71.26 (26-30 x 41-50)
in E_{3} for biological yield per plant, 333.93 (41-50 $\times 61-$ 70) in $\mathrm{E}_{1} 145.98$ ($26-30 \times$ RIB-20) in E_{2} and 100.45 (26$30 \times 41-50)$ in E_{3} for dry fodder yield per plant, 101.78 (RIB-20 x 61-70) in $\mathrm{E}_{1}, 82.41$ (26-30 x RIB-135-144) in E_{2} and 113.85 (26-30 x RIB-135-144) in E_{3} for grain yield per plant, $71.15(26-30 \times 71-75)$ in E_{1}, $90.35(61-70 \times 71-$ 75) in E_{2} and $76.29(31-40 \times 101-105)$ in E_{3} for harvest index, 56.13 (26-30 x 31-40) in $\mathrm{E}_{1}, 87.87$ (26-30 x RIB-135-144) in E_{2} and 96.70 (26-30 x RIB-135-144) in E_{3} for test weight and 23.31(RIB-20 x 76-80) in $\mathrm{E}_{1}, 15.74$ (76-80 x 101-105) in E_{2} and 28.73(31-40 $\times 61-70$) in E_{3} for protein content (table 3). These findings were support by Yadav (2006), Izge et al., (2007), Davda et al., (2008), Vetriventhan et al., (2008), Bidinger and Yadav (2009), Chotaliya et al., (2009), Chauhan et al., (2010), Vagadiya et al., (2010), Jethva et al., (2012) and Bhadalia et al., (2013).

The general expectation of the pearl millet farmers is mainly focused on level of superiority of newly released hybrids, synthetic/composite and multiline variety than the local standard hybrids or variety, which is grown widely. So there is a compulsory need for the breeder to evaluate the newly developed hybrids, synthetic/composite and multiline variety with such popular check for yield or any other desirable characters.

The hybrids exhibited heterobeltiosis were found to be most promising for grain yield and other desirable traits, hence could be further evaluated to exploit the heterosis or utilized in future breeding programme to obtain desirable segregants for the development of superior inbred lines, multiline and synthetic/ composite variety.

The present study reveals ample variability among the parents and high scope for exploitation of heterosis for advancement of grain yield in pearl millet. The crosses exhibited positively significant heterobeltiosis in all the three environments were 26$30 \times 31-40,26-30 \times 71-75,26-30 \times$ RIB-135-144, 31-40 x RIB-20, 31-40 x 71-75, 31-40 x RIB-135-144, 31-40 x 101105, 41 -50 x RIB-20, RIB-20 $\times 71-75$, RIB-20 \times RIB-135-$144,61-70 \times 71-75,61-70 \times 101-105,71-75 \times 51-60,71-$ $75 \times 101-105$ and RIB-135-144 $\times 101-105$. These crosses were recognized as the best heterotic crosses for grain yield and these crosses can be further evaluated and used in hybrid breeding programme to boost up the grain yield.

REFERENCES

Bhadalia, A.S., Dhedhi, K.K. and Joshi, H.J. (2013), Heterosis studies in diallel crosses of pearl millet. J. of Agric. Res. and Tech., 38 (3): 360-365.
Table 1

	Characters	Range			S.N	Characters		Range	
		E_{1} -32.79 to 14.88	$\begin{gathered} E_{2} \\ -17.54 \text { to } 783 \end{gathered}$	E_{3} -17.06 to 8.67			E_{1} -35.43 to 27.21	E_{2} -31.11 to 110.48	$\begin{gathered} E_{3} \\ -27.34+0.7126 \end{gathered}$
	Days to 50\% flowering Days to maturity	$\begin{aligned} & -32.79 \text { to } 14.88 \\ & -21.15 \text { to } 5.75 \end{aligned}$	-17.54 to 7.83	$\begin{aligned} & -17.06 \text { to } 8.67 \\ & -12.94 \text { to } 5.93 \end{aligned}$	8	Biological yield per plant Dry fodder yield per plant	-35.43 to 277.21	$\begin{aligned} & -31.11 \text { to } 110.48 \\ & -39.69 \text { to } 145.98 \end{aligned}$	$\begin{gathered} -27.34 \text { to } 71.26 \\ -33.61 \text { to } 100.45 \end{gathered}$
3	Productive tillers per plant	-60.67 to 121.43	-55.88 to 59.09	-21.05 to 46.67	9	Grain yield per plant	-2.28 to 101.78	-31.57 to 82.41	-36.66 to 113.85
4	Plant height	-16.35 to 69.95	-32.71 to 45.69	-24.03 to 59.00	10	Harvest index	-65.67 to 71.75	-35.11 to 90.39	-45.89 to 76.26
5	Panicle length	-16.18 to 59.30	-41.91 to 77.32	-39.16 to 49.24	11	Test weight	-37.48 to 56.13	-26.94 to 87.87	-35.53 to 96.70
	Panicle girth	-40.47 to 93.18	-53.95 to 80.05	-54.38 to 46.30	12	Protein content	-32.29 to 23.31	-32.79 to 15.74	-33.62 to 28.73

[^1]Table 3

S.N.	Characters	E1	E2	E3	S.N.	Characters	E1	E2	E3
1	Days to 50% flowering	$26-30 \times$ RIB-20	$\begin{gathered} 71-75 \times 51-60 \\ 51-60 \times \text { RIB-135-144 } \end{gathered}$	$\begin{gathered} 76-80 \times \text { RIB -135-144 } \\ 61-70 \times 51-60 \end{gathered}$	7	Biological yield per plant	$41-50 \times 71-75$	$26-30 \times$ RIB-20	$26-30 \times 41-50$
		$41-50 \times 71-75$					$41-50 \times 61-70$	$26-30 \times 41-50$	$31-40 \times 61-70$
		$26-30 \times 71-75$	$61-70 \times 51-60$	$26-30 \times 51-60$			$41-50 \times 76-80$	26-30 x RIB-135-144	$61-70 \times$ RIB-135-144
2	Days to maturity	$26-30 \times$ RIB-20	RIB-20 \times 51-60	$41-50 \times 71-75$	8	Dry fodder yield per plant	$41-50 \times 61-70$	26-30 x RIB-20	$26-30 \times 41-50$
		RIB-20 x 51-60	$61-70 \times 51-60$	76-80 x RIB-135-144			$31-40 \times 51-60$	$26-30 \times 41-50$	$31-40 \times 41-50$
		76-80 x RIB-135-144	RIB-20 \times RIB-135-144	RIB-20 \times 51-60			$41-50 \times 76-80$	26-30 x RIB-135-144	$76-80 \times 51-60$
3	Productive tillers per plant	$\begin{aligned} & 26-30 \times 41-50 \\ & 41-50 \times 51-60 \end{aligned}$	$\begin{gathered} 26-30 \times 41-50 \\ 26-30 \times \text { RIB-135-144 } \end{gathered}$	$26-30 \times 41-50$	9	Harvest index	$\begin{gathered} 26-30 \times 71-75 \\ 26-30 \times \text { RIB- } 20 \end{gathered}$	$\begin{aligned} & 26-30 \times 71-75 \\ & 26-30 \times 51-60 \end{aligned}$	$\begin{aligned} & 31-40 \times 101-105 \\ & \text { RIB-20 x 71-75 } \end{aligned}$
		$41-50 \times 76-80$	$41-50 \times 76-80$				31-40 x RIB-135-144	RIB-20 $\times 51-60$	31-40 x RIB-135-144
4	Plant height	61-70 x RIB-135-144	$26-30 \times 61-70$	71-75 x 51-60	10	Test weight	$26-30 \times 31-40$	26-30 x RIB-135-144	26-30 x RIB-135-144
		71-75 x RIB-135-144	$26-30 \times 71-75$	71-75 x RIB-135-144			$26-30 \times 41-50$	$26-30 \times 41-50$	$26-30 \times 61-70$
		76-80 x RIB-135-144	$61-70 \times 51-60$	RIB-20 \times 101-105			26-30 x RIB-135-144	$26-30 \times 51-60$	$26-30 \times 51-60$
5	Panicle length	$71-75 \times 101-105$	$26-30 \times 31-40$	$26-30 \times 31-40$	11	Protein content	RIB-20 $\times 76-80$	$31-40 \times$ RIB-20	$31-40 \times 61-70$
		$76-80 \times 51-60$	$26-30 \times 41-50$	26-30 x RIB-135-144			$76-80 \times 101-105$	$76-80 \times 101-105$	$31-40 \times 76-80$
		$61-70 \times 71-75$	$26-30 \times$ RIB-20	$31-40 \times 61-70$			$31-40 \times 76-80$	$31-40 \times 61-70$	$51-60 \times$ RIB-135-144
6	Panicle girth	$41-50 \times 71-75$	$26-30 \times$ RIB-20	$41-50 \times$ RIB-135-144					
		$41-50 \times 76-80$	$26-30 \times 71-75$	61-70 x RIB-135-144					
		71-75 x RIB-135-144	RIB-20 x 71-75	$26-30 \times 31-40$					

Bidinger, F.R. and Yadav, O.P. (2009), Biomass heterosis as the basis for grain and stover yields of arid zone pearl millet hybrids. Crop Sci., 49 (1): 107-112.
Chauhan, G.P., Chovatiya, V.P., Savaliya, J.J., Mehta, D.R. and Pansuriya, A. G. (2010), Heterosis studies in pearl millet [Pennisetum glaucum (L.) R. Br.]. Crop Res., 39 ($1 / 2$ /3): 98-102.
Chotaliya, J.M., Dangaria, C.J. and Dhedhi, K.K. (2009), Exploitation of heterosis and selection of superior inbreds in pearl millet. Intern. J. of Agric. Sci., 5 (2):531-535.
Davda, B.K., Dhedhi, K.K., Dangaria, C.J. and Joshi, A.K. (2008), Heterosis for grain yield and its components in pearl millet. Intern. J. of Agric. Sci., 4 (1): 371-376.
Fonseca, S. and Patterson, F.L. (1968), Hybrid vigour in a seven parent diallel cross in common winter wheat (Triticum aestivum L.). Crop Sci., 8: 85-88.
Izge, A.U., Kadams, A.M. and Gungula, D.T. (2007), Heterosis and inheritance of quantitative characters in a diallel cross of pearl millet (Pennisetum glaucum L.). J. Agron., 6 (2): 278-285.
Jethva, A.S., Raval, L., Madriya, R.B., Mehta, D.R., Mandavia, D.R. and Mandavia, C. (2012), Heterosis for
grain yield and its related characters in pearl millet. Electronic J. of Pl. Breed., 3 (3): 848-852.
Kumhar, S.R. and Singhania, D.L. (2007), Heterosis and combining ability of pearl millet [Pennisetum glaucum (L.) R. Br.] hybrids involving diverse CMS lines and restorers. Res. on Crops, 8 (3): 620-624.
Ramamoorthi, N. and Nadarajan, N. (2001), Genetic analysis for yield attributes in pearl millet. Madras Agric. J., 87 (4/6): 316-317.

Vagadiya, K.J., Dhedhi, K.K., Joshi, H.J., Vekariya, H.B. and Bhadelia, A.S. (2010), Genetic architecture of grain yield and its components in pearl millet. Intern. J. of Plant Sci., 5 (2): 582-586.

Vetriventhan, M., Nirmalakumari, A. and Ganapathy, S. (2008), Heterosis for grain yield components in pearl millet (Pennisetium glaucum (L.) R. Br.). World J. Agric. Sci., 4 (5): 657-660.
Yadav, O.P. (2006), Heterosis in crosses between landraces and elite exotic populations of pearl millet [Pennisetum glaucum (L.) R. Br.] in arid zone environments. Indian J. Genet. and Pl. Breed., 66 (4): 308-311.

[^0]: 1 Department of Plant Breeding and Genetics, S.K.N.College of Agriculture, Jobner-303329, Rajasthan, India.
 2 Department of Biochemistry, S. K. N. College of Agriculture, Jobner-303329, Rajasthan, India.
 E-mail: bhurisingh.gpb@gmail.com

[^1]: *and ${ }^{* *}$ significant at 5% and 1% level of significance, respectively

