
International Journal of Control Theory and Applications65

FPGA Implementation of Tunable Arbitrary Sequencer for Key
Generation Mechanism

N. Sai Tejeswia, B. Murali Krishnab and M. Siva Kumarc

aPG Scholar, Department of Electronics and Communication Engineering, K.L. University, Guntur, A.P. India. Email: n.saitejeswi1@
gmail.com	
bAssistant Professor, Department of Electronics and Communication Engineering, K.L. University, Guntur, A.P. India. Email:
muralikrishna@kluniversity.in	
cAssociate Professor, Department of Electronics and Communication Engineering, K.L. University, Guntur, A.P. India. Email: siva4580@
kluniversity.in

Abstract: In the present scenario information security has become a predominant issue. Cryptography is the process used
for the purpose of information security. In cryptography message is encrypted with key produces cipher and decrypts
the original message from cipher uses variety mechanisms and permutations. This paper presents a key generation
mechanism suitable in cryptography applications which plays a vital role in data security. Random key generation
techniques are multiplexed and configured in FPGA. In run time based on priority of section inputs randomly one method
selectively produces a key which inputs to cryptosystem. Jitter process generates random numbers based on clock
frequency triggered to oscillators, which produces pseudo random keys, but it consumes more resources when compared
with other methods, but randomness in generated key is exponential. Pre stored random numbers in Block Memory are
generated using IP core generator. The main advantage of the proposed model is to produce random keys which will
be secure, predictable and attains high security. Due to its configurable nature, FPGA’s are suitable for wide variety
of applications which can configure in runtime to implement custom designs and needs. Random number generation
techniques are designed using Verilog HDL, simulated on Xilinx ISE simulator and implemented on Spartan FPGA.
Keywords: LFSR, Cryptography, Verilog, Xilinx, FPGA.

Introduction1.	
Cryptography is a technique used whenever there is need of securing the information. Cryptography is mainly
used in communication system where information must be transmitted from sender to receiver without getting
interrupted by third party. Encryption is a process of transmission of known information into a different structure
(cipher text) based on algorithm which cannot be decrypted without knowing decoding technique. The cipher
is a structure which contains the encryption and decryption process. The working of cipher is controlled by the
algorithm. The information security is maintained by making the key known only to transmitter and receiver
and without which information cannot be decrypted.

International Journal of Control Theory and Applications

ISSN : 0974-5572

„ International Science Press

Volume 10  •  Number 35  •  2017

N. Sai Tejeswi, B. Murali Krishna and M. Siva Kumar

International Journal of Control Theory and Applications 66

Two types of key algorithms are available in cryptography one is symmetric key algorithm and the other
is asymmetric key algorithm. The major difference between symmetric key and asymmetric key is symmetric
key algorithms uses same key for both encryption and decryption whereas asymmetric algorithm uses different
keys for encryption and decryption.

Random numbers are used for the generation of different keys used for encryption and decryption. These
Random numbers are used in various fields such as ATM’S, OTP generation and for various fields where security
is the main issue. Due to flexibility and easy design change FPGA’s are configured for implementation of the
Random numbers which are required for the generation of security keys in communication and cryptography
applications [6].

A. Description of Proposed Model
This paper presents the various methods for the random key generation mechanisms are used, such as,

i)	 Jitter

ii)	 BRAM

iii)	 LFSR

iv)	 Galois LFSR

v)	 Fibonacci LFSR

vi)	 Combined LFSR with XOR.

vii)	 Low Power LFSR.

viii)	 Run Time Polynomial Change.

These randomly gets selected. The implementation is shown below in Figure 1.

Figure 1: Multiplexer Implementation for generating Random Numbers using different methods.

FPGA Implementation of Tunable Arbitrary Sequencer for Key Generation Mechanism

International Journal of Control Theory and Applications67

Generation of random number out of eight methods by making the selection lines, to be configured by
usage of 3 bit LFSR to obtain any one of the method.

B. Adoption of Methods
i)	 Selection of 000 adopts Jitter method for the generation of random numbers.

ii)	 Selection of 001 adopts BRAM method for the generation of random numbers.

iii)	 Selection of 010 adopts LFSR method for the generation of random numbers.

iv) Selection of 011 adopts Fibonacci LFSR method for the generation of random numbers

v)	 Selection of 100 adopts Galois LFSR method for the generation of random numbers

vi)	 Selection of 101 adopts combinational LFSR/XOR method for the generation of random numbers

vii)	 Selection of 110 adopts Low Power LFSR for the generation of random numbers.

viii)	 Selection of 111 adopts Run Time Polynomial Change method for the generation of random
numbers.

EXISTING METHODS2.	

A. Generation of Random Numbers using Ring Oscillators
Noise Generators are one of the source which produces random data which is unpredictable. Ring Oscillator
is the main principle used in noise generator, Odd numbers of inverters which are interconnected forms a ring
oscillator. Inverter based Ring Oscillator is as shown in Figure 2.

Jitter on Ring Oscillators is one of the concept used for acquiring Random Numbers. Jitter is the timing
variation of signal edges from their ideal values. This variation gives us a scope for the generation of random
numbers. If the Selection lines are of 000 Ring Oscillator method [1] gets selected.

Ring Oscillators consists of definite frequency based on arrangement and placement of components and
temperature. Thus, every ring oscillator has its own definite frequency. If we enable two ring oscillators there
would be slight frequency difference which gives rise jitter. Placement of invertors for ring oscillator is as shown
Figure 2(1).

Figure 2(1): Ring Oscillator

The architecture for the generation of random numbers using jitter [3] is very simple and is as shown in
Figure 2(2).

Jitter is the existence of difference infrequencies from reference frequency of original signal. Ring oscillators
whose output is having a frequency difference which is nothing but beat frequency jitter is produced between
the two signals.[2]

N. Sai Tejeswi, B. Murali Krishna and M. Siva Kumar

International Journal of Control Theory and Applications 68

Figure 2(2): Generation of random numbers using Jitter

1.	 When the clock is triggered to the ring oscillators it produces an output by using Xor operation between
the output signals of Ring oscillators. We are considering Ring Oscillator A is little faster than that
of Oscillator B thus there exists a frequency little frequency difference[3] (jitter).

2.	 The output of ring oscillator A is sampled by output of ring oscillator B by making the output of ring
oscillator A as input to the D Flipflop and output of ring oscillator B is given as clock signal to D Flipflop.

3.	 The output of D Flipflop is 1 when the outputs of ring oscillators are not equal and for similar outputs
the output will be 0.

4.	 The output of D Flipflop is fed as input to the counter and the output of ring oscillator B is given as
Clock to the counter.

5.	 When two output signals of ring oscillators are different D Flipflop output is 1 and there by counter gets
Reset and whenever the inputs are not equal D Flipflop output is 0 the counter gets incremented.

Whenever the clock is triggered the oscillators started generating the signal with some frequency difference
and if we observe in the simulation waveform in Figure 2(3) at this frequencies D flip flop output has a transition
to 1 and making the counter reset and for the other frequencies counter counts the no of clock cycles coming
from the output of oscillator B.

Figure 2(3): Simulations obtained using the frequency difference between output of two Ring Oscillators

FPGA Implementation of Tunable Arbitrary Sequencer for Key Generation Mechanism

International Journal of Control Theory and Applications69

Where J1 and J2 are outputs of the Ring Oscillators and Q is the output of D Flipflop and Reset is input of
the Counter and Clock is the initial enable signal.

By the observation in the Figure 2(2), whenever J1 and J2 are not equal the D Flipflop is 1 and counter
is getting reset and whenever the output of D Flipflop is 0 the counter increments. Random numbers generated
through this process is pseudo random number and next state can’t be estimated as the output is due to frequency
difference between the outputs of ring oscillators. The D Flipflop output is 1 at random instants as frequency
difference.

B. Generation of Random numbers using BRAM (Block RAM)

Random values are stored in Block RAM. Selection of 010 at multiplexer adopts BRAM method [1] for the
generation of random numbers. BRAM produces the random values that are stored in the memory shown in
Figure 2(4).

Figure 2(4): Simulations obtained using Block Ram

C. Generation of Random numbers using Linear Feedback Shift Register (LFSR)
Linear Feedback Shift Register is a combination of series of registers which shifts the given data and there by
produces random numbers. The random number is produced by linear function of two inputs and the linear
function that is performed on the bits to produce random numbers is XOR gate [4]. The initial value given to
the LFSR is called seed. The bit positions which are responsible for the generating next state are called taps.
As the operator which is performed for the random number generation is known so the set of random number
generated by particular taps can be determined initially. The tap positions can be represented using a polynomial.
The primitive polynomial is one which represents the taps that gives the maximum random numbers for n bits.
Based on the taps that are selected and definite random numbers are generated [4] as shown in Figure 2(5).

Figure 2(5): Generation of Random Numbers using 8bit LFSR

N. Sai Tejeswi, B. Murali Krishna and M. Siva Kumar

International Journal of Control Theory and Applications 70

Whenever the selection lines are 010 LFSR method for the generation of Random numbers gets Selected.
Initially when clock is given and some value is stored in the Flip flops then in the next clock cycle the outputs
of fourth, fifth, sixth and eighth flip flops are XOR’d and the output of the XOR gate is given to first flip flop
[5] and the process repeats and this can be seen in the simulation waveform Figure 2(6).

Figure 2(6): Simulations obtained for 8bit LFSR

D. Generation of Random Numbers using Galois LFSR
Galois LFSR is named after French Mathematician EvaristeGalois. In Galois LFSR. The position of bits which
changes the output is called taps thus When the clock is enabled the bits that are not taps are shifted one bit right
unchanged and the bits position which acts as taps are XOR’d with the output bit before storing to next position.
The new output bit acts as next input bit. The conclusion is whenever the output bit is 0all bits in registers shifts
and whenever the output bit is 1 the bits in the taps gets flipped and entire LFSR gets shifted to one bit right
position[6].

The Taps are based on the feedback polynomial. The feedback polynomial for 8bit LFSR is,

	 F(x) = 8 + 6 + 5 + 4 + 1	 (1)

The representation of Galois LFSR based on feedback polynomial is as shown in Figure 2(7).

Figure 2(7): Galois LFSR

When the selection lines are 011 Galois method gets selected for the key generation. Initially some value is
given into flip flops and when clock is enabled the output of 4th flip flop and output of 8th flip flop gets XOR’d
and the output of XOR gate is given as input to the 5th flip flop and similarly the output of 5th flip flop and output
of 8th flip flop gets XOR’d and result is given as input to 6th flip flop and finally the output of 6th flip flop and
8th flip flop are XOR’d and the result is given as input to 7th flip flop and the process continues and there by
produces random numbers which can be seen in the simulations waveform in Figure 2(8).

FPGA Implementation of Tunable Arbitrary Sequencer for Key Generation Mechanism

International Journal of Control Theory and Applications71

Figure 2(8): Simulations obtained for 8bit Galois LFSR.

E. Generation of Random Numbers using Fibonacci LFSR
Fibonacci LFSR is one of the LFSR used for the generation of random numbers. The bit position which influences
the next state are called taps and the right most bit in the LFSR is called output bit. The taps are adjusted based
on feedback polynomial. The feedback polynomial for 8 bit polynomial is equation1. The taps of the LFSR are
XOR’d sequentially with the output bit and feedback to the left most bit. The Fibonacci LFSR is as shown in
Figure 2(9).

Figure 2(9): Fibonacci LFSR

If the selection lines are 100 Fibonacci LFSR gets selected for the generation of encryption keys. Initially
some value is stored in flip flop, here we are taking 8bit LFSR so taps are selected based on feedback polynomial.
Thus when clock is enabled the output of 6th and 8th flip flop are XOR’d and the outputis given as input to another
XOR gate whose inputs are output of first XOR gate and output of 5th flip flop and the output of 2nd XOR gate
is given as input to the 3rdXor gate whose inputs are output of 2nd XOR gate and output of 4th flip flop. Lastly
the output of 3rd XOR gate is given as input to 1st flip flop [6] and the process continues and random numbers
are generated which can be seen in simulation results in Figure 2(10)

F. Generation of Random Numbers using Combined LFSR/XOR
Combined LFSR/XOR is random number generator which is combination of LFSR and a XOR. It requires at
least two seed to produce random number which are used as key for encryption purpose. Combined LFSR/XOR
requires (N-1) bit LFSR for N bit random number generation. The architecture for Combined LFSR/XOR is as
shown in Figure 2(11). The output of LFSR is XOR’d to produce N bit. By the usage Combined LFSR/XOR
the architecture is reduced as (N-1) bit LFSR is used. Overall Structure of Combined LFSR/XOR is as shown
in Figure 2(12).

N. Sai Tejeswi, B. Murali Krishna and M. Siva Kumar

International Journal of Control Theory and Applications 72

Figure 2(10): Simulation results for Fibonacci LFSR

Figure 2(11): Overview Architecture for Combined LFSR/XOR

Figure 2(12): Overall architecture of Combined LFSR/XOR

The overall architecture is as shown if the selection lines are 101 Combined LFSR/XOR method gets
selected to produce random numbers. When the clock is enabled and some value is stored in flip flops and all
the seven flip flop outputs are XOR’d and the output of XOR is taken as 8thbit. for the generation of random
number, the output of 7th flip flop and the output of 1st flip flop are XOR’d and the output is given as input to
1st flip flop and the simulations results are shown in Figure 2(13).

FPGA Implementation of Tunable Arbitrary Sequencer for Key Generation Mechanism

International Journal of Control Theory and Applications73

Figure 2(13): Simulation results for Combined LFSR/ XOR

G. Generation of Random Numbers using Low power LFSR
In the present scenario where power reduction is the predominant issue. Different methods are proposed for the
purpose of random number generation but generation using low power should also be taken into consideration.
Clock gating is introduced to reduce the power consumption. For the purpose of clock gating we are using one
NAND gate and one XOR gate. Average power consumed by the LFSR is reduced by using clock gating. The
schematic for the clock gating is as shown in Figure 2(14).

Figure 2(14): Clock Gating.

If the selection lines are 110 Low power LFSR [7] method for the generation of random numbers in which
power consumption is reduced by using clock gating process. Concept after applying to the LFSR is as shown
in Figure 2(15).

Figure 2(15): Random numbers generated using Low power LFSR

N. Sai Tejeswi, B. Murali Krishna and M. Siva Kumar

International Journal of Control Theory and Applications 74

When the selection lines are 110 low power LFSR method gets selected for random number generation.
when the clock is enabled by usage of and gate and or gate clock gating is performed and thus power consumption
has reduced and the output of 7th and 8th flip flops are XOR’d and the output is given as input to 1st flip flop [8].
Power consumption is reduced and random numbers are also generated which can be observed in the simulations
results shown in Figure 2(16).

Figure 2(16). Simulations obtained using Low power LFSR

H. Generation of Random Numbers by Run Time Polynomial Change Method.
Run time polynomial uses a simple multiplexer, by the usage of selection lines taps for the LFSR gets selected as
shown in Figure 2(21.) The flip flop which are responsible for the change in output are known as taps i.e. if the
selection line is 00, 1 & 2 are made as taps for the 4bit LFSR. The architecture is as shown in Figure 2(17).

If the selection line is 0, 1, 2 & 3 are made as taps for the 4bit LFSR. The architecture is as shown in Figure 2(18).

Figure 2(17): Architecture of LFSR with taps 1&2

Figure 2(18): Architecture of LFSR with taps 2&3

FPGA Implementation of Tunable Arbitrary Sequencer for Key Generation Mechanism

International Journal of Control Theory and Applications75

If the selection line is 10, 3 & 4 are made as taps for the 4bit LFSR. The architecture is as shown in Figure 2(19).

Figure 2(19): Architecture of LFSR with taps 3&4

Figure 2(20): Architecture of LFSR with taps 4&1

If the selection line is 11, 4 & 1 are made as taps for the 4bit LFSR and as shown in Figure 2(20). The
overall architecture is as shown in Figure 2(21).

Figure 2(21): Random number generation using Run time polynomial

When selection lines are 111 run time polynomial change method gets selected for key generation. Due to
the random selection lines different LFSR are evolved based on taps. Thus different numbers are produced with
different LFSR that are produced due to different LFSR’s simulations are as shown in Figure 2(22).

N. Sai Tejeswi, B. Murali Krishna and M. Siva Kumar

International Journal of Control Theory and Applications 76

Figure 2(22): Simulation for Random number generation using Run time polynomial

Random Key Generation through arbitrary selection inputs3.	
By the usage of a 3 bit LFSR, the output of LFSR which is a random number from 0-7 is given as input to selection
lines. Different methods get selected to produce random numbers. Thus key which is required for Encryption is
obtained. The Architecture for the proposed model is shown in Figure 3(1).

Figure 3(1): Architecture for the proposed model

The overall key generation process is done and simulations are shown in Figure 3(2).

Figure 3(2): Key Generation Mechanism

FPGA Implementation of Tunable Arbitrary Sequencer for Key Generation Mechanism

International Journal of Control Theory and Applications77

A. Implementation of Proposed System
All the above eight methods i.e. Random Key generation techniques are implemented in FPGA. Run time
polynomial method is selectively produce random keys using any one of technique and performs permutations
with message to produce cipher.

Figure 3(3): Implementation of Low Power LFSR

Figure 3(4): Implementation of LFSR

Figure 3(5): Implementation of BRAM

N. Sai Tejeswi, B. Murali Krishna and M. Siva Kumar

International Journal of Control Theory and Applications 78

Table 1
Device Utilization Summary for Random Key Generation Mechanism

Method LUT Delay
Jitter 49 2.411ns
BRAM using IP Core 12 4.872ns
LFSR 7 3.551ns
GALOIS LFSR 3 2.315ns
FIBONACCI LFRS 1 2.225ns
Combined LFSR/XOR 3 2.309ns
LP LFSR 9 2.564ns
Runtime polynomial 9 3.33ns

Conclusion4.	
Pseudo random keys are generated using different methods. Several methods are configured randomly in run
time based on priority of section inputs which produces random keys. We observed that Jitter process generates
random numbers based on clock frequency triggered to oscillators, run time polynomial method produces random
keys by selectively changing tap positions in LFSR both methods will be more secure, predictable and attains
high security, but it Jitter consumes more Look up Tables (LUT) when compared to other methods. Pre stored
random numbers in memory are generated using BRAM with IP core generator and this method generates keys
at a span of delay. By the usage of LFSR methods like Galois LFSR and Fibonacci LFSR, Combined LFSR/XOR
and by the usage of Low power LFSR power and resources can be saved. By using clock gating architecture
power consumption can be reduced through Low power LFSR. Fibonacci LFSR uses less resources and delay in
comparison with other methods. Device utilization summary for above mentioned random generation methods
are placed in the table3. 1. Look up Tables and delays for different methods have analyzed using Xilinx Synthesis
Technology (XST). The advantage of proposed model is to produce high randomness in generated key as it is
used for cryptography applications.

References
Anju P. Johnson Member, IEEE, RajatSubhra Chakraborty Senior Member, IEEE and DebdeepMukhopadyayMember, [1]	
IEEE “An Improved DCM-based Tunable True Random Number Generator for Xilinx FPGA” 1549-7747, 2016 IEEE,
DOI 10.1109/ TCSII. 2016.2566262, IEEE Transactions on Circuits and Systems II: Express Briefs.

Andrei Marghescu1), Paul Svasta2), Emil Simion3)“ Politehnica ” University of Bucharest, Romania1) 2) CETTI, Romania [2]	
“ Optimizing Ring Oscillator-based True Random Number Generators Concept on FPGA” 978-1-5090-1389-0/16 2016
IEEE.

Qianying Tang, Bongjin Kim, Yingjie Lao, Keshab K. Parhi, and Chris H. Kim University of Minnesota, Minneapolis, MN [3]	
55455 USA,” True Random Number Generator Circuits Based on Single- and Multi-Phase Beat Frequency Detection”,
978-1-4799-3286-3/14/ 2014 IEEE.

Neha Agrawal, Neelesh Gupta, Neetu Sharma,” Linear Feed Back Shift Register Base Multiple Long Period Random Binary [4]	
Sequences Generator” International Journal of Computer Applications (0975-8887) Volume 138 – No.3, March 2016.

Amit Kumar Panda, Praveena Raj put, Bhawna Shukla Dept. of ECE, IT Guru GhasidasVishwavidyalaya ” FPGA [5]	
Implementation of 8, 16 and 32 Bit LFSR with Maximum Length Feedback Polynomial using VHDL” 978-0-7695-4692-
6/12 2012 IEEE.

Shivshankar Mishra1, Ram Racksha Tripathi2 and Devendra Kr. Tripathi” Implementation of Configurable Linear Feedback [6]	
Shift Register in VHDL” 978-1-5090-2118-5/16 2016 IEEE.

FPGA Implementation of Tunable Arbitrary Sequencer for Key Generation Mechanism

International Journal of Control Theory and Applications79

M.S Shyam, M.Tech (VLSI&ES), Nagadastagiri Reddy Suddamalla” Low Power Linear Feedback Shift Register For Random [7]	
Pattern Generation in BIST” international Journal of Advanced Scientific Technologies in Engineering and Management
Sciences (IJASTEMS-ISSN:2454-366X)

Review On Power Optimized TPG Using LP-LFSR For Low Power BIST” 978-1-4673-9214-3/16/ 2016 IEEE.[8]	

GU Xiao-chen, ZHANG Min-xuan,” Uniform Random Number Generator using Leap-Ahead LFSR Architecture”, 978-[9]	
0-7695-3906-5/09 2009 IEEE.

SitiHazwani, Sheroz Khan, Mohammad Umar Siddiqi, Khalid A.S. Al-Khateeb, Mohamed HadiHabaebi, ZeeshanShahid,” [10]	
Randomness Analysis of Pseudo Random Noise Generator Using 24-bits LFSR” 2166-0662/14, 2014 IEEE.

Chengani VinodChandra1 S.Ramasamy2,” TEST PATTERN GENERATION FOR BENCHMARK CIRCUITS using [11]	
LFSR”, IEEE - 31661 4th ICCCNT 2013.

E. Aleksejev, A.Jutman, R.Ubar,” LFSR Polynomial and Seed Selection Using Genetic Algorithm”, 1-4244-0415-0/06 [12]	
IEEE..

C. P. Souza1, F. M. Assis2, R. C. S. Freire3,” Mixed Test Pattern Generation Using a Single Parallel LFSR”, 0-7803-9360-[13]	
0/06 2006 IEEE.

HENK HOLLMANN,” Design of Test Sequences for VLSI Self-Testing Using LFSR”, OOlS-9448/9O/O300-0386$O1. [14]	
OO 0 1990 IEEE. Balwinder Singh, Arun Khosla, SukhleenBindra” Power Optimization of Linear Feedback Shift Register
(LFSR) for Low Power BIST” 2009 IEEE International Advance Computing Conference (IACC 2009) Patiala, India

