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DISCRETE RAMANUJAN-FOURIER
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ABSTRACT

An arithmetical function f or a discrete signal {f(n)} is said to be even (mod r)
if f(n) = f((n, r)) for all n � �, where (n, r) is the greatest common divisor of
n and r. We adopt a linear algebraic approach to show that the Discrete
Fourier Transform (DFT) of an even function or an even discrete signal (mod
r) can be written in terms of Ramanujan sums, which are integer-valued
functions that can be computed recursively. The DFT may thus in this case be
referred to as the Discrete Ramanujan-Fourier Transform (DRFT).
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INTRODUCTION

An arithmetical function is usually defined as a complex-valued function defined
on the set �+ of positive integers. In this paper we define an arithmetical function
as a complex-valued function defined on the set � of integers. Thus, the concept of
an arithmetical function is the same as the concept of a discrete signal. Throughout
this paper we use the term “arithmetical function” but we could instead use the
term “discrete signal”.

For a positive integer r, an arithmetical function f is said to be periodic (mod r)
if f(n+r) = f(n) for all n � �. Every periodic function f (mod r) can be written
uniquely as
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and �
k
 denotes the periodic function (mod r) defined as

�
k
(n) = exp(2�ikn/r).

The function F
f
  in (2) is referred to as the Discrete Fourier Transform (DFT)

of f, and (1) is the Inverse Discrete Fourier Transform (IDFT).

An arithmetical function f is said to be even (mod r) if

f(n) = f((n, r))

for all n � �, where (n, r) is the greatest common divisor of n and r. It is easy to see
that every even function (mod r) is periodic (mod r). Ramanujan’s sum C(n, r) is
defined as

(mod )
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and is an example of an even function (mod r).

In this paper we show that the DFT (2) and IDFT (1) of an even function f
(mod r) can be written in a concise form using Ramanujan’s sum C(n, r), see
Section 3. We also review a proof of (1) and (2) for periodic functions (mod r),
see Section 2, and review the Cauchy product of periodic functions (mod r), see
Section 4.

The results of this paper may be considered to be known in number theory.
They have not been presented exactly in this form and we hope that this paper will
provide a clear approach to the elementary theory of even functions (mod r). We
also hope that this paper will be useful to the applied mathematics community.

The concept of an even function (mod r) originates from Cohen [2] and was
further studied by Cohen in subsequent papers [3, 4, 5]. General accounts of even
functions (mod r) can be found in the books by McCarthy [8] and Sivaramakrishnan
[13]. For recent papers on even functions (mod r) we refer to [11, 12, 14]. The
paper [10] deals with even discrete signals (mod r). Material on periodic functions
(mod r) can be found in the book by Apostol [1]. General background material on
arithmetical functions can be found in [1, 8, 13] and on discrete signals in [9].

PROOF OF (1) AND (2)

Let P
r
 denote the set of all periodic arithmetical functions (mod r). It is clear that

P
r
 is a complex vector space under the usual addition and scalar multiplication. In

fact, P
r
 is isomorphic to �r. Further, P

r
 is a complex inner product space under the

Euclidean inner product given as
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The set {r–1/2 �
k
 : k = 1, 2, . . . , r} is an orthonormal basis of P

r
. Thus, every f � P

r

can be written uniquely as

f(n) = 
1/ 2 1/ 2
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This proves (1) and (2).

DFT AND IDFT FOR EVEN FUNCTIONS (MOD r)

Let E
r
 denote the set of all even functions (mod r). The set E

r
 forms a complex

vector space under the usual addition and scalar multiplication. In fact, E
r
 is a

subspace of P
r
. Thus (1) and (2) hold for f � E

r
. We can also present (1) and (2) for

f � E
r
 in terms of Ramanujan’s sum as is shown below.

Note that Ramanujan’s sum C(n, r) is an integer for all n � � and can be
evaluated by addition and subtraction of integers. In fact, C(n, r) can be written as
C(n, r) = �

d|(n,r),d>0
 dµ(r/d), where µ is the Möbius function defined as

µ(r) = 1 2
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Ramanujan’s sum C(n, r) can also be computed recursively, see [10].

An arithmetical function f � E
r
 is completely determined by its values f(d)

with d|r (d > 0). Thus E
r
 is isomorphic to ��(r), where � (r) is the number of the

positive divisors of r. The inner product (3) in P
r
 can be written in E

r
 in terms of the

positive divisors of r. In fact, we have
/
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where � is Euler’s totient function (�(r) being the number of integers x (mod r)
such that (x, r) = 1), and thus (3) can be written for f, g � E

r
 as
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Theorem 1. The set

1
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is an orthonormal basis of the inner product space E
r
.

Proof: As the dimension of the inner product space E
r
 is � (r) and the number

of elements in the set (5) is � (r), it suffices to show the set (5) is an orthonormal
subset of E

r
. This follows easily from the relation
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where d
1
 | r and d

2
 | r (d

1
, d

2
 > 0), see [8, p. 79].

We now present (1) and (2) for f � E
r
.

Theorem 2. Every f � E
r
 can be written uniquely as
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Proof: On the basis of Theorem 3.1,
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Applying (3) to (8) we obtain (6) and (7).

The function R
f
 in (7) may be referred to as the Discrete Ramanujan-Fourier

Transform of f, and (6) may be referred to as the Inverse Discrete Ramanujan-
Fourier Transform. Cf. [6].

Another expression of (7) can be obtained easily. Namely, applying (4) to (8)
and then applying

�(e)C(r/e, d) = �(d)C(r/d, e)

(see [8, p. 93]) we obtain
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Note that (6) can also be derived from (1). In fact, if f � E
r
, then (2) can be

written as
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A similar argument shows (6) with R
f
 (d) = F

f
 (r/d). We omit the details.

THE CAUCHY PRODUCT

The Cauchy product h of periodic functions f and g (mod r) is defined as
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It is well known that h is the periodic function (mod r) such that F
h
 = F
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follows from the property
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Analogously, if h is the Cauchy product of f � E
r
 and g � E

r
, then h � E

r
 with R

h
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R
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. This follows from the property
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