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Qualitative Properties of Discrete Version
of Generalized Kneser’s and Arzela-
Ascoli’s Theorems

V. Chandrasekar* V. Srimanju**

Abstract : In this paper, the authors extend and discuss the oscillatory behavior of the discrete version of
Kneser’s theorem and Arzela-Ascoli’s theorem according to the generalized difference operator.
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1. INTRODUCTION

Difference equationsrepresent afascinating methemeaticd areaonitsown aswell asarichfield of theapplications
in such diverse disciplines as population dynamics, operationsresearch, ecology, economics, biology etc. For
generd background as difference equations with many examplesfrom diversefields, onecanrefer to[1].

Thetheory of difference equationsis based onthe operator A defined as
Au(k) = u(k+1)—u(k),ke N={0,12,...}.
Even though many authors|[ 1, 8, 9] have suggested the definition of A as
Au(k) = u(k+¢)—u(k), k €[0,00),¢ € (0,00), @
and no significant progress took place on thisline. But in[3], took up the definition of A asgivenin (1) and
developed thetheory of difference equationsin adifferent direction. For convenience, they labeled the operator A
defined by (1) as A, and by defining itsinverse A, *, the formulae for sum of higher powers of arithmetic

progressons, sum of consecutiveterms of arithmetic progressions and sumof arithmetic-geometric progressions
using the Stirling numbers of first kind and second kind respectively in the field of Numerical methodswere

obtained. By extending theory of A, to complex function, some new quditative propertieslikerotatory, expanding,
shrinking, spiral and weblike were established for the solutions of difference equationsinvolving A, . Also, a
method to find aformulafor sum of n'™ power of arithmetico-geometric progression using the generalized Bernoulli
polynomid B, ., (k,— ¢), and solutionto the generalized differenceequation. Theresultsobtained canbefoundin
[3-7].

Hence, inthis paper, we derivethe ostillatory behavior of thediscrete version of generalized Kneser’ stheorem
and Arzela-Ascolistheorems.

Throughout thispaper wemake use of thefollowing assumptions:
Condgder thepartid difference equation

Al A, UM K) —cu(m—n,k—s)) + f (mk,u(m—rtf,k—cf)) = 0,mkeK,,
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where ¢ = Q isared congant, h,r e N, n,seK,, r,oceK, A, isthegeneralized forward difference operator
defined by

A, u(mKk) = u(m+ ¢,k) —u(m,k),

A ou(mk) = u(m,k+ ¢)—u(m,k)
and Alu(mK) = A, (Al u(m k), Afu(m k) =u(mk),

Alu(mk) = A, (A pumKk)), AR u(mk) =u(mk), f € C(Kyx Kyx R,R).

2.PRELIMINARIES
Definition 2.1.

[1] A solution u(K) of (2) is said to be oscillatory if for every k; > 0 thereexistsareal k >k, such that
u(k)u(k + ¢) < 0. Otherwiseit isnonoscillatory. Equation (2) issaid to beostillatory if dl itssolutionsare osaillatory.

Definition 2.2.

Let U bethelinear space of al bounded red function u ={u(m,k)},m> M,k > K endowed with theusual
norm

juj = SuP lu(mk) | 3)

m>M k>B

then U isaBanach space.
Definition 2.3.

Let QO be asubset of Banach space U, Q isrelatively compact if every sequence of function in Q hasa
subsequence converging to an element of U. Ane—net for Q isaset of elementsof U suchthat each uin Qis
within adistance € of some member of the net. A finite e —net isan € —net consisting of afinite number of the
elements.

Definition 2.4.

A set Q of Banach space U isuniformly Cauchy if for every € >0there exist postiveredsM, and K, such
that forany u = {u(m,k)} inQ

[u(mk) —u(m, k)| < e, 4
whenever (mk) € D/, (m',k) e D/,
where D’ = D;uD,UD;,
D; = {(mk)|m>M,k>K},

D) = {(mk)|M<m<M_, ,k>K]},
D) = {(mK)|m>M, K <k<K}. ®)
LemmaZ2.b.

[2] Asubset Q2 of aBanach space U isrelatively compact if and only if for each e >0, it hasafinite e —net.
3. MAINRESULTS

Throughout the section, we assumethat there exists acontinuousfunction F: K, x K, x[0,00) — [0, 0)
suchthat F(m, k, u) isnondecreasinginu and
| f(mk,u)| < F(mK,|ul), (mk,u) € K,xK,xR. (6)
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A solution of (2) is areal double function defined for all (m,k) e{(m,k)|m>min{M —n{,M —t{},
k>min{K —s/,K — o/} } and satisfying (2) for al (m,k) e{(m,k) |m> M, k> K}, where M,K € K,,.

Lemma3.1l.
Let meN(1,n—1) and u(k) bedefinedon N, (j). Then,
1. liminf ATu(k) >0 implies lim Au(k) = co, i € N(O,m—1)

k—o00

2. limsup Afu(k) <0 implies |im Alu(k) = —00, i € N(O,m—1)

k—o0

Proof. liminf AJu(k) >0 impliesthat thereexistsalarge k, € N, (j) suchthat Ag' u(k) >c>0 foral

k—o0

keN,(k) and k =k 4 n'¢, for someinteger n". Since

ATu(k) = A™u(k,) +n§A;ﬁu(k1+ re)

m— k—
it followsthat A™uk) = A lU(k1)+C[(k—k1)—[7k1]€],
and hence liminf ATu(k) = o,
Therest of the proof isby induction. The case (ii) canbetreated smilarly.
Theorem 3.2.

(Generalized Discrete Kneser’s Theorem). Let u(k) bedefinedon N, (j), and u(k) > 0 with Aj u(k) of
constant ignon N, (), and not identically zero. Then, thereexistsaninteger me N(O,n) withn+m odd for
Alu(k) <0 orn+mevenfor A”u(k) >0 andsuchthat m< n—1 implies (—1)™" A}, u(k) > 0 for dl large
keN,(j), ie N(mn—1), m>1 implies A, u(k) >0 foral ke N,(j), i € N(1,m—1).

Proof. There aretwo casesto consider.

Casel. Au(k)<0onN,(j), First weshall provethat A)'u(k) >0 on N ,(j), If not, thenthereexists
some k > j in N, (j), suchthat A} "u(k,) <0. Since A} u(k) isdecreasing and not identically constant on
N,(j), thereexists k, € N, (k) suchthat A’ 'u(k) <Al u(k,) < AT u(k,) <0 for al ke N,(k,), But,
fromLemma3.1 wefind lim u(k) = —oo whichisacontradictionto u(k) > 0. Thus, A} 'u(k) >0 on N (j),
and thereexistsasmadles integer m, me N(O,n—1) withn+modd and

(—1)™ Al u(k) > 0onN,(j),i € N(m,n—1). (7)

Next let m>1 and ATu(k) < 0onN,(j), (8
thenonceagainformLemma3.1it followsthat

A7?u(k) > 0onN,(j). )

Inequalities (7)-(9) canbeunified to
(—1)™2*"Alu(k) > 0onN,(j),i e N(m—2,n—1)
whichisacontradictionto the definition of mSo, (8) failsand A7 *u(k) >0 on N, (j), From(6), AT 'u(k) is
nondecreasing and hence m ATu(k)>0. If m> 2, we find from Lemma 3.1 that l'l!l Alu(k) = oo,

i € N(1,m—2). Thus A}, u(k) >0 forallarge k e N, (j), i € N(1,m—1).
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Case2. AJu(k)>0o0nN,(j), Let k, € N,(k,) besuchthat A} 'u(k,) >0, thensince A7 *u(k) isnon
decreasing and not identically constant, thereexistssome k, € N, (k;) suchthat A *u(k) > 0 foral k e N, (k,).
Thus, lim A 'u(k) > 0 and fromLemma3.1 |im Ayu(k) = oo, i e N(1,n—2) andso Al u(k) > 0 for all

k— o0

largek in N[(j),l € N(1,n—1). Thisprovesthetheoremfor m=n.Incase A} *u(k) <0 foral ke N, (j), we
find fromLemma3.1that A ?u(k) >0 forall ke N, (j), Therest of the proof isthe same asin Case 1.

Corollary 3.3.

Let u(k) bedefinedon N, (), andu(k) >0 with Aju(k) <0 on N,(j), andnot identically zero. Then,
thereexistsalargek, in N, (j), suchthat forall ke N, (k)

(n—m-1)
AT (2 k) (10

1
(n—m)!
Proof. From Theorem 3.2 it follows that (—1)"""A)u(k)>0 on N,(j), i€ N(mn-1), and

Al u(k) >0 fordllargek in N, (j), say, foral k >k in N,(j), i € N(1,m—1). Usingtheseinequdlities, we
obtain.

uk) >

i :
~AM2u(k) = A" Zu(oo)—i—ZA” 1u(k+r€)>ZA” Uk 4r6) > Al u(2K) k;)

ARu(k) = A7 u(oo) - ZAQ’Z u(k +re)

i
ZA;H u(2(k +re))

=0

|
AT u(k +r0))

v

(k+ro)®
14

~|x

(k+(r+k)O)®
14

v

k(2)

Al u(2%k) o

v

k(n—m—l)

m n-1 n—m-1 4
ATu(k) = A7) e

New, we get
n*fl
AT u(k) = AT u(k,) + ZAQ‘ u(k, +re)
r=0

(k+ro >

> Zl Tru(2m (k1))

s (n—m—-1)t¢"
1 n— l n—m-1 k(n m l)
=z (n—m)!A“ u(2 k) gt

Hence, after (m—1) summations, weobtain (10).
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Corollary 3.4.
Let u(k) beasin Corollary 3.3 and bounded. Then,
1 limAlu(k) =0,i € N(1,m—1)
k— o0

2. (~1)"A™ u(k) >0 foral ke N, (j), i € N(1,m—1).

Proof. Part (a) followsfrom Lemma3.1. Also, for Part (b) we denotethat inthe concluson of Theorem 3.2,
m cannot begreater than 1.

Corollary 3.5.
Let u(k) beasinCorollary 3.3. Then, exactly one of thefollowing istrue
1 limALu(k)=0,i e N(1,m-1)
k— o0

2. There is an odd integer a, 1<a<n-1 such that |jmA}?u(k)=0 for 1<i<a-1,

k—o00
lim A7°u(k) >0 (firite), Jim A7 *"u(k) >0 and Jim Aju(k) =00, 0<i<n-a-2
—00 k— 00 —00
Proof. Theproof iscontained in Theorem 3.2 and Corollary 3.4.
Theorem 3.6.

(Generalized Discrete Arzela- Ascoli’ stheorem) A bounded, uniformly Cauchy subset Q2 of U isrelatively
compact.

Proof . By Lemma2.5, it sufficesto construct afinite e — net for any ¢ > 0. We know that for any ¢ >0,
therearereal numbersM, and K, suchthat for any uec Q

Ju(m, k) —u(m’,k")| < % for (m k) e D, (m',k’) e D’. (11)

Let B be a bounded of Q, that is, |u|<B,ucQ. Choose a real number L and real numbers

\Y/

i) SVorp < <V where | Zk—[klg]f such that Vii | =—B, v(L)=B and

V(i +1)0 + ) —Vv(i)| < %,i e[LL) (12)

We defineadouble sequence y ={ y(m,k)},m> M, k > K asfollows: let y(m,k) beoneof thevaues
Ve Vorajoresv} for M<m<M,, K<k<K,; let y(mk)=y(mK,) for (mk)eD;; let
y(mk) = y(M,,K,) for (mk) € D]. Clearly, thedoublefunction y ={y(m,k)} m>M, k> K belongstoU
LetV bethe set of all double functiony defined as above. Notethat V includes | [M,~M+0(K,~K+017¢ quch double

function.
We claimthat V isafinite e —net for Q. For any uin Q wemust show that VV containsadoublefunctiony

which differsfrom u by lessthan ¢ at all positiveinteger pairs(m, k), m>M, k>K.ForeachM <m<M,,

K <k <K,, choosey(m K)in{v,,;,V,, ;,---,V } suchthat

+j?

min |u(m k) —v(p)|. (13)

1<p<L

u(m, k) — y(mk)|

Let y(mKk) = y(mK,),(mKk)e D),
y(mk) = y(M,,k),(mk)eD;,
y(mk) = y(M,,K,),(mk)eDj, (14



554

V. Chandrasekar and V. Srimanju

Hence, y ={y(m,k)}, m>M, k> K beongstoV Inview of (12) and (13), we have

lu(m k) — y(mk)| < %,Mgmng,nggKl. (15)

For (m,k) € DJ, (6) and (15) imply that

u(m k) — y(mk)| = [u(mk)—y(mK,)|
< Ju(m k) —u(m, K )|+ u(m K,) — y(mK))| <e. (16)

For (m,k) € D, (6) and (15) imply that

u(m, k) — y(mk)| = |u(m, k) — y(M,,K)|
< Ju(m, k) —u(M,, K)|+|u(M, k) — y(M, k)| < & (17)

For (m,k) € D}, (6) and (15) imply that

ju(m k) —y(mKk)| = Ju(mk)—y(M,,K,)|
< Ju(m. k) —u(M,, K )[+[u(M,, K,) - y(M, Ky)|<e  (18)

Equation (15), (16), (17), and (18) imply that ||y —ul| < €. Theproof iscomplete.
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