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MODELLING OF NON-NEWTONIAN BLOOD
FLOW RESISTANCE AND PRESSURE DROP
THROUGH AN ARTERY
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ABSTRACT: A model of blood flow through an artery has been formulated for improved
generalized geometry of multiple stenosis located at equispaced points. We have assumed
that the stenosis is mild and radially non-symmetric. A set of equations describes the
resistance to flow ratio of an artery. Analytic solutions are based on homogenous and
irrotational flow through mathematically constructed vessels. Variations in resistance to
flow ratio are subjected to alterations in flow behaviour index, structural variations in
relation to magnitude of vessel stenosis and multiple abnormal segments. Graphical analysis
demonstrates that the pressure drop across the stenosis decreases as the parameter 6/R,
increases. The formulation of this model is mathematically more general and includes the
results of the previous investigators as a special situation.
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1. INTRODUCTION

The abnormal and unnatural growth in the arterial wall thickness that develops at various
locations of the cardiovascular system under diseased conditions is called arteriosclerosis
or stenosis. The word stenosis is a medical term which means narrowing of any body
passage, tube or orifice. This can cause serious circulatory disorders by reducing or
occluding the blood supply. For instance, stenosis in the arteries supplying blood to
brain can bring about cerebral strokes; likewise in coronary arteries, it can cause
myocardial infarction leading to the heart failure. The actual causes of the stenosis are
not well known but it has been suggested that the deposits of the cholesterol on the
arterial wall and the proliferation of connective tissues may be responsible. Due to
stenosis in the human artery the flow of blood is disturbed and resistance to flow becomes
higher than that of normal one. As such fluid mechanical behaviour of an arterial stenosis
has drawn considerable attention from various researchers like Young and Tsai [1],
Lee and Fung [2], Rodbard [3]. The Rheology of circulation was deeply discussed by
Whitmore [4]. Sanyal and Maji [5] investigated the unsteady blood flow through an
indented tube in presence of stenosis. Young [6] observed the effect of time-dependent
stenosis on flow of a Newtonian fluid through a tube. Chakravarty and Datta [7]
performed rheological study on the effect of mild stenoses on the flow behavior of
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blood in a stenosed arterial segment. The various geometries of stenosis have been
suggested by the researchers.

The cosine-shaped geometry was considered and analysed with different parameters
by many researchers like Young [2], Kapur [8], Chakravarty [9]. The power-law and
casson fluid models with cosine-shaped geometry were discussed by Shukla et al., [10].
The radially nonsymmetric stenosis has been analysed by Sanyal and Maji [5], Srivastava
and Saxena [11], Srivastava [12]. The effects of shape of stenosis on the resistance to
blood flow through an artery has been investigated by Haldar [13]. Due to the presence
of a new parameter the formulation of our model is mathematically more general and
includes the model of Haldar [13] as a special case.

2. MATHEMATICAL MODELS OF BLoOD FLow

The non-Newtonian properties of blood are appropriate for the use of the Power law,
Herschel-Bulkey, Casson, and Bingham models.

The power law or Ostwald de-waele model describes a type of time independent
non-Newtonian fluid with shear dependent viscosity. The constitutive equation of the
power law model is

T=my". (D)

Here, 1 is the shear stress, v is the shear strain rate, m is the consistency and n is the
flow behaviour index. There is no yield stress to so the equation does not model
situations where there is a finite shear stress required to overcome viscosity and start
flow. The shear strain rate y is a function of t and is proportional to the rate of decrease
of axial velocity v along the arterial radius:

dv
y = =——. 2
y=f(1) a ()

The three main categories of power law fluids are pseudo plastic. Newtoninan and
dilatent, which depend on the flow behaviour index. For pseudo plastic fluids, n < 1,
the apparent viscosity decreases as the shear strain rate increases. If n = 1, the Power
law model reduces to its Newtonian case and m = W is the viscosity of the fluid. Bio-
fluids such as blood that is described by the power law model are pseudo plastic.

2.1 Formulation of the Mathematical Model

We have considered an artery having mild stenosis. The flow of blood is assumed to be
steady, laminar and fully-developed. Blood is taken as a power-law fluid.

It is assumed that stenosis is symmetrical about the axis but non-symmetrical with
respect to radial co-ordinates. The mathematical expression for geometry can be written as,
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1-A[Ly "(z—kd = (k—1) Ly) — (z —kd = (k = 1) Ly)"];
k(d+Ly)—Ly<z<k(d+Ly)

I; otherwise.

R(2) _
RO

where

5= 6Ss/s71
RyL(s —1)

and J denotes the maximum height of the stenosis at

z=kd+(k—1)Ly+Ly/s"* !
where
R, : Radius of normal tube
R (z) : Radius of stenotic region
L : The length of the artery

L. : The length of the stenosis
d : Distance between equispaced points
S

: Maximum height of stenosis

s : Parameter determining the shape of stenosis (s > 2)

k : Number of stenoses that appear in arterial lumen

The schemateic diagram of the flow is given by the Fig. 1
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Figure 1

For power-law fluid, we have

R(Z)
0= Io 2nr.vdr
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For variability of circumferential geometry in the transverse section of the artery,
the arterial wall radius R(z) is taken as a function of z. Axial velocity is denoted by V.
The flow rate through the artery is

R(2)
0=2n Io rv.dr. )
The boundary conditions are,
V=0 at r=R(2); k(d+L)—-L,<z<k(d+L) ®)
V=0 at r=R; elsewhere. 9)
The equation (7) can be re-expressed as
_(R® _ R(2) 5 _ ﬂ
Q=[ "Trvdr=n|r ( drjdr. (10)
Substituting equation (2) into (10) leads to
0=n[""rr@ar. (1)
The Shear stress
. dv r dp
=1(r)=——=-—-—"+, (12)
=1 dr 2 dz

where P is the pressure. Therefore the value of t at r = R(z) is

T = TRE@) -T2 (13)
74

Re-expression of the integration in (10) and using equations (12) and (13) yields

0==R@ [ Pf@ar. (14)
Tk

Here, the plasma layer is assumed to be negligible and 1, is the shear stress at the wall.

It implies

P(2)= 210 [3n+1] 15)

Now integrating equation (15) along the length of artery and using conditions p = p,
atZ=0andp=p, atz=L.
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We obtain

3n+1 Y dz
AP:PI_PZZ[ n QJ R3n+l.[(R/Ro)3n+l (16)

where R/R, is given by equation (3).

The resistance to flow A is defined by

_A-P,_AP
Q 0
which on using equation (16) gives
(n=1) n L
x_2“g 1 [3n+1J I dz3 . (17)
For no stenosis (normal artery)
2uLQ" Y I
Ay = = 3Q 1 [3n+ J ) (18)
Ry" nm
L
since I dz=1.
0

Therefore, division of flow resistance for an abnormal artery with a normal one
yields the flow resistance ratio

AR (19)

L
J' dz
3n+l "
Ay Ly (RIR)™
The flow resistance equation takes into consideration the overlapping wall segments
to form a geometrically complex shape. When comparing flow resistance ratios, the

arterial length L is arbitrarily set with a unit value of 1 to ease the mathematical
formulation. For a normal artery,

Isz()Ldzzl.

Therefore, division of flow resistance for an abnormal artery with a normal one
yields the flow resistance ratio.
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X:I—R:I
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For normal artery, R = R, and this gives a flow resistance ratio of one. For a fully

occluded artery R = 0 and the flow resistance is infinite.

The non-dimensional form of resistance to flow, denoted by A, is given as

kpax  k(d+Ly)
- Ly, 1
e | d . (20)
max L L 1 3n+1
k=1 k(d+Lg)-L, § 51| Ly (Z—kd—(k—l)Lo)
1

RyLy s-1 —(z—kd—(k-1)L,)’
where n is power law index.

3. RESuULTS

Pressure Drop across the Stenosis and across the Whole Length of the Artery

P@=-- MG (L] ey
0z R(2) nm

So the pressure drop across the length of the stenosis is

n 3n+1 " 3n+1
AP =2uQ jR(z) dz . (22)
nm 0
From equation (3)
n n L
AP = 2H3Q+1[3n+1j I - 1 _ dz 23)
(Ry)™ nt ) o A=ALy B -’ D™

where

B=z—kd—(k-1)L,

s/s—1
o B
RyLi(s —1)
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For symmetric stenosis, s = 2.

_8uQ" 3n+1"L 1
0 0 0
where
- 462 .
Ry L

For non-symmetric stenosis, S > 2, for § = 6.

n n L
APzgl:nQJrl [3n+1J .[ 3n+1 dZ
R 5 (- MLOB B°])

where,

1728
RyLg

If there is no stenosis, then /R, = 1 and the pressure drop across the stenosis
length for symmetric stenosis is

L
(Ap)PngI‘f e (25)
"Ry 01— (LB - BY)
LO

the subscript p denotes Poiseuille flow.

For the whole length of the artery L =1, k=1

AP
P,

K1:

The value of K is given in the graph. The graph shows that the value of K does not
increase significantly as &/R, exceeds 0.1.
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4. CONCLUSION

The power law model of blood flow through an atherosclerotic artery can solve the
flow resistance through the abnormal segment of the artery for varying shape parameters.
From graphical representation, our study reveals that for a particular value of length of
artery (z), the pressure drop k, across the length of the whole artery is performed for
the parametric values corresponding to 6/R, greater than O.1.

Clinical data such as pressure drop in atherosclerotic vessels may be useful as
reference data for the assessment of flow resistance through variable arterial structures.
Future studies to verify our analytical model can be performed using such clinical
information.
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