SOME PROPERTIES OF \mathcal{B}-MULTIPLICATIVE FUNCTIONS OF ONE VARIABLE AND TWO VARIABLES

K. Sridevi

Abstract: By a basic sequence B we mean a set of pairs (a, b) of positive integers with the properties

1. $(a, b) \in \mathscr{B} \Leftrightarrow(b, a) \in \mathscr{B}$
2. $(a, b c) \in \mathscr{B} \Leftrightarrow(a, b) \in \mathscr{B}$ and $(a, c) \in \mathscr{B}$
3. $(1, k) \in \mathcal{B}$ for $k=1,2,3, \ldots \ldots \ldots$.

In this paper we define \mathscr{B} - multiplicative functions.
Definition: An arithmetical function f is said to be \mathscr{B} - multiplicative if f is not identically zero and $f(m n)=f(m) f(n)$ for all $(m, n) \in \mathcal{B}$.
For Example,
Our \mathcal{B}-multiplicative function is the generalization of multiplicative and completely multiplicative functions.

Definition : (\mathcal{B} - multiplicative function of two variables)
\mathscr{B} - multiplicative function in two variables is defined as
$f\left(m m^{\prime}, n n^{\prime}\right)=f(m, n) f\left(m^{\prime}, n^{\prime}\right)$ for all $(m, n) \in \mathcal{B}$ and $\left(m^{\prime}, n^{\prime}\right) \in \mathcal{B}$.
In this paper we have shown the following:
(i) If f and g are \mathscr{B}-multiplicative functions, then their Dirichlet product $f * g$ is also a \mathscr{B} - multiplicative function.
i.e. $\left(f_{*} g\right)(m n)=\left(f_{*} g\right)(m)\left(f_{*} g\right)(n)$ for all $(m, n) \in \mathcal{B}$.
(ii) If f and g are \mathcal{B}-multiplicative functions, then their Unitary product $f \mathrm{x} g$ is also a B - multiplicative function.
i.e. $(f \times g)(m n)=(f \times g)(m)(f \times g)(n)$.
(iii) If f and g are \mathscr{B}-multiplicative functions of two variables m, n then $\mathrm{fo}_{\mathscr{B}} g$ is also a \mathscr{B} - multiplicative function of two variables.
$\left(f O_{\mathcal{B}} g\right)\left(m m^{\prime}, n n^{\prime}\right)=\left(f O_{\mathcal{B}} g\right)(m, n)\left(f O_{\mathcal{B}} g\right)\left(m^{\prime}, n^{\prime}\right)$ for all $(m, n) \in \mathcal{B}$ and $\left(m^{\prime}, n^{\prime}\right) \in \mathcal{B}$
We also have shown some more properties of B - multiplicative functions.
Key wards and Phrases: Multiplicative Functions, Completely Multiplicative Functions, Basic Sequence, \mathscr{B} - Multiplicative Functions.

1. INTRODUCTION

A real or complex valued function defined on the set of all positive integers is called an arithmetical function.

An arithmetical function f is said to be a multiplicative function if f is not identically zero and $f(m n)=f(m) f(n)$ when ever $(m, n)=1, f$ is said to be completely multiplicative function if $f(m n)=f(m) f(n)$ for all m, n.
1.1 Definition : A set of pairs (a, b) of positive integers is said to be a Basic Sequence \mathfrak{B}, if

1. $(a, b) \in \mathscr{B} \Leftrightarrow(b, a) \in \mathscr{B}$
2. $(\mathrm{a}, \mathrm{bc}) \in \mathscr{B} \Leftrightarrow(\mathrm{a}, \mathrm{b}) \in \mathscr{B}$ and $(a, c) \in \mathscr{B}$
3. $(1, k) \in \mathscr{B}, k=1,2,3, \ldots \ldots$.

Examples : 1. The set \mathcal{L} of all pairs of positive integers forms a basic sequence.
2. The set \mathcal{M} of all pairs of relative prime positive integers forms a basic sequence.
1.2 Definition : An arithmetical function f is said to be a \mathcal{B} - multiplicative function if f is not identically zero and $f(m n)=f(m) f(n)$ for all $(m, n) \in \mathscr{B}$.
1.3 Remark : If we take \mathcal{L} as the basic sequence, then our \mathscr{B} - multiplicative function becomes completely multiplicative function and if we take \mathcal{M} as the basic sequence, then our \mathscr{B} - multiplicative function becomes multiplicative function.

Therefore our \mathscr{B} - multiplicative function is the generalization of multiplicative and completely multiplicative functions.
1.4 Definition : An arithmetical function f of two variables is said to be a \mathscr{B} multiplicative function of two variables if

$$
f\left(m m^{\prime}, n n^{\prime}\right)=f(m, n) f\left(m^{\prime}, n^{\prime}\right) \quad \text { for all }(m, n) \in \mathscr{B} \text { and }\left(m^{\prime}, n^{\prime}\right) \in \mathscr{B}
$$

1.5 Definition : If f and g are two arithmetical functions, then Donald L. Goldsmith has defined their convolution over \mathscr{B} as

$$
\begin{equation*}
\left(f 0_{\mathcal{B}} g\right)(n)=\sum_{\substack{d \delta=n \\(d, \delta) \in \mathcal{B}}} f(d) g(\delta) \tag{1}
\end{equation*}
$$

1.6 Definition : If $f(m, n)$ and $g(m, n)$ are two \mathscr{B} - multiplicative functions of two variables m and n then their \mathscr{B} - convolution, written as $\left(f 0_{\mathscr{B}} g\right)$ is defined by

$$
\left(f 0_{\mathcal{B}} g\right)(m, n)=\sum_{\substack{d_{1} \left\lvert\, m \\\left(d_{1}, \frac{m}{d_{1}}\right) \in \mathcal{B}\right.}} \sum_{\substack{d_{2} \left\lvert\, n \\\left(d_{2}, \frac{n}{d_{2}}\right) \in \mathcal{B}\right.}} f\left(\frac{m}{d_{1}}, \frac{n}{d_{2}}\right) g\left(d_{1}, d_{2}\right) \text { for all }(m, n) \in \mathcal{B}
$$

1.7 Definition : If f and g are two arithmetical functions then their Dirichlet product denoted by $f_{*} g$ and defined as

$$
\begin{equation*}
(f * g)(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right) \text { for all } n \tag{3}
\end{equation*}
$$

1.8 Note : If f and g are multiplicative functions, then their Dirichlet product is also a multiplicative function.
1.9 Definition : If f and g are arithmetical functions then their unitary product denoted by $f \mathrm{x} g$ and defined as

$$
\begin{equation*}
(f \times g)(n)=\sum_{d \| n} f(d) g\left(\frac{n}{d}\right) \text { for all } n \tag{4}
\end{equation*}
$$

[Here $d \| n$ means d is unitary divisor on n. i.e. $d \mid n$ and $\operatorname{gcd}\left(d, \frac{n}{d}\right)=1$]
1.10 Note : If f and g are multiplicative functions, then their unitary product is also a multiplicative function.
2. In this section we have proved some properties of \mathscr{B} - multiplicative functions of one variable.
2.1 Theorem : If f and g are \mathscr{B} - multiplicative, then their Dirichlet product $f_{*} g$ is also a \mathscr{B} - multiplicative.
i.e. $\left(f_{*} g\right)(m n)=\left(f_{*} g\right)(m)\left(f_{*} g\right)(n)$ for all $(m, n) \in \mathscr{B}$

Proof : Write $h=f * g$
To show h is \mathscr{B} - multiplicative we have to prove

$$
h(m n)=h(m) h(n), \text { for all }(m, n) \in \mathscr{B}
$$

If one of m and n is 1 , then the proof is clear.

$$
\text { i.e. } h(m 1)=h(m) h(1) \quad \text { and } \quad h(1 n)=h(1) h(n)
$$

Now, suppose that $m>1$ and $n>1$
We have $(m, n) \in \mathcal{B}$
Take a divisor b of n such that $b b^{\prime}=n$,

$$
\text { so }\left(m, b b^{\prime}\right) \in \mathcal{B} \Leftrightarrow(m, b) \in \mathcal{B} \text { and }\left(m, b^{\prime}\right) \in \mathcal{B} \text { or }\left(m, \frac{n}{b}\right) \in \mathcal{B} \text {. }
$$

Now $(m, b) \in \mathcal{B} \Leftrightarrow(b, m) \in \mathcal{B}$
Take a divisor a of m such that $a a^{\prime}=m$,

$$
\text { so }(b, m) \in \mathcal{B} \text { or }\left(b, a a^{\prime}\right) \in \mathcal{B} \Leftrightarrow(b, a) \in \mathcal{B} \text { and }\left(b, a^{\prime}\right) \in \mathcal{B}
$$

Now,

$$
\begin{equation*}
(b, a) \in \mathcal{B} \Leftrightarrow(a, b) \in \mathcal{B} . \tag{5}
\end{equation*}
$$

Also $\quad\left(m, \frac{n}{b}\right) \in \mathcal{B} \Leftrightarrow\left(\frac{n}{b}, m\right) \in \mathcal{B}$ or $\left(\frac{n}{b}, a a^{\prime}\right) \in \mathcal{B}$

$$
\left(\frac{n}{b}, a a^{\prime}\right) \in \mathcal{B} \Leftrightarrow\left(\frac{n}{b}, a\right) \in \mathcal{B} \text { and }\left(\frac{n}{b}, a^{\prime}\right) \in \mathcal{B}
$$

so, $\quad\left(\frac{n}{b}, a^{\prime}\right) \in \mathcal{B}$ or $\left(\frac{n}{b}, \frac{m}{a}\right) \in \mathcal{B} \Leftrightarrow\left(\frac{m}{a}, \frac{n}{b}\right) \in \mathcal{B}$
Therefore, by definition

$$
\begin{aligned}
h(m n) & =\sum_{a b \mid m n} f(a b) g\left(\frac{m n}{a b}\right) \\
& =\sum_{a b \mid m n} f(a) f(b) g\left(\frac{m}{a}\right) g\left(\frac{n}{b}\right)(\text { from } 5 \& 6) \\
& =\sum_{a \mid m} f(a) g\left(\frac{m}{a}\right) \sum_{b \mid n} f(b) g\left(\frac{n}{b}\right) \\
& =h(m) h(n)
\end{aligned}
$$

Hence $\quad h(m n)=h(m) h(n)$, for all $(m, n) \in \mathscr{B}$
i.e.

$$
(f * g)(m n)=\left(f_{*} g\right)(m)\left(f_{*} g\right)(n), \text { for all }(m, n) \in \mathscr{B}
$$

Therefore the theorem is proved.
2.2 Theorem : If f and g are \mathscr{B} - multiplicative then their unitary product $f \mathrm{x} g$ is also \mathscr{B} - multiplicative.

$$
\text { i.e. }(f \times g)(m n)=(f \times g)(m)(f \times g)(n) \text {, for all }(m, n) \in \mathscr{B}
$$

Proof : Write $u=f \times g$
Now we show that $u(m n)=u(m) u(n)$ for all $(m, n) \in \mathscr{B}$
Take a divisor b of n such that $b b^{\prime}=n$ and $\left(b, b^{\prime}\right)=1$
We have $(m, n) \in \mathscr{B}$
So $\left(m, b b^{\prime}\right) \in \mathscr{B} \Leftrightarrow(m, b) \in \mathscr{B}$ and $\left(m, b^{\prime}\right) \in \mathscr{B}$ also $(m, b) \Leftrightarrow(b, m) \in \mathscr{B}$
Take a divisor a of m such that $a a^{\prime}=m$ and $\left(a, a^{\prime}\right)=1$
As $(b, m) \in \mathscr{B}$ or $\left(b, a a^{\prime}\right) \mu \mathscr{B} \Leftrightarrow(b, a) \in \mathscr{B}$ and $\left(b, a^{\prime}\right) \in \mathscr{B}$
We have, $(b, a) \in \mathscr{B} \Leftrightarrow(a, b) \in \mathscr{B}$.
Also $\quad\left(m, b^{\prime}\right) \in \mathscr{B} \Leftrightarrow\left(b^{\prime}, m\right) \in \mathscr{B}$ or $\left(b^{\prime}, a a^{\prime}\right) \in \mathscr{B}$

$$
\begin{aligned}
& \left(b^{\prime}, a a^{\prime}\right) \in \mathscr{B} \Leftrightarrow\left(b^{\prime}, a\right) \in \mathscr{B} \text { and }\left(b^{\prime}, a^{\prime}\right) \in \mathscr{B} \\
& \left(b^{\prime}, a^{\prime}\right) \in \mathscr{B} \Leftrightarrow\left(a^{\prime}, b^{\prime}\right) \in \mathscr{B}
\end{aligned}
$$

Therefore, by definition,

$$
\begin{aligned}
& u(m n)=\sum_{\substack{a b a^{\prime} b^{\prime}=m n \\
\left(a b, a^{\prime} b^{\prime}\right)=1}} f(a b) g\left(a^{\prime} b^{\prime}\right) \\
& =\sum_{\begin{array}{l}
a b a^{\prime} b^{\prime}=m n \\
\left(a b, a^{\prime} b^{\prime}\right)=1
\end{array}} f(a) f(b) g\left(a^{\prime}\right) g\left(b^{\prime}\right) \\
& =\sum_{\begin{array}{l}
a a^{\prime}=m \\
\left(a, b^{\prime}\right)=1 \\
b b^{\prime}=n \\
\left(b, b^{\prime}\right)=1
\end{array}} f(a) f(b) g\left(a^{\prime}\right) g\left(b^{\prime}\right)
\end{aligned}
$$

$$
\begin{gathered}
=\sum_{\substack{a a^{\prime}=m \\
\left(a, a^{\prime}\right)=1}} f(a) g\left(a^{\prime}\right) \sum_{\substack{b b^{\prime}=n \\
\left(b, b^{\prime}\right)=1}} f(b) g\left(b^{\prime}\right) \\
=u(m) u(n)
\end{gathered}
$$

Hence $u(m n)=u(m) u(n)$ for all $(m, n) \in \mathcal{B}$
i.e. $(f \mathrm{x} g)(m n)=(f \mathrm{x} g)(m)(f \mathrm{x} g)(n)$ for all $(m, n) \in \mathcal{B}$
which gives $\quad f \mathrm{x} g$ is a \mathcal{B}-multiplicative.
2.3 Theorem : If f and g are \mathcal{B}-multiplicative then $f 0_{\mathcal{B}} g$ is also a \mathcal{B}-multiplicative.

$$
\text { i.e. }\left(f 0_{\mathcal{B}} g\right)(m n)=\left(f 0_{\mathcal{B}} g\right)(m)\left(f 0_{\mathcal{B}} g\right)(n) \text {, for all }(m, n) \in \mathcal{B}
$$

Proof : The proof of this result follows at once from the theorems 2.1 and 2.2.
2.4 Theorem : Suppose that f is a \mathcal{B} - multiplicative function and $f(k) \neq 0$. If g is defined by,

$$
g(n)=\frac{f(k n)}{f(k)} \text { for all }(k, n) \in \mathcal{B},
$$

then g is a \mathcal{B}-multiplicative function.
Proof : To prove that g is \mathscr{B} - multiplicative function, we have to show that

$$
g(m n)=g(m) g(n) \text { for all }(m, n) \in \mathcal{B}
$$

By definition of g,

$$
g(m n)=\frac{f(k m n)}{f(k)}
$$

If $(k, n) \in \mathcal{B}$, we have $f(k n)=f(k) f(n)$
Now $g(m n)=\frac{f(k) f(m)}{f(k)}$ [since $m n$ is a positive integer and $\left.(k, m n) \in \mathcal{B}\right]$

$$
=\frac{f(k) f(m) f(n)}{f(k)}[\text { since } f \text { is } \mathcal{B} \text { - multiplicative }]
$$

$$
\begin{aligned}
& =\frac{f(k) f(m) f(n)}{f(k)} \cdot \frac{f(k)}{f(k)}[\text { since } f(k) \neq 0] \\
& =\frac{f(k) f(m) f(k) f(n)}{f(k) f(k)} \\
& =\frac{f(k) f(m)}{f(k)} \frac{f(k) f(n)}{f(k)} \\
& =\frac{f(k m)}{f(k)} \frac{f(k n)}{f(k)} \\
& =g(m) g(n)
\end{aligned}
$$

Hence $g(m n)=g(m) g(n)$
Thus g is a B-multiplicative.
3. In this section we have proved some properties of B -multiplicative functions of two variables.
3.1 Theorem : If $f(m, n)$ and $g(m, n)$ are two \mathcal{B} - multiplicative functions of m, n then $f 0_{\mathcal{B}} g$ is also \mathcal{B}-multiplicative function of two variables.

Proof : To prove $f 0_{\mathcal{B}} g$ is a \mathcal{B}-multiplicative function we have to show that $\left(f 0_{\mathcal{B}} g\right)\left(m m^{\prime}, n n^{\prime}\right)=\left(f 0_{\mathcal{B}} g\right)(m, n)\left(f 0_{\mathcal{B}} g\right)\left(m^{\prime}, n^{\prime}\right)$ for all $(m, n) \in \mathcal{B}$ and $\left(m^{\prime}, n^{\prime}\right) \in \mathcal{B}$

Given that f and g are \mathcal{B}-multiplicative functions of m and n.
i.e. $\quad f\left(m m^{\prime}, n n^{\prime}\right)=f(m, n) f\left(m^{\prime}, n^{\prime}\right)$
and $\quad g\left(m m^{\prime}, n n^{\prime}\right)=g(m, n) g\left(m^{\prime}, n^{\prime}\right)$

$$
\text { for all }(m, n) \in \mathcal{B} \text { and }\left(m^{\prime}, n^{\prime}\right) \in \mathcal{B}
$$

Consider

$$
\begin{aligned}
& \left(f 0_{B} g\right)\left(m m^{\prime}, n n^{\prime}\right)=\sum_{d_{1} d_{1}^{\prime} \mid m m m^{\prime}} \sum_{d_{2} d_{2}^{\prime} \mid n n^{\prime}} f\left(\frac{m m^{\prime}}{d_{1} d_{1}^{\prime}}, \frac{n n^{\prime}}{d_{2} d_{2}^{\prime}}\right) g\left(d_{1} d_{1}^{\prime}, d_{2} d_{2}^{\prime}\right) \\
& \left(d_{1} d_{1}^{\prime}, \frac{m m}{d_{1} d_{1}^{\prime}}\right) \in \mathscr{B} \quad\left(d_{2} d_{2}{ }^{\prime}, \frac{n n}{d_{2} d_{2}{ }^{\prime}}\right) \in \mathscr{B} \\
& d_{1}\left|m,\left(d_{1}, \frac{m}{d_{1}}\right) \in \mathcal{B} \quad d_{2}\right| n,\left(d_{2}, \frac{n}{d_{2}}\right) \in \mathbb{B} \\
& d_{1}^{\prime}\left|m^{\prime},\left(d_{1}^{\prime}, \frac{m}{d_{1}^{\prime}}\right) \in \mathcal{B} \quad d_{2}^{\prime}\right| h^{\prime},\left(d_{2}^{\prime}, \frac{n}{d_{2}^{\prime}}\right) \in \mathcal{B}
\end{aligned}
$$

$$
=\sum_{\substack{d_{2} \mid n,\left(d_{2}, \frac{n}{d_{2}}\right) \in \mathcal{B}}} f\left(\frac{m}{d_{1}}, \frac{n}{d_{2}}\right) f\left(\frac{m^{\prime}}{d_{1}^{\prime}}, \frac{n^{\prime}}{d_{2}^{\prime} \mid n^{\prime},\left(d_{2}^{\prime}, \frac{n}{d_{2}^{\prime}}\right) \in \mathcal{B}}\right) g\left(d_{1}, d_{2}\right) g\left(d_{1}^{\prime}, d_{2}^{\prime}\right)
$$

[since f and g are B -multiplicative functions]

$$
\begin{aligned}
& =\sum_{\substack{d_{1} \left\lvert\, m \\
\left(d_{1}, \frac{m}{d_{1}}\right) \in \mathcal{B}\right.}} \sum_{\substack{d_{2} \left\lvert\, n \\
\left(d_{2}, \frac{n}{d_{2}}\right) \in \mathcal{B}\right.}} f\left(\frac{m}{d_{1}}, \frac{n}{d_{2}}\right) g\left(d_{1}, d_{2}\right) \\
& =\sum_{\substack{d_{1}^{\prime} \left\lvert\, m^{\prime} \\
\left(d_{1}^{\prime}, \frac{m^{\prime}}{d_{1}^{\prime}}\right) \in \mathcal{B}\right.}}^{\sum_{\substack{d_{2}^{\prime} \left\lvert\, n^{\prime} \\
\left(d_{2}^{\prime}, \frac{n^{\prime}}{d_{2}^{\prime}}\right) \in \mathcal{B}\right.}} f\left(\frac{m^{\prime}}{d_{1}^{\prime}}, \frac{n^{\prime}}{d_{2}^{\prime}}\right) g\left(d_{1}^{\prime}, d_{2}^{\prime}\right)} \\
& =\left(f 0_{\mathcal{B}} g\right)(m, n)\left(f 0_{\mathcal{B}} g\right)\left(m^{\prime}, n^{\prime}\right)[\text { by definition }]
\end{aligned}
$$

Therefore

$$
\left(f 0_{\mathcal{B}} g\right)\left(m m^{\prime}, n n^{\prime}\right)=\left(f 0_{\mathscr{B}} g\right)(m, n)\left(f 0_{\mathscr{B}} g\right)\left(m, n^{\prime}\right)
$$

Hence $f 0_{\mathcal{B}} g$ is \mathscr{B}-multiplicative in m, n and the proof of the theorem is completed.
3.2 Theorem : If $f(m, n)=g(m) h(n)$ where g and h are \mathscr{B}-multiplicative functions of m and n respectively, then $f(m, n)$ is \mathscr{B}-multiplicative function of m and n.

Proof : To prove $f(m, n)$ is \mathscr{B}-multiplicative in two variables m and n, we have to show that

$$
f\left(m m^{\prime}, n n^{\prime}\right)=f(m, n) f\left(m, n^{\prime}\right) \text { for all }(m, n) \in \mathscr{B} \text { and }\left(m, n^{\prime}\right) \in \mathscr{B}
$$

In the hypothesis, given that g and h are \mathscr{B}-multiplicative functions of m and n respectively

$$
\text { i.e } g\left(m m^{\prime}\right)=g(m) g\left(m^{\prime}\right) \quad \text { for all }\left(m, m^{\prime}\right) \in \mathscr{B}
$$

and

$$
h\left(n n^{\prime}\right)=h(n) h\left(n^{\prime}\right) \quad \text { for all }\left(n, n^{\prime}\right) \in \mathscr{B}
$$

Consider

$$
\begin{aligned}
f\left(m m^{\prime}, n n^{\prime}\right) & =g\left(m m^{\prime}\right) h\left(n n^{\prime}\right)[\text { by the hypothesis }] \\
& =g(m) g\left(m^{\prime}\right) h(n) h\left(n^{\prime}\right)
\end{aligned}
$$

Since g and h are \mathscr{B}-multiplicative functions

$$
\begin{aligned}
& =g(m) h(n) g\left(m^{\prime}\right) h\left(n^{\prime}\right) \\
& =f(m, n) f\left(m^{\prime}, n^{\prime}\right)[\text { by the hypothesis }]
\end{aligned}
$$

Therefore $f\left(m m^{\prime}, n n^{\prime}\right)=f(m, n) f\left(m^{\prime}, n^{\prime}\right)$
Thus f is \mathcal{B}-multiplicative function of two variables m and n.
Hence completes the proof of the theorem.
3.3 Remark: $f^{-1}(m, n)=g^{-1}(m) h^{-1}(n)$
4. In this section we prove the following theorems.
4.1 Theorem : A \mathcal{B} - multiplicative function $f(m, n)$ can be written as

$$
f(m, n)=\sum_{\substack{1_{1} \left\lvert\, m \\\left(d_{1}, \frac{m}{1}\right) \in \mathcal{B}\right.}} \sum_{\substack{d_{2} \left\lvert\, n \\\left(d_{2}, \frac{n}{d_{2}}\right) \in \mathcal{B}\right.}} f\left(\frac{m}{d_{1}}, 1\right) f\left(1, \frac{n}{d_{2}}\right) u\left(d_{1}, d_{2}\right)
$$

where $u(m, n)$ is given by

$$
\begin{equation*}
u(m, n)=\sum_{\substack{d_{1} \left\lvert\, m \\\left(d_{1}, \frac{m}{d_{1}}\right) \in \mathcal{B}\right.}} \sum_{\substack{d_{2} \left\lvert\, n \\\left(d_{2}, \frac{n}{d_{2}}\right) \in \mathcal{B}\right.}} f^{-1}\left(\frac{m}{d_{1}}, 1\right) f^{-1}\left(1, \frac{n}{d_{2}}\right) f\left(d_{1}, d_{2}\right) \tag{8}
\end{equation*}
$$

Proof : By the Theorem 3.2, we have $f(m, n)$ is \mathcal{B} - multiplicative in m, n.
Because writing the function

$$
f(m, n)=f(m, 1) f(1, n) \text { where }(m, 1) \in \mathcal{B} \text { and }(1, n) \in \mathcal{B},
$$ this gives $f(m, 1)$ and $f(1, n)$ are \mathcal{B} - multiplicative functions.

Also we have

$$
f^{-1}(m, n)=f^{-1}(m, 1) f^{-1}(1, n)
$$

Therefore by the above observations the result follows.
4.2 Remark : By definition we have

$$
f(m, n)=f(m, 1) f(1, n)
$$

since $(1, n) \in \mathcal{B}$, we have $f(1, n)$ is \mathcal{B} - multiplicative function. since $(m, 1) \in \mathscr{B}$, we have $f(m, 1)$ is \mathscr{B} - multiplicative function.
so $f(m, n)$ is \mathcal{B}-multiplicative in m, n for all $(m, n) \in \mathcal{B}$.
Also we have $f^{-1}(m, n)=f^{-1}(m, 1) f^{-1}(1, n)$
Applying the same argument as above we have $f^{-1}(m, n)$ is also \mathcal{B} - multiplicative in m, n for all $(m, n) \in \mathcal{B}$.
4.3 Theorem : Suppose f is a \mathcal{B} - multiplicative of a single variable.

Define $f(m, n)=f(m n)$ for all $(m, n) \in \mathcal{B}$
then $f(m n)$ can be defined as

$$
\begin{equation*}
f(m n)=\sum_{\substack{d_{1} \left\lvert\, m \\\left(d_{1}, \frac{m}{d_{1}}\right) \in \mathcal{B}\right.}} \sum_{\substack{\left.d_{2} \mid n \\ d_{2}, \frac{n}{d_{2}}\right) \in \mathcal{B}}} f\left(\frac{m}{d_{1}}\right) f\left(\frac{n}{d_{2}}\right) f^{-1}\left(d_{1}, d_{2}\right) \lambda\left(d_{1}, d_{2}\right) \tag{9}
\end{equation*}
$$

with $\lambda(m, n)= \begin{cases}(-1)^{r}, & \text { if } \omega(m)=\omega(n)=r \\ 0, & \text { otherwise }\end{cases}$

$$
\text { for all }(m, n) \in \mathcal{B} .
$$

(Here $\omega(m)$ is the number of distinct prime factors of m).
Proof : Given that $f(m n)$ is \mathscr{B} - multiplicative function.
By Theorem 4.1, it suffices to prove that $u(m, n)$ is
\mathcal{B} - multiplicative function which is defined in the Theorem 4.1.
Here $u(m, n)$ can be written as

$$
\begin{equation*}
u(m, n)=f^{-1}(m n) \lambda(m, n) \text { for all }(m, n) \in \mathrm{B} \ldots \tag{10}
\end{equation*}
$$

$$
= \begin{cases}(-1)^{r} f^{-1}(m n), & \text { if } \omega(m)=\omega(n)=r \\ 0, & \text { otherwise }\end{cases}
$$

Again by the Theorem 4.1, $u(m, n)$ defined by (10) is \mathcal{B}-multiplicative.
There fore by all the above observations it suffices to prove (10) in case of taking prime powers of m and n writing m and n in canonical form.
i.e ., it suffices to prove

$$
\begin{equation*}
u\left(p^{i}, p^{j}\right)=(-1)^{r} f^{-1}\left(p^{i+j}\right) \tag{11}
\end{equation*}
$$

where i, j are indices and for all $\left(p^{i}, p^{j}\right) \in \mathcal{B}$.
This can be proved by using induction on i and j.
The proof follows in the same lines as in the case of single variable.

REFERENCES

[1] Tom M. Apostol : Introduction to Analytic Number Theory, Springer International Student edition, Narosa Publishing House, New Delhi.
[2] Paul J. McCarthy : Introduction to Arithmetical Functions, Springer -Verlag, New York Berlin - Heidelberg, Tokyo.
[3] Donald L. Goldsmith: A Generalized Convolution for Arithmetical Functions, Pacific J. Math, May - 1969.
[4] Pentti Haukkanen : Classical Arithmetical Identities Involving a Generalization of Ramanujan's Sum, Annales Academic Scientiarum Fennicae, Series A, I. Mathamatic, Dissertations.
[5] V. Sitaramiah: Arithmatical Sums in Regular Convolutions, Journal for fur die reine und auge wandte mathematic, Band, 303 / 304 (Pages 263 - 283).

