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Robot manipulator position control using
hybrid control method based on sliding
mode and ANFIS with fuzzy supervisor

M ojtaba Hadibarhaghtalab,* Vahid M eigoli**

Abstract: Industrial robots are manipulatorswith high precision and repeatability making them proper alternatives
to humans. In common industrial robots proportional-Integral controllers are exploited owing to their simplicity;
however, they cannot guarantee appropriate and robust operation. To obtai n suitabl e performancenonlinear controller
isrecommended. Sliding mode controller isa statefeedback controller with fast transient response which isrobust
against uncertainties. Despite its advantages sliding mode controller is not a good choi ce for steady states due to
chattering phenomenon. On the other hand, adaptive neuro-fuzzy controllers have been successful, though they
have not acceptabl e performance when encountering uncertainties. It isaconsequence of inevitabl e training phase
in such controllers. Inthis study a hybrid controller isproposed combining diding mode and adaptive neuro-fuzzy
controller with variable weights to take advantage of both structures. A fuzzy supervisor is tasked with optimal
adjustment of the weights. Besides, it facilitates switching between two controllers.

Keywords: robot manipul ator position control, sliding mode control, ANFIS, fuzzy supervisor

1. INTRODUCTION

Robots are morehelpful asthey provide safety, precision, speed, boosted production cgpability and flexibility.
They are utilized to perform costly, dangerous, repetitive and boring tasksin industrial environmentswith hard
conditions such asspace, under water projects, nuclear reactorsand so on. In such caseshumansare responsble
for controlling robotsto achievethe determined goals. Thesetasksinclude planning joint movement so that proper
paths could begenerated. They may also consist of calculating and generating joint torquesto precisely track the
planned paths.

In case of robot manipulator control, completeand precise control of al jointsiscrucial to avoid obstaclesand
to reachthe desired destination. Nevertheless, in practical situations disturbances, uncertainties, mismatched
parametersand higher order dynamicslead to variationsin model parameters, lack of proper control and system
ingtability. Furthermore, robot manipulator isaseverely nonlinear, timevariant, Multiple-1nput Multiple-Output
(MIMO) systemwith heavy coupling betweeninputsand outputs. Theseissuesmust be addressed to obtain a
reliable control.

Methodswhich have been proposed for robot manipulator control can be divided into two groups. Thefirst
oneincludesclassic control methods such aslinear control, diding mode control, robust H-infinity control method
and adaptive control. The second group of methods consists of intelligent control methods among which fuzzy
control and neurd control might be mentioned. Generally speaking, theformer group is based on classic control
theory whilethelatter isbased oninteligent methods using artificia intelligence and soft computations.

Linear control isinsufficient when the system faces uncertainty. Sliding mode control, however, istherobust
version of linear control which can efficiently overcome uncertainties, disturbances, nonlinearity and higher order
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dynamicsaswell as providing smplicity. Moreover, itsfast transient response makesit even more beneficial.
Nonetheless, it suffersfrom amajor drawback which is a discontinuous control signal leading to chattering
phenomenonwhich may simulate high frequency dynamics. Sliding modecontrol isconsdered asarobust controller
owing to discontinuous control Sgnd generated inthevicinity of diding surface satisfying diding condition; however,
thesame characterigtic isits shortageasthisdiscontinuoustermmay generate high frequency oscillationsknown as
chattering. Using boundary layers or fuzzy diding mode control have proposed which are ableto increase efficiency
of diding mode control and mitigating (or eiminating) chattering; yet, they adversdly affect trangent response of the
sysem|[1]. In[2] diding mode control is designed for arobot manipulator and tested in practical condition. A
diding modecontrol isdesigned and smulated in SIMULINK environment for amechanical manipulator in[3]. A
fuzzy diding mode control inwhich chatteringiseliminated is presented in [4]. Some examples of diding mode
control designed for mechanical manipulatorscan befoundin[5-7]. Robust H_ control isused inrobot manipulators
to mitigate external disturbancesand stabilize the sysem. Unfortunately, the robust control obtained usngH_ isof
high orderswhich make itsimplementation difficult. To solve this problemthe congtraintsinthe highest order of
controller (whose order islessthan system order) might be set; however, in such circumstance the problemisnot
convex anymore leading to more difficult solution. To overcome problems associated with this method various
order reduction methods have been proposed. To summarize, most of these methods do not include polynomia
complexity and they are Non-deterministic Polynomial-timehard (NP-hard) which requireshigh computational
time. Although loca methods are fast, they do not guaranteetotal system convergence[8].

Inrecent decadesartificiad intelligence has emerged asacontrol method for robot manipulators. Conventional
artificia intelligence methodsinclude neurd network based control methodsand fuzzy logic based control methods.
The main advantage of neural and fuzzy methods over their classic counterpartsisthat they do not need precise
information about mathematical model or system dynamicswhich are usudly difficult to derive.

Neura networkshaveinherent capability to train, learn and estimateanonlinear functionwith desired precison.
Thisfeature helpsthem mode complicated proceduresand compensate for unstructured uncertainties. However,
inevitabletraining process (self-training feature) decreasesitstransent performancein presence of disturbances.
Thus, for sygsemssmilar to robot manipulator which encounter uncertaintiesand mode informationisnot sufficiently
used, thissystemdoesnot provide proper transient performance. Additionaly, conventional neura networks utilize
global activation functionsand local learning methodswhich, in turn, cause shortcomingsincluding low speed
learning, failing to obtain suitable solution and high sensitivity to initial valuesof network weights.

Fuzzy control usually does not require mathematical model of the controlled system; therefore, it iseasily
employed. It showsexceptiona performanceincomplex, ill-defined, nonlinear and timevariant systems. Overall,
the superiority of fuzzy control isusing human knowledge (knowledge and experience of an expert person) for
control procedure. Meanwhile, its most essential shortage is examining stability theory of fuzzy controllers. Asa
meatter of fact, fuzzy control cannot guarantee stahility of asystemasit lacksan explicit mathematical mode of the
system. Robot manipulator control is performed using neural networksin[9-12]. In [13] they combined diding
mode control and neura network control with different weightsinorder to overcomelimitationsand take advantage
of bothintelligent and classic controllerssimultaneoudy. The weights are determined by afuzzy supervisor. It was
successful when applied to arobot manipulator with two degrees of freedom.

Adaptive Neuro-Fuzzy Inference Systemistherealization of Takagi-Sugeno Fuzzy Inference System. It is
worth mentioning that Takagi-Sugeno isthe most popular type of fuzzy inference systemwhichis capable of
locating in an adaptive network (whichisgenera manner of amulti-layer feed forward neura network). Itsoutput
isintheformof alinear relationship. Neuro-fuzzy models, suchasANFIS, combinefuzzy logic and artificia neura
networks. ANFI S combines advantages of neura networks (learning and adaptivity) with those of fuzzy logic
(expert knowledge) to achieve robust control in robot dynamic systems. Fuzzy sets are exploited to formulate
human inception level of aphysical system while neura networks perform all calculations needed for learning
capability. These systemsare able to adapt the existing controller to variationsin syssembehaviorsthroughtraining
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the system. ANFI S model is capable of estimating every linear or nonlinear function with desired precisionin
additionto providing high convergence speed and lowerror. It also requiresfewer training data. Considering that
ANFI Sincludes capabilitiesof both neura networksand fuzzy inference systems, it isaproper choicefor robot
manipulator controller. But, it fill suffersfrom limitationsimposed by training phase.

Thegoad of thisstudy isto combine diding mode control and ANFI Swith different weightsto control postion
of anindustrial robot manipulator in such away that these weights are determined by afuzzy supervisor. Themain
ideaof thisstudy isinspired by the method proposed in[13] whileit istried to overcomethe problems associated
with thismethod. In[13] diding mode control isused in simulation environment while chattering phenomenon
occurswhenred time smulationisdone (asit isaconsequence of thetime needed for input signal calculations). In
thisstudy al smulationsare conducted in real time o asto demonstrate the performance of the proposed controller.
Furthermore, to decrease steady state error and improvetracking, on-linetraining is utilized for ANFIS. In[13]
on-linetraining isnot considered. Besides, in[13] theintroduced method is not compared to other control methods
sinceinnormal smulation (whenit isnot rea time) diding mode control isthe best method withwhich al other
control methodsfail to compete.

Inthe proposed method ANFIS controller isused parald to diding mode controller. Sliding mode control is
exploited asarobust controller to resist disturbances and to assure system stability. ANFIS controller eliminates
chattering. Additionaly, it estimates system dynamics and benefitsfromits self-training capability to compensate
for unstructured disturbances. As mentioned in the neural network section, inevitable training phase of ANFIS
degradesitstrangent performance. To addressthisproblem afuzzy supervisor isemployed inexternd loop. Inthis
scheme during trandent gateshigh gainisassigned to diding mode control to ensure sysemrobustness. Incontrad,
when the system approachesits seady state, ANFI S becomesthe main controller (instead of diding mode control)
to overcome uncertaintiesand improve reference signal tracking. Fuzzy supervisor canfacilitate the switching
between two control modes.

2. SLIDINGMODE CONTROLANDANFISMETHODS
2.1. Sliding mode control

Sliding mode control isagtate feedback robust control method for nonlinear systemswhichisableto changeits
structureto obtain proper performance. To designadiding mode control it isassumed that controller isableto
changeitsstructure spontaneoudy; nevertheless, it isnot possiblein practica cases dueto computationd delay and
limitations of operators. Thisresultsin chattering phenomenon. To face such challenges high order diding mode
controlsor boundary layers might be exploited. Theformer increases computational complexity whilethe latter
increases steady stateerror.

When Newton-Euler equationis symbolicaly evaluated for manipulator, the dynamic equation of the syslemis
derived asshownin equation 1:

z(t) = D(9)d®t) + H(g,4) +G(a) @)

To design dliding mode control robot dynamicsisrewritten as denoted by equation 2.

6(t) = D(a) [z (t) - H(a,9) - G(a)]

2
y(®) = a() @
Where| o"q ]T isthe system state vector, y (t) e RYissystemoutput and t (t) isthe control input.

Control objective: q(t) outputstracksq,(t) bounded reference.

For designing control input it isassumed that systemstatesq (t), g (t) aremeasurable.



1284 Mojtaba Hadibarhaghtalab and Vahid Meigoli

Error equationsfor system 2 are defined as shown by equation 3.

q(t) -0, (1) = q(t)

. . - 3
(1) — ¢, (1) = ) ®
For each degree of freedom dliding surface isdefined asfollows.
d - N
S :(E*‘qui =G -44
(4)

i=1.n
Where nisthe number of system degrees of freedomand 2. are positiveand constant values.

Defining s according to above equation, the problemof tracking g, ischanged fromasecond-order withndegrees
of freedomto anissue ofsustainabilityof nto sfromthefirst order.

For thispurpose avector congsting of n diding surfacesis defined asequation 5.

S=[s.8. 8] ®)
To maintain Svector inzero vaue, thecontrol input should exist such that:

1d
—_—_38's<—p|S
r n|S| (6)

, Wheren isapostive congtant. Theabove condition isknown as diding condition. It meansthat square of disance
to diding surfaceis decreasing along al state paths. If the above condition ismet starting from non-zero initial
condition, stateswill reach time variant diding surfacein afinitetime. As soon aslocating on dliding surface,
tracking error approachesto zero exponentially (figure 1).

Inthisstep t (t) control input isdesigned suchthat output isableto track desired path. Besides, tracking error
of dl itsderivatives must gpproach zero. Sliding surface and itsderivative for robot sysemareasfollows:
S:(%H\jq =§+Aq
S=4+AG=D(0) *[z(t) - H(a,9) - G(q)] - & + A]

()

Indiding phasewhere S(t) =0and $(t) =0, t (t) isdesigned to maintain the syssemon diding surface. Inthe
approaching phasewhere S(t) #0, isdesigned such that S(t). $(t) <0 (condition for reaching to surface) is
satisfied. To do so, consider Lyapunov function asequation 8:

1
V=2=5'S
> ®)
, whichisacontinuousand postive definitefunction. Thederivate of thisfunctionis derived according to equation .
V=S's ©)

Conddering § intheform of equation 10, one may demonstrate that equation 9isnegative and, consequently,
(8) isdescending:

S=-Ksign(S),vt,K >0 (10)
, here K isadiagona matrix that haspostive entries. Substituting equation 7 in equation 10 one may write:
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—Ksign(S) =S=q+Aq=
D(q) *[=(t) - H (9, 4) - G(a)] - &, + Aq
Thus, control input is obtained asfollows.

(11)

—Ksign(S)=S=§+Af=

D(a) ‘[#(t) - H(q,d) —-G(a)] - &, + AG

z(t) = D(q)(8, — AG—Ksign(S)) + (12
H (g, d) +G(q)

K must be selected such that diding conditionis met. Sliding condition isrepresented in equation 13.

SS<-118| (13)

Figure 1: Schematic view of diding mode for a second order system

In the aforementioned equations feedback control ruleis designed so that diding conditionisfulfilled. To
overcome modeling imperfectionsand disturbances, control signd isdiscontinuousinthevicinity of S therefore, its
implementation inpractical systems does not lead to acceptable resultsand chattering may occur insystem states.
Generally speaking, chattering isan unwelcomebehavior. In addition to high control activity, it stimulateshigh
frequency dynamicsof the system which are not modeled.

2.2 Anfis

Fuzzy sysemsand neurd networkshave prosand cons. Fuzzy sysemsare cgpable of usng linguigticruleswhichenables
themto exploit human experienceand expert people; wheress, they cannot learn. That isto say, fuzzy sysemcannot be
trained using observed datawhile neura networks have self-training capability. Meanwhile, neurd networkscannot use
linguigtic rulesand they areimplicit [4]. In 1993, for thefirg time, Jang utilized linguigtic power of fuzzy sysemstogether
withtraining cgpahility of neurd networksto introduceasysem caled fuzzy sysemsbased onadaptive neurd networks
[15]. Such systems are known asANFI S which stands for Adaptive Neuro-Fuzzy Inference Systems. To identify
nonlinear sysemsANH Sisusad. Inthefollowing ANFI Sanditslearning dgorithmfor Sugeno fuzzy modd areexplicated.

Assumethat the discussed fuzzy inference system hastwo inputs (X, y) and one output (). A samplerule set
withto if-then fuzzy rulesmight bedescribed asfollows:
Rulel: if xisA andyisB thenf = px+qy+r,
Rule2: if xisA,andyisB,thenf,= px+ qy+r,
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To correct Sugeno fuzzy model it issuitable to apply it in the form of adaptive networkswhichare ableto
systematically calculate gradient vectors. Thismodel isillustrated infigure 2. Figure 2 depictsthe mechanism of
Sugeno model fuzzy inferencefor obtaining f fromtwo input vectors, X and Y. Firing strength of W1 and W2 are
usualy derived through multiplying membership degrees of inputs. Thef isaweighted average of bothrules. The
architecture of equivalent ANFISisdepictedinfigure 3. Nodesin the same layer have smilar roles.
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Figure 2: First order fuzzy inference system Figure 3: ANFIS structure associated with first order inference system

All nodesinthefirst layer are adaptive. Inthislayer input node membership degreesinvariousfuzzy intervals
are determined using membership functions. Inthe second layer input sgnalsare multiplied and transferred to the
next layer where (inthird layer) normdizationisapplied. Thefourth layer whichisan adaptive layer calculates
sharesresulted fromrules. Fifth layer isthe output layer and returns sumof inputsand the output of the network.

2. THEPROPOSED METHOD

Asmentioned before, in the proposed method dliding mode control and adaptive neuro-fuzzy inference system
with different weightsare combined to take advantage of both system capabilitieswhile overcoming ther drawbacks
Afuzzy supervisor isrespongble for determining the weightsin accordance with the current situation. Moreover,
using fuzzy supervisor avoids sudden switching between two controllersand providesasmooth trandtion. The
mangtructure of afuzzy control iscomposed of four segments fuzzifier, fuzzy inference system, fuzzy rule baseand
defuzzfier. More specifically, afuzzy controller withif-then rule base, minimum inference engine, singleton fuzzifier
and center of gravity defuzzifier isrepresented according to equation 14.

>y [ minaes))
() =
> minuA"(x) (9

i=1

Fuzzy supervisory control isatwo level control method (Figure 4). Typically, alow level controller istasked
with rapid and direct control operation. Incontrast, the high level controller (supervisor) isalow speed control
section aming to improve performance or ensure stability. One of the advantagesof two level control systemsis
that different controllersmight be designed to reach various control objectives, though; they are problemetic dueto
their complicated control structure.

Intheliterature fuzzy supervisory control guaranteeing system stahility ispresented. Themainideaisthat the
supervisor switchesto idle mode if the supervised system worksproperly; otherwise, if the system approaches
ingtability, the supervisor will sart operationand avoid syssemingahility. Thismakesthe control processdiscontinuous.
To achieve continuouscontrol, gain-scheduling fuzzy supervisory control hasbeenintroduced suchasPID fuzzy
supervisory control, diding modefuzzy supervisory control and Pl [16]. Obvioudly, if the supervised controller isa
linear one, it would not be sufficient in presence of uncertainties[ 17]; hence, in thisstudy anonlinear intelligent
controller isused to effectively overcome uncertainties.
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)

Figure 4. Fuzzy supervisory control

One of the main advantages of sliding mode control is fast and robust performance in presence of
disturbances. It still has some disadvantages including chattering, bounds estimation requirement and
conservative determination of larger coefficient. On the other hand, ANFIS controller isable to overcome
structural uncertainties; however, it suffersfrom undesirable transient response which isa consequence of
parameter update. To compensate for aforementioned drawbacksa novel method isproposed called sliding
mode and adaptive neuro-fuzzy networksfuzzy supervisory control. The proposed strategy isusing afuzzy
inference systemto adjust gain of diding mode and ANFI S control in presence of disturbance and considerable
tracking error.

High diding mode control signal guarantees system staiility and leadserror to diding surface. When error gets
closeto the diding surface, chattering might be decreases using smaller gain coefficient. Inthis circumstance,
systemisstill proneto unstructured uncertaintieswhich cause the systemto have improper steady state. Inthis
conditionANH S playsthe mainroleinconfronting unstructured uncertaintiesrelying onits self-training capability.
Furthermore, delay in calculating control signal resultsin discontinuity in control sgnd of diding mode controller.
Fuzzy supervisor determines gain coefficient of eachlow level controller based on system behavior and rule base.
Fuzzy controller isalso ableto smooth switching between diding mode and ANFI S controllers. Fuzzy supervisor
isabehavior oriented supervisory controller. It isused to obtain o and 1 — a coefficientsrespectively for diding
mode and ANFI S controllers. The sum of gain coefficient of diding mode and ANFIS controllersequasto one;
thus, the range of fuzzy supervisor output (o) isconsidered to be between 0 and 1. The block diagramof final
control systemisdemongtrated in figure 5.

Figure 5: Block diagram of the proposed control method

1)
Wheren, g, § and (E + ﬂ} 4 are systemorder, system output, reference signal and output error and

diding surface, respectively.
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Since dliding mode controller isutilized, Sanditsderivativevalues( S ) areconsidered asfuzzy supervisor
inputs. Fuzzy rules are based on analyzing the movement toward dliding surface associated with sliding mode
controller. Inthismanner, only two inputsarerequired for supervisor whileif themain output wasused the number
of fuzzy supervisor inputs had been equal to the number of sysemstates. Therefore, using diding surfaceand its
derivative asinputsof fuzzy supervisor, resultsinasmple design of fuzzy supervisor and reduction of fuzzy rule
based dimensions. Moreover, using diding surface and its derivative provide a unique design which might be
applied to al types of systemswith minor changesin supervisor parameters.

Eachinput includesfivefuzzy sets; NB, NS, ZE, PSand PB. They respectively denote Negative Big, Negative
Small, Zero, Positive Small and Positive Big. I nput rangeisdetermined via predicting Sin presence of disturbance.
For the output three membership functionsare considered (zero, LM, M, HM and one) which are singleton.

Membership functions of fuzzifier are Gaussian. Only two membership functionsincluding NB and PB are
congderedto bezand stype, respective. Fuzzy rule baseis specified based on anintuitive perspectiveof S& g . For
ingtance, if inalong distancefromdliding surface (large Svalue) sysemisgetting further away fromdiding surface, a
sgnificant weight isassigned to sliding mode control so asto effectively decrease S inversely, when Sdecreases
weight of diding mode control isreduced andthat of adaptive neuro-fuzzy control increases. While Sgpproachesto
zero adaptive neuro-fuzzy controller playsthe mainrole. Hence, fuzzy rule baseisdefined aspresented in tablel.

Tablel
Fuzzy rule base

s NB NS ZE PS PB
PB HV HV 1 1 1
PS 0 LM M HV 1
ZE M LM 0 LM 0.5
NS 1 HV M LM 0
NB 1 1 1 HV Hm

For exampleif SacquiresNB and §isZE inference systemreturnsonefor a. Theoutput isderived using
equation 14.
3. CASESTUDY

In October 2009 the smallest multipurposerobot, | RB-120, wasintroduced by ABB company. It has6 degreesof
freedomand includesall features associated with modern design of large robotsof ABB; meanwhile, it isvery light
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Figure 6: Important dimensions of IRB-120 robot
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and cost efficient. Itsreach is580 mm and it may access 112 mm underneathitsbase. IRB-120 isacost efficient
choice for manipulating materials and assembling small devices. It canbe employed in several industriessuch as
electronics, solar industry, food industry, machineries, pharmaceutical and medical industry and research works.
Theimportant dimensionsof therobot areillustrated infigure6.

Sincethisstudy focuses on position control, threefirgt jointsare used and threejointsbelonging to wrist are
assumed to be constant. Characteristicsrelated to dynamic specifications of links are summarized intable 2.

The mentioned problemsregarding diding modeand ANFI S controllers encourage usto use acombination of
these methodsfor robot position control. The control signal isaweighted sum of these controllersinwhichthe
weights are determined by the supervisor. To smooth transition between two controllers afuzzy supervisor is
utilized.

Table2
Dynamic char acteristics of | RB-120 components

Zink3: Tink2: Iinkl:
Mass =15 55kg Mhss =16.9kg M5 =8 4k

0058 0.124 [ 0 ]
Center of Massim)=| 0024 Coger of Mass(m)=| 0 Ceger of Massim) = 0

0 0 005
Momerds of duertia:{ kg * square mitter | Momergs of inertia: { kg * square miter ) Momerds of nertia: { kg * square miter )
Taben at the certer of mass wd aligwdwiththe  Takenat the certer of macs md aligned withthe  Taken at the cexter of mass and aligned with the
outpat coordinate system | output coardirate system . cutpaat coardivate system .
Lee=089 Lay=0% Ixz=0 Loc= 006 Lxy=0 Lxz=0 Lot= 0031 Liy=0  Ixz= 000037
Lw=0% Lyr=046 Lyz=0 Lyx=0 Lyy=03 Lyz=0 Lype=0 Lyr=0028 Lyz=10
Lx=0  Lay=0  Lzz=0%4 Ix=0 lzy=0 Lm=0l6 Lz = 000037 Lay=0 Lxz = 0025
Momerds of inertia:( kg * square mitter ) Momexts of inertia: (kg * square miter ) Momexts of inertia: { kg * square miter )
Taleen at the output coardivate system. Taken at the outpt ¢ cordinate system . Takten at the outpit ¢ cordiute system .
Loc= 0094 Lxy=0028 Lx3=0 Loc= 006 Iky=0  Lxz=0 Lor= 008 Liy=0  Ixz= 00008
Lyc=008 Lyy=0099 Lyz=0 Lyk=0 Lyy=056 Lyz=0 Lyx =0 Lyy= 0049 Lyz=0
Lz =0 Lzy=0  Lm=0016 Im=0 Lay=0 Lm=042 Lzc= 00008 Lay=0 Lzz = 0025

S and gsgnalsareused asinputsof supervisor respectively denoting diding surface and itsderivative. Asfar
asthesetwo valuesare zero the output of fuzzy supervisor iszero aswell (o =0) i.e. ANFIScontroller dominates
thecontrol sysem. Otherwise, both controllersareinvolved inthe control process proportiond to their corresponding
weight. When Sisfar fromzero, diding mode controllersplaysthemainrole (o. = 1).

PID isknownasapopular controller inrobot pogtion control inindustries; however, it cannot overcomelimitetions
Inthissection aPI D controller isused for initid training of ANFIS controller. For thispurpose, first off, system
responsewithaPI D controller for areferenceinput isderived. Afterwards, the measured dataisused to train adaptive
neuro-fuzzy controller. To adjust PID coefficientsZeigler- Nicholsmethod isutilized. After obtaining initid modd, the
ANFH S controller parametersare updated to decrease errors. To design diding mode control Eigenvauesmeatrix and
control gain matrix arecongderedto be A= diag[10, 10, 10] and K =diag[200, 200, 200], respectively. They are
obtained via a simple search method. To validate the proposed method a second order path composed of two
segmentsisused for dl threejoints. Diagram of joint positionstogether with reference position using diding mode,
ANH Sandtheproposed controlleraredepicted infigure 7. Besdes, tracking error and control torquefor dl controllers
are respectively shown in figures 8 and 9. As can be seen, the proposed controller is able to effectively follow
reference Sgnd and to facilitate trangtion between different operating points. Furthermore, theoutput of the system
withtheproposed controller issmilar to diding mode controller whichillustrates superiority of diding mode controller
to other controllers. Inthe proposed controller control Sgnal and system states chattering arecompletely diminated
whichisasgnificant advantage of the proposed method over diding modecontrol.
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4. CONCLUSION

Theresultsreveded that the proposed controller providesacceptabletime response aswell aserror performance.
The chattering of syssem states and control sgnal wereeliminated. Furthermore, transient behavior of the system
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Figure 9: Control torque with siilding mode controller, ANKIS and the proposed controller
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was condderably improved comparing to controllerswithout chattering such as neuro-fuzzy controller. To sumup,
the designed controller usesthe advantages of both diding mode and adaptive neuro-fuzzy controller to overcome
their shortagesleading to asignificant improvement in system behavior.
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