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Abstract. In this paper, we derive a Clark-Ocone type formula under change
of measure for multidimensional Lévy processes. This is a multidimensional
version of [14, 15, 9]. By using it, we obtain explicit representations of lo-
cally risk-minimizing hedging strategy for markets driven by multidimen-
sional Lévy processes. This is a generalization of [3].

1. Introduction

The representations of functionals of Lévy processes by stochastic integrals are
important theorems in Probability theory. In particular, the Clark-Ocone (in
short, CO) formula is an explicit stochastic integral representation for random
variables in terms of Malliavin derivatives:

F = E[F ] +

d
∑

j=1

∫

[0,T ]×R

E[Dj
t,zF |Ft−]Qj(dt, dz)

= E[F ] +

d
∑

j=1

σj

∫ T

0

E[Dj
t,0F |Ft−]dWj,t +

d
∑

j=1

∫ T

0

∫

R0

E[Dj
t,zF |Ft−]zÑj(dt, dz).

We precisely define notations and give sufficient conditions for this formula in
section 4. There are many results of CO formulas (see introduction of [9, 14, 15] and
[6]). Girsanov transformations versions of CO formulas were also studied by many
people because many applications in mathematical finance require representation
of random variables with respect to risk neutral martingale measure. In this paper,
we derive a Clark-Ocone type formula under change of measure (in short, COCM)
for multidimensional Lévy processes:

F = EP∗ [F ] +

d
∑

j=1

σj

∫ T

0

EP∗

[

Dj
t,0F − FKj

t

∣

∣

∣

∣

Ft−

]

dW P
∗

j,t

+

d
∑

j=1

∫ T

0

∫

R0

EP∗ [F (Hj,∗
t,z − 1) + zHj,∗

t,zD
j
t,zF |Ft−]Ñ

P
∗

j (dt, dz), a.s.
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We precisely define notations and give sufficient conditions for this formula in
section 5.

On the other hand, locally risk-minimizing hedging strategy (LRM, for short)
is a very well-known hedging method for contingent claims in a quadratic way
(see [11, 12]). In this paper, we obtain an explicit representation of LRM in an
incomplete financial market driven by a multidimensional Lévy process by using
Malliavin calculus because in real markets, investors sell an option and want to
replicate its payoff F (T, ST ) by trading many stocks (liquid assets). This result is
a multidimensional version of Arai-Suzuki [3].

This paper is organized as follows: In Section 2-4, we develop Malliavin calculus
for multidimensional Lévy processes. In Section 5, by using results of Section 2-
4, we derive a COCM for multidimensional Lévy processes. In Section 6, we
consider LRM for multidimensional Lévy markets. In Section 7, by using the
result of Section 5, we derive explicit representations of LRM for markets driven
by multidimensional Lévy processes.

2. Malliavin Calculus for Multidimensional Canonical

Lévy Processes

2.1. Setting. We begin with preparation of the probabilistic framework. Let
T > 0 be a finite time horizon, (ΩW ,FW ,PW ) a one-dimensional Wiener space
on [0, T ]; and W a one-dimensional standard Brownian motion with W0 = 0.
Let (ΩJ ,FJ ,PJ) be the canonical Lévy space (see Solé et al. [13], Delong and
Imkeller [5] and Di Nunno et al. [6]) for a pure jump Lévy process J on [0, T ]
with Lévy measure ν, that is, ΩJ = ∪∞

n=0([0, T ] × R0)
n, where R0 := R \ {0};

and Jt(ωJ) =
∑n

i=1 zi1{ti≤t} for t ∈ [0, T ] and ωJ = ((t1, z1), . . . , (tn, zn)) ∈

([0, T ] × R0)
n. Note that ([0, T ] × R0)

0 represents an empty sequence. Now,
we assume that

∫

R0
z2ν(dz) < ∞; and denote (Ω0,F0,P0) = (ΩW × ΩJ ,FW ×

FJ ,PW ×PJ) and we call it canonical space. Let F = {F0
t }t∈[0,T ] be the canonical

filtration completed for P. Let X0 be a square integrable centered Lévy process
on (Ω0,F0,P0) represented as

X0
t = σWt + Jt − t

∫

R0

zν(dz), (2.1)

where σ > 0. Denoting by N the Poisson random measure defined as N(t, A) :=
∑

s≤t 1A(∆Xs), A ∈ B(R0) and t ∈ [0, T ], where ∆Xs := Xs −Xs−, we have Jt =
∫ t

0

∫

R0
zN(ds, dz). In addition, we define its compensated measure as Ñ(dt, dz) :=

N(dt, dz)− ν(dz)dt. Thus, we can rewrite (2.1) as

X0
t = σWt +

∫ t

0

∫

R0

zÑ(ds, dz). (2.2)

Now, let (Ω1,F1,P1), · · · , (Ωd,Fd,Pd) be d independent copies of (Ω0,F0,P0) for
some d ≥ 1. We set (Ω,F ,P) = (Ω1 × · · · × Ωd,F1 × · · · × Fd,P1 × · · · × Pd)
and we call it multidimensional canonical space. Let X = (X1, · · · , Xd) be a

d-dimensional square integrable centered Lévy process on (Ω,F ,P) where Xj
t =

σjWj,t +
∫ t

0

∫

R0
zÑj(ds, dz), 1 ≤ j ≤ d where σj > 0, Wj,t a Brownian motion
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on (Ωj ,F j ,Pj), Ñj the compensated Poisson random measure on (Ωj ,F j ,Pj) has
Lévy measure νj satisfies

∫

R0
z2νj(dz) < ∞.

We consider the finite measure qj defined on [0, T ]× R by

qj(E) = σ2
j

∫

E(0)

dtδ0(dz) +

∫

E′

z2dtνj(dz), E ∈ B([0, T ]× R),

where E(0) = {(t, 0) ∈ [0, T ]×R; (t, 0) ∈ E} and E′ = E −E(0), and the random
measure Qj on [0, T ]× R by

Qj(E) = σj

∫

E(0)

dWj,tδ0(dz) +

∫

E′

zÑj(dt, dz), E ∈ B([0, T ]× R).

We consider the product of the form Hα(ω) :=
∏d

j=1 Iα(j) (fj,α(j))(ωj) for any

α ∈ J d, which is the set of indexes of the form α = (α(1), · · · , α(d)) with α(j) =
0, 1, · · · , for j = 1, · · · , d. Here Iα(j) (fj,α(j)) is the α(j)-fold iterated Itô integral
with respect to random measure Q:

Iα(j) (fj,α(j))

:=

∫

([0,T ]×R)α
(j)

fj,α(j)((t1, z1), · · · , (tα(j) , zα(j)))Qj(dt1, dz1) · · ·Qj(dtα(j) , dzα(j))

where fj,α(j) is deterministic function satisfying
∫

([0,T ]×R)α
(j)

|fj,α(j)((t1, z1), · · · , (tα(j) , zα(j)))|2qj(dt1, dz1) · · · q
j(dtα(j) , dzα(j))

< ∞.

The elements Hα, α ∈ J d, constitute an orthogonal basis in L2(P). Any real FT

-measurable random variable F ∈ L2(P) can be written as F =
∑

α∈J d Hα for
an appropriate choice of deterministic symmetric integrands in the iterated Itô
integrals.

Definition 2.1. (1) Let D
1,2 denote the set of F -measurable random variables

F ∈ L2(P) with the representation

F =
∑

α∈J d

Hα,Hα =

d
∏

j=1

Iα(j) (fj,α(j))(ωj)

satisfying
d
∑

j=1

∑

α∈J d

α(j)α(j)!‖fj,α(j)‖2
L2(([0,T ]×R)α

(j)
)
< ∞.

(2) Let F ∈ D
1,2. Then we define the Malliavin derivative DF of a random variable

F ∈ D
1,2 as the gradient

Dt,zF = (D1
t,zF, · · · , D

d
t,zF )

where

Dj
t,zF :=

∑

α∈J d

α(j)
Hα−ǫ(j)(t, z), t ∈ [0, T ], z ∈ R, j = 1, · · · , d.
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Here ǫ(j) = (0, · · · , 0, 1, 0, · · · , 0) with 1 in the jth position.
(3) Let D

j,1,2, j = 1, · · · , d denote the set of F -measurable random variables
F ∈ L2(P) with the representation

F =
∑

α∈J d

Hα,Hα =
d
∏

j=1

Iα(j) (fj,α(j))(ωj)

satisfying
∑

α∈J d

α(j)α(j)!‖fj,α(j)‖2
L2(([0,T ]×R)α

(j)
)
< ∞

for j = 1, · · · , d.

We next establish the following fundamental result.

Proposition 2.2 (The closability of operator D). Let F ∈ L2(P) and Fk ∈
D

j,1,2, k ∈ N such that
(1) limk→∞ Fk = F in L2(P),

(2) {Dj
t,zFk}

∞
k=1 converges in L2(qj × P).

Then F ∈ D
j,1,2 and limk→∞ Dj

t,zFk = Dj
t,zF in L2(q × P).

Proof. We can show this proposition by the same sort argument as Theorem 12.6

of Di Nunno et al. [6]. Let F =
∑

α∈J d Hα,Hα =
∏d

j=1 Iα(j) (fj,α(j)) and F k =
∑

α∈J d H
k
α,H

k
α =

∏d
j=1 Iα(j) (fk

j,α(j)). Then by assumption (1), we have

∑

α∈J d

α(j)!‖fj,α(j) − fk
j,α(j)‖

2

L2(([0,T ]×R)α
(j)

)
= 0.

This implies that limk→∞ fk
j,α(j) = fj,α(j) in L2

T,q,n for all α ∈ J d. From assumption

(2), we deduce that

lim
k,m→∞

∑

α∈J d

α(j)α(j)!‖fk
j,α(j) − fm

j,α(j)‖
2

L2(([0,T ]×R)α
(j)

)

= lim
k,m→∞

E

[

∫

[0,T ]×R

(

Dj
t,zFk −Dj

t,zFm

)2

qj(dt, dz)

]

= 0.

Hence we obtain

lim
k→∞

∑

α∈J d

α(j)α(j)!‖fk
j,α(j) − fj,α(j)‖2

L2(([0,T ]×R)α
(j)

)

≤ 2 lim
k→∞

∑

α∈J d

α(j)α(j)! lim inf
m→∞

‖fk
j,α(j) − fm

j,α(j)‖
2

L2(([0,T ]×R)α
(j)

)

≤ 2 lim
k→∞

lim inf
m→∞

∑

α∈J d

α(j)α(j)!‖fk
j,α(j) − fm

j,α(j)‖
2

L2(([0,T ]×R)α
(j)

)
= 0.

Therefore, we can see that F ∈ D
j,1,2 and limk→∞ Dj

t,zFk = Dj
t,zF in L2(qj ×

P). �

We next introduce a chain rule for the Malliavin derivatives.
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Proposition 2.3. Let ϕ : Rn → R, n ≥ 1 be a C1-function with bounded deriva-
tive. If F = (F1, · · · , Fn) ∈ (Dj,1,2)n, then ϕ(F ) ∈ D

j,1,2 and

Dj
t,zϕ(F ) =

n
∑

k=1

∂ϕ

∂xk
(F )Dj

t,0Fk1{0}(z)

+
ϕ(F1 + zDj

t,zF1, · · · , Fn + zDj
t,zFn)− ϕ(F1, · · · , Fn)

z
1R0(z).

holds.

Proof. We can show this proposition by the same sort argument as Proposition
2.6 in [14]. �

Proposition 2.4 (Chain rule). Let ϕ ∈ C1(Rn;R) and F = (F1, · · · , Fn), where
F1, · · · , Fn ∈ D

j,1,2. Suppose that ϕ(F ) ∈ L2(P) and

n
∑

k=1

∂

∂xk
ϕ(F )Dj

t,0Fk1{0}(z)

+
ϕ(F1 + zDj

t,zF1, · · · , Fn + zDj
t,zFn)− ϕ(F1, · · · , Fn)

z
1R0(z) ∈ L2(qj × P).

Then we obtain ϕ(F ) ∈ D
j,1,2 and

Dj
t,zϕ(F ) =

n
∑

k=1

∂ϕ

∂xk
(F )Dj

t,0Fk1{0}(z)

+
ϕ(F1 + zDj

t,zF1, · · · , Fn + zDj
t,zFn)− ϕ(F1, · · · , Fn)

z
1R0(z).

Proof. We can show this proposition by the same sort argument as Lemma A.1 of
Ocone-Karatzas [7]. �

If we take ϕ(x, y) = xy, then we can derive the following product rule.

Corollary 2.5. Let F1, F2 ∈ D
j,1,2 and F1F2 ∈ L2(P). Moreover, assume that

F1D
j
t,zF2 + F2D

j
t,zF1 + zDj

t,zF1 ·D
j
t,zF2 ∈ L2(qj × P). Then F1F2 ∈ D

1,2 and

Dj
t,zF1F2 = F1D

j
t,zF2 + F2D

j
t,zF1 + zDj

t,zF1 ·D
j
t,zF2, (2.3)

qj−a.e. (t, z) ∈ [0, T ]× R,P− a.s.

3. Commutation of Integration and the Malliavin Differentiability

In this section, we consider commutation of integration and the Malliavin dif-
ferentiability.

Definition 3.1. For 1 ≤ i, j ≤ d, we define the following: (1) Let L
j,1,2 denote

the space of product measurable and F -adapted processes Gi : Ω× [0, T ]×R→ R

satisfying

E

[

∫

[0,T ]×R

|Gi,s,x|
2qi(ds, dx)

]

< ∞,
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Gi,s,x ∈ D
j,1,2, qi−a.e. (s, x) ∈ [0, T ]× R and

E

[

∫

([0,T ]×R)2
|Dj

t,zGi,s,x|
2qi(ds, dx)qj(dt, dz)

]

< ∞.

(2) Lj,1,2
0 denotes the space of G : [0, T ]× Ω → R satisfying

(i) Gi,s ∈ D
j,1,2 for a.e. s ∈ [0, T ],

(ii) E
[

∫

[0,T ]
|Gi,s|

2ds
]

< ∞,

(iii) E
[

∫

[0,T ]×R

∫ T

0 |Dj
t,zGi,s|

2dsqj(dt, dz)
]

< ∞.

(3) Lj,1,2
1 is defined as the space of G : [0, T ]× R0 × Ω → R such that

(i) Gi,s,x ∈ D
j,1,2 for qi-a.e. (s, x) ∈ [0, T ]× R,

(ii) E
[

∫

[0,T ]×R0
|Gi,s,x|

2νi(dx)ds
]

< ∞,

(iii) E
[

∫

[0,T ]×R

∫

[0,T ]×R0
|Dj

t,zGi,s,x|
2νi(dx)dsq

j(dt, dz)
]

< ∞.

(4) L̃j,1,2
1 is defined as the space of G ∈ L

1,2 such that

(i) E

[

(

∫

[0,T ]×R0
|Gi,s,x|νi(dx)ds

)2
]

< ∞,

(ii) E

[

∫

[0,T ]×R

(

∫

[0,T ]×R0
|Dj

t,zGi,s,x|νi(dx)ds
)2

qj(dt, dz)

]

< ∞.

We next discuss the commutation relation of the stochastic integral with the
Malliavin derivative. By the same arguments of Lemmas 3.2 and 3.3 of Delong
and Imkeller [5], we can derive the following:

Proposition 3.2. Let Gi : Ω× [0, T ]× R → R be a predictable process with

E

[

∫

[0,T ]×R

|Gi,s,x|
2qi(ds, dx)

]

< ∞.

Then

G ∈ L
j,1,2 if and only if

∫

[0,T ]×R

Gi,s,xQi(ds, dx) ∈ D
j,1,2.

Furthermore, if
∫

[0,T ]×R
Gs,xQi(ds, dx) ∈ D

1,2, then we have

Dj
t,z

∫

[0,T ]×R

Gs,xQ(ds, dx) = Gi
t,z +

∫

[0,T ]×R

Dj
t,zGs,xQi(ds, dx), P−a.s.,

for i = j and

Dj
t,z

∫

[0,T ]×R

Gi,s,xQi(ds, dx) =

∫

[0,T ]×R

Dj
t,zGs,xQi(ds, dx), P−a.s.,

for i 6= j.
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Proposition 3.3. Assume that Gi : Ω × [0, T ]× R → R is a product measurable
and F -adapted process, η on [0, T ]× R a finite measure, so that conditions

E

[

∫

[0,T ]×R

|Gi,s,x|
2η(ds, dx)

]

< ∞,

Gi,s,x ∈ D
j,1,2, for η−a.e. (s, x) ∈ [0, T ]× R,

E

[

∫

([0,T ]×R)2
|Dj

t,zGi,s,x|
2η(ds, dx)q(dt, dz)

]

< ∞

are satisfied. Then we have
∫

[0,T ]×R

Gi,s,xη(ds, dx) ∈ D
j,1,2

and the differentiation rule

Dt,z

∫

[0,T ]×R

Gi,s,xη(ds, dx) =

∫

[0,T ]×R

Dj
t,zGs,xη(ds, dx)

holds for qj -a.e. (t, z) ∈ [0, T ]× R,P -a.s.

By using σ-finiteness of ν and Proposition 3.3, we can show the following propo-
sition.

Proposition 3.4. Let G ∈ L̃
1,2
1 . Then

∫

[0,T ]×R0

Gs,xν(dx)ds ∈ D
1,2

and the differentiation rule

Dt,z

∫

[0,T ]×R0

Gs,xν(dx)ds =

∫

[0,T ]×R0

Dt,zGs,xν(dx)ds

holds for q -a.e. (t, z) ∈ [0, T ]× R,P -a.s.

Proof. We can show the same step as Proposition 3.5 in [14]. �

4. Clark-Ocone Type Formula for Canonical Multidimensional

Lévy Functionals and Girsanov Type Theorem

4.1. Clark-Ocone type formula for canonical multidimensional Lévy

functionals. We next present an explicit form of the martingale representation
formula by using Malliavin calculus (see e.g., Theorem 12.20 in Di Nunno et al.
[6]).

Proposition 4.1. Let F ∈ D
1,2. Then we have

F = E[F ] +

d
∑

j=1

∫

[0,T ]×R

E[Dj
t,zF |Ft−]Qj(dt, dz)

= E[F ] +

d
∑

j=1

σj

∫ T

0

E[Dj
t,0F |Ft−]dWj,t +

d
∑

j=1

∫ T

0

∫

R0

E[Dj
t,zF |Ft−]zÑj(dt, dz).

(4.1)
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Proof. The martingale representation theorem (see, e.g. Section 2 of Benth et al.
[4]) provides that

F = E[F ] +

d
∑

j=1

∫ T

0

ϕ
(1)
j,s−dWj,s +

d
∑

j=1

∫ T

0

∫

R0

ϕ
(2)
j,s−,xÑj(ds, dx)

= E[F ] +

d
∑

j=1

∫ T

0

ϕ
(1)
j,s−

σj
σdWj,s +

d
∑

j=1

∫ T

0

∫

R0

ϕ
(2)
j,s−,x

x
xÑj(ds, dx)

= E[F ] +

d
∑

j=1

∫ T

0

∫

R

(

ϕ
(1)
j,s−

σj
1{0}(x) +

ϕ
(2)
j,s−,x

x
1R0(x)

)

Qj(ds, dx),

where ϕ
(1)
j and ϕ

(2)
j /x, x 6= 0 are L2(qj ×P)-predictable processes. Since F ∈ D

1,2,
Proposition 3.3 implies that

Dj
t,zF =

ϕ
(1)
j,t−

σj
1{0}(z) +

ϕ
(2)
j,t−,z

z
1R0(z)

+
d
∑

i=1

∫ T

t−

∫

R

Dj
t,z

(

ϕ
(1)
i,s−

σi
1{0}(x) +

ϕ
(2)
i,s−,x

x
1R0(x)

)

Qi(ds, dx). (4.2)

Hence we have

E[Dj
t,zF |Ft−] =

ϕ
(1)
j,t−

σj
1{0}(z) +

ϕ
(2)
j,t−,z

z
1R0(z).

Therefore, we can see that

ϕ
(1)
j,t− = σjE[D

j
t,0F |Ft−]

ϕ
(2)
j,t−,z = zE[Dj

t,zF |Ft−].

�

4.2. Girsanov theorem for Lévy processes. We recall the Girsanov theorem
for Lévy processes (see, e.g., Theorem 2.5 of Øksendal and Sulem [8]).

Theorem 4.2. Let θ(s, x) ∈ R
d with θi,s,x < 1, s ∈ [0, T ], x ∈ R0 and us ∈ R

d, s ∈
[0, T ], be predictable processes such that

d
∑

i=1

∫ T

0

∫

R0

{| log(1− θi,s,x)|
2 + θ2i,s,x}νi(dx)ds < ∞, a.s.,

d
∑

i=1

∫ T

0

u2
i,sds < ∞, a.s.
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Moreover, we denote

Zt := exp

(

−

d
∑

i=1

∫ t

0

ui,sdWi,s −
1

2

d
∑

i=1

∫ t

0

u2
i,sds

+

d
∑

i=1

∫ t

0

∫

R0

log(1− θi,s,x)Ñi(ds, dx)

+

d
∑

i=1

∫ t

0

∫

R0

(log(1− θi,s,x) + θi,s,x)νi(dx)ds

)

,

t ∈ [0, T ]. Define a measure P
∗ on FT by

dP∗(ω) = ZT (ω)dP(ω),

and we assume that Z(T ) satisfies the Novikov condition, that is,

E

[

exp

(

1

2

d
∑

i=1

∫ T

0

u2
i,sds+

d
∑

i=1

∫ T

0

∫

R0

{

(1 − θi,s,x) log(1− θi,s,x) + θi,s,x

}

νi(dx)ds

)]

< ∞.

Then E[ZT ] = 1 and hence P
∗ is a probability measure on FT . Furthermore, if we

denote

ÑP
∗

i (dt, dx) := θi,t,xν(dx)dt + Ñ(dt, dx)

and

dW P
∗

i,t := utdt+ dWi,t,

then ÑP
∗

i (·, ·) and W P
∗

i (·) are the compensated Poisson random measure of Ni(·, ·)
and a standard Brownian motion under P

∗, respectively.

5. A Clark-Ocone Type Formula under Change of

Measure for Canonical Lévy Processes

5.1. A Clark-Ocone type formula under change of measure for canonical

Lévy processes. In this section, we introduce a Clark-Ocone type formula under
change of measure for canonical Lévy processes. Throughout this section, under
the same setting as Theorem 4.2, we assume the following.

Assumption 1. (1) ui, u
2
i ∈ L

j,1,2
0 ; and 2ui,sD

j
t,zui,s+ z(Dj

t,zui,s)
2 ∈ L2(qj ×P) for

a.e. s ∈ [0, T ], i, j = 1, · · · , d.

(2) θi + log(1− θi) ∈ L̃
j,1,2
1 , and log(1− θi) ∈ L

j,1,2
1 , i, j = 1, · · · , d.

(3) For q-a.e. (s, x) ∈ [0, T ] × R0, there is an εi,s,x ∈ (0, 1) such that θi,s,x <
1− εi,s,x, i = 1, · · · , d.

(4) ZT ∈ L2(P); and ZT {D
j
t,0 logZT1{0}(z) +

e
zD

j
t,z

log ZT −1
z 1R0(z)} ∈ L2(qj × P).

(5) F ∈ D
1,2 with FZT ∈ L2(P); and ZTD

j
t,zF + FDj

t,zZT + zDj
t,zF · Dj

t,zZT ∈

L2(qj × P), j = 1, · · · , d.

(6) FHj,∗
t,z , H

j,∗
t,zD

j
t,zF ∈ L1(P∗), (t, z) -a.e. whereHj,∗

t,z = exp(zDj
t,z logZT−log(1−

θj,t,z)).
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To show the main theorem, we need the following:

Lemma 5.1. We have

Dj
t,0ZT

= ZT

[

−σ−1
j uj,t −

d
∑

i=1

∫ T

0

Dj
t,0ui,sdW

P
∗

i,s −
d
∑

i=1

∫ T

0

∫

R0

Dj
t,0θi,s,x

1− θi,s,x
ÑP

∗

i (ds, dx)

]

,

(5.1)

for j = 1, · · · , d, qj-a.e. (t, z) ∈ [0, T ]× {0}, P-a.s. and

Dj
t,zZT = z−1ZT [exp(zD

j
t,z logZT )− 1] for q−a.e. (t, z) ∈ [0, T ]× R0, P−a.s.,

(5.2)

where

Dj
t,z logZT = −

d
∑

i=1

∫ T

0

Dj
t,zui,sdW

P
∗

i,s −

d
∑

i=1

1

2

∫ T

0

z(Dj
t,zui,s)

2ds

+

d
∑

i=1

∫ T

0

∫

R0

(

(1− θi,s,x)D
j
t,z log(1− θi,s,x) +Dj

t,zθi,s,x

)

νi(dx)ds

+
d
∑

i=1

∫ T

0

∫

R0

Dj
t,z log(1− θi,s,x)Ñ

P
∗

i (ds, dx) + z−1 log(1− θj,t,z),

(5.3)

for qj-a.e. (t, z) ∈ [0, T ]× R0, j = 1, · · · , d, P-a.s.

Proof. By conditions (1), (2) and (3) in Assumption 1, Propositions 3.2, 3.3 and
3.4 imply logZT ∈ D

j,1,2. Moreover, from (4) in Assumption 1, Proposition 2.4
leads to ZT ∈ D

j,1,2,

Dj
t,0ZT = ZT

[

−Dj
t,0

d
∑

i=1

∫ T

0

ui,sdWi,s −
1

2
Dj

t,0

d
∑

i=1

∫ T

0

u2
i,sds

+Dj
t,0

d
∑

i=1

∫ T

0

∫

R0

log(1 − θj,s,x)Ñj(ds, dx)

+Dj
t,0

d
∑

i=1

∫ T

0

∫

R0

(log(1− θj,s,x) + θj,s,x)νj(dx)ds

]

. (5.4)

and

Dj
t,zZT =

exp(logZT + zDj
t,z logZT )− ZT

z
= z−1ZT [exp(zD

j
t,z logZT )− 1].

We next calculate right side of (5.4). From assumption (1) in Assumption 1,
Proposition 3.3 implies

Dj
t,0

d
∑

i=1

∫ T

0

u2
i,sds =

d
∑

i=1

∫ T

0

Dj
t,0u

2
i,sds (5.5)
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and by Proposition 3.4,

Dj
t,0

d
∑

i=1

∫ T

0

∫

R0

(log(1− θi,s,x) + θi,s,x)ν(dx)ds

=

d
∑

i=1

∫ T

0

∫

R0

(Dj
t,0 log(1− θi,s,x) +Dj

t,0θi,s,x)νi(dx)ds. (5.6)

Since condition (1) in Assumption 1 holds, by Corollary 2.5, we have

Dj
t,0u

2
i,s = 2ui,sD

j
t,0us. (5.7)

We calculate Dj
t,0 log(1 − θi,s,x). From (3) in Assumption 1, we have θi,s,x <

1− εi,s,x. We fix (s, x) ∈ [0, T ]× R0. We denote

li,s,x(y) = −ε−1
i,s,xy + ε−1

i,s,x − 1 + log εi,s,x

and

gi,s,x(y) =

{

log(1− y), y < 1− εi,s,x
ls,x(y), y ≥ 1− εi,s,x

.

Then gi,s,x ∈ C1
b (R) and

log(1− θi,s,x) = gi,s,x(θi,s,x).

Hence Proposition 2.4 implies that log(1− θi,s,x) ∈ D
j,1,2 and

Dj
t,0 log(1 − θi,s,x) = Dj

t,0gi,s,x(θi,s,x) = g′i,s,x(θi,s,x)D
j
t,0θi,s,x = −

Dj
t,0θi,s,x

1− θi,s,x
.

From condition (1), (2) in Assumption 1, Proposition 3.2 implies

Dj
t,0

d
∑

i=1

∫ T

0

ui,sdWi,s = σ−1
j uj,t +

d
∑

i=1

∫ T

0

Dj
t,0ui,sdWi,s (5.8)

and

Dj
t,0

d
∑

i=1

∫ T

0

∫

R0

log(1− θi,s,x)Ñi(ds, dx)

=

d
∑

i=1

∫ T

0

∫

R0

Dj
t,0 log(1− θi,s,x)Ñi(ds, dx). (5.9)
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Hence, by (5.4) - (5.9), we obtain

Dj
t,0ZT

= ZT

[

−σ−1
j uj,t −

d
∑

i=1

∫ T

0

Dj
t,0ui,sdWi,s −

d
∑

i=1

∫ T

0

ui,sD
j
t,0ui,sds

−
d
∑

i=1

∫ T

0

∫

R0

Dj
t,0θi,s,x

1− θi,s,x
Ñi(ds, dx)

+
d
∑

i=1

∫ T

0

∫

R0

(

−
Dj

t,0θi,s,x

1− θi,s,x
+Dj

t,0θi,s,x

)

νi(dx)ds

]

= ZT

[

−σ−1
j uj,t −

d
∑

i=1

∫ T

0

Dj
t,0ui,sdW

P
∗

i,s −

d
∑

i=1

∫ T

0

∫

R0

Dj
t,0θi,s,x

1− θi,s,x
ÑP

∗

i (ds, dx)

]

.

We next calculate Dt,z logZT . By conditions (1) and (2) in Assumption 1, Propo-
sition 3.2, Proposition 3.3 and Proposition 3.4 show that

Dj
t,z logZT

= −Dj
t,z

d
∑

i=1

∫ T

0

ui,sdWi,s −
1

2

d
∑

i=1

Dj
t,z

∫ T

0

u2
i,sds

+Dj
t,z

d
∑

i=1

∫ T

0

∫

R0

x−1 log(1− θi,s,x)xÑi(ds, dx)

+Dj
t,z

d
∑

i=1

∫ T

0

∫

R0

(log(1− θi,s,x) + θi,s,x)νi(dx)ds

= −

d
∑

i=1

∫ T

0

Dj
t,zui,sdWi,s −

1

2

d
∑

i=1

∫ T

0

Dj
t,z(ui,s)

2ds

+
d
∑

i=1

∫ T

0

∫

R0

Dj
t,z log(1− θi,s,x)Ñi(ds, dx)

+

∫ T

0

∫

R0

(

Dj
t,z log(1− θi,s,x) +Dj

t,zθi,s,x

)

νi(dx)ds

+
log(1− θj,t,z)

z
. (5.10)

Now we calculate Dj
t,z(ui,s)

2. Corollary 2.5 implies

Dj
t,z(ui,s)

2 = 2ui,sD
j
t,zui,s + z(Dj

t,zui,s)
2, (5.11)
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because, ui ∈ D
j,1,2 and condition (1) in Assumption 1 hold. From equations

(5.10) and (5.11), we have

Dj
t,z logZT = −

d
∑

i=1

∫ T

0

Dj
t,zui,sdW

P
∗

i,s −

d
∑

i=1

1

2

∫ T

0

z(Dj
t,zui,s)

2ds

+

d
∑

i=1

∫ T

0

∫

R0

(

(1− θi,s,x)D
j
t,z log(1− θi,s,x) +Dj

t,zθi,s,x

)

νi(dx)ds

+

d
∑

i=1

∫ T

0

∫

R0

Dj
t,z log(1− θi,s,x)Ñ

P
∗

i (ds, dx) + z−1 log(1− θj,t,z).

�

We next introduce a Clark-Ocone type formula under change of measure for
canonical multidimensional Lévy processes.

Theorem 5.2.

F = EP∗ [F ] +

d
∑

j=1

σj

∫ T

0

EP∗

[

Dj
t,0F − FKj

t

∣

∣

∣

∣

Ft−

]

dW P
∗

j,t

+

d
∑

j=1

∫ T

0

∫

R0

EP∗ [F (Hj,∗
t,z − 1) + zHj,∗

t,zD
j
t,zF |Ft−]Ñ

P
∗

j (dt, dz), a.s.

holds, where

Kj
t =

d
∑

i=1

∫ T

0

Dj
t,0ui,sdW

P
∗

i,s +

d
∑

i=1

∫ T

0

∫

R0

Dj
t,0θi,s,x

1− θi,s,x
ÑP

∗

i (ds, dx).

Proof. First we denote Λt := Z−1
t = e− logZt , t ∈ [0, T ]. Then by the Itô formula

(see, e.g., Theorem 9.5 of Di Nunno et al. [6]), we have

dΛt = Λt−

d
∑

i=1

(

1

2
u2
i,t −

∫

R0

(log(1− θi,t,z) + θi,t,z)νi(dz)

)

dt+
1

2
Λt−

d
∑

i=1

u2
i,tdt

+ Λt−

d
∑

i=1

ui,tdWi,t +

d
∑

i=1

∫

R0

Λt−

(

1

1− θi,t,z
− 1

)

Ñi(dt, dz)

+

d
∑

i=1

∫

R0

[

Λt− ·
1

1− θi,t,z
− Λt− + Λt− log(1− θi,t,z)

]

νi(dz)dt

= Λt−

d
∑

i=1

[

u2
,itdt+ ui,tdWi,t +

∫

R0

θ2i,t,z
1− θi,t,z

νi(dz)dt

+

∫

R0

θi,t,z
1− θi,t,z

Ñi(dt, dz)

]

= Λt−

d
∑

i=1

[

ui,tdW
P
∗

i,t +

∫

R0

θi,t,z
1− θi,t,z

ÑP
∗

i (dt, dz)

]

.
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Denoting Yt := EP∗ [F |Ft], t ∈ [0, T ], we have Yt = ΛtE[ZTF |Ft] by condition (5)
in Assumption 1 and the Beyes rule (see, e.g., Lemma 4.7 of Di Nunno et al. [6]).
From (5) in Assumption 1, Corollary 2.5 implies that ZTF ∈ D

1,2. Hence we apply
Proposition 4.1 to ZTF and take conditional expectation, we have

E[ZTF |Ft] = E[ZTF ] +
d
∑

j=1

∫ t

0

∫

R

E[Dj
s,z(ZTF )|Fs−]Qj(ds, dz).

Denoting Vt := E[ZTF |Ft], we have Yt = ΛtVt. Itô’s product rule implies that

dYt = Λt−dVt + Vt−dΛt + d[Λ, V ]t

= Λt−

d
∑

j=1

[σjE[D
j
t,0(ZTF )|Ft−]dWj,t +

∫

R0

E[Dj
t,z(ZTF )|Ft−]zÑj(dt, dz)]

+ Vt−Λt−

d
∑

j=1

[

uj,tdW
P
∗

t +

∫

R0

θj,t,z
1− θj,t,z

ÑP
∗

j (dt, dz)

]

+ Λt−

d
∑

j=1

[

σjuj,tE[D
j
t,0(ZTF )|Ft−]

+

∫

R0

θj,t,z
1− θj,t,z

E[Dj
t,z(ZTF )|Ft−]zνj(dz)

]

dt

+ Λt−

d
∑

j=1

∫

R0

θj,t,z
1− θj,t,z

E[Dj
t,z(ZTF )|Ft−]zÑj(ds, dz)

= Λt−

d
∑

j=1

E[σjD
j
t,0(ZTF )|Ft−]dW

P
∗

t + Λt−

d
∑

j=1

E[ZTFuj,t|Ft−]dW
P
∗

j,t

+ Λt−

d
∑

j=1

∫

R0

E[Dj
t,z(ZTF )|Ft−]

1− θj,t,z
zÑP

∗

j (dt, dz)

+ Λt−

d
∑

j=1

∫

R0

E

[

ZTF
θj,t,z

1− θj,t,z

∣

∣

∣

∣

Ft−

]

ÑP
∗

j (dt, dz). (5.12)

Now we shall calculate Dt,0(ZTF ) and Dt,z(ZTF ). As for Dt,0(ZTF ), by (5) in
Assumption 1, Corollary 2.5 yields that

Dt,0(ZTF ) = FDt,0ZT + ZTDt,0F. (5.13)

Therefore combining (5.13) with (5.1), we can conclude

Dj
t,0(ZTF )

= FDj
t,0ZT + ZTD

j
t,0F

= FZT

[

−σ−1
j uj,t −

d
∑

i=1

∫ T

0

Dj
t,0ui,sdW

P
∗

i,s −

d
∑

i=1

∫ T

0

∫

R0

Dj
t,0θi,s,x

1− θi,s,x
ÑP

∗

i (ds, dx)

]

+ ZTD
j
t,0F
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= ZT

[

Dj
t,0F − F

(

σ−1
j uj,t +Kj

t

)]

. (5.14)

Next we calculate Dj
t,z(ZTF ). From condition (5), Corollary 2.5 implies that

Dj
t,z(ZTF ) = FDj

t,zZT + ZTD
j
t,zF + zDj

t,zZT ·Dj
t,zF. (5.15)

From (5.2),

Dj
t,zZT = z−1ZT [(1− θj,t,z)H

j,∗
t,z − 1]. (5.16)

Therefore, combining (5.15) and (5.16), we obtain

Dj
t,z(ZTF )

= z−1ZT [(1 − θj,t,z)H
j,∗
t,z − 1]F + ZTD

j
t,zF + ZT [(1 − θj,t,z)H

∗j,
t,z − 1]Dj

t,zF

= ZT

[

z−1((1 − θj,t,z)H
j,∗
t,z − 1)F + (1− θj,t,z)H

j,∗
t,zD

j
t,zF

]

. (5.17)

From (5.12), (5.14), (5.17), we arrive at:

dYt = Λt−

d
∑

j=1

E

[

ZT

[

σjD
j
t,0F − F

(

uj,t + σjK
j
t

)]

∣

∣

∣

∣

Ft−

]

dW P
∗

j,t

+ Λt−

d
∑

j=1

∫

R0

E

[

ZT

[

F

(

Hj,∗
t,z −

1

1− θj,t,z

)

+ zHj,∗
t,zD

j
t,zF

]
∣

∣

∣

∣

Ft−

]

ÑP
∗

(dt, dz)

+ Λt−

d
∑

j=1

E[ZTFuj,t|Ft−]dW
P
∗

j,t

+ Λt−

d
∑

j=1

∫

R0

E

[

ZTF
θj,t,z

1− θj,t,z

∣

∣

∣

∣

Ft−

]

ÑP
∗

j (dt, dz)

=
d
∑

j=1

σjΛt−E

[

ZT

[

Dj
t,0F − FKj

t

]

∣

∣

∣

∣

Ft−

]

dW P
∗

j,t

+

d
∑

j=1

Λt−

∫

R0

E

[

ZT {F
(

Hj,∗
t,z − 1

)

+ zHj,∗
t,zD

j
t,zF}

∣

∣

∣

∣

Ft−

]

ÑP
∗

(dt, dz).

From (1) and (2) in Assumption 1, we have Kj
t ∈ L2(P) t-a.e. Hence, by (5) in

Assumption 1,

EP∗ [|FKj
t |] = E[|FKj

t |ZT ] ≤ (E[|Kj
t |

2])1/2(E[|FZT |
2])1/2 < ∞.

Moreover, from (5) in Assumption 1, we have Dj
t,0F ∈ L2(P) t-a.e. and

EP∗ [|Dj
t,0F |] = E[|Dj

t,0F |ZT ] ≤ (E[|Dj
t,0F |2])1/2(E[Z2

T ])
1/2 < ∞.
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Then by (6) in Assumption 1 and F,Dj
t,0F, FKj

t ∈ L1(P∗) t-a.e., the Beyes rule
implies

dYt =

d
∑

j=1

σjEP∗

[

Dj
t,0F − FKj

t

∣

∣

∣

∣

Ft−

]

dW P
∗

j,t

+

d
∑

j=1

∫

R0

EP∗ [F (Hj,∗
t,z − 1) + zHj,∗

t,zD
j
t,zF |Ft−]Ñ

P
∗

j (dt, dz). (5.18)

Since Yt = EP∗ [F |FT ] = F, Y (0) = EP∗ [F |F0] = EP∗ [F ], Integrating equation
(5.18) gives

F − EP∗ [F ] =

d
∑

j=1

σj

∫ T

0

EP∗

[

Dj
t,0F − FKj

t

∣

∣

∣

∣

Ft−

]

dW P
∗

j,t

+

d
∑

j=1

∫ T

0

∫

R0

EP∗ [F (Hj,∗
t,z − 1) + zHj,∗

t,zD
j
t,zF |Ft−]Ñ

P
∗

j (dt, dz).

The proof is concluded. �

Corollary 5.3. Assume in addition to all assumptions of Theorem 5.2, that u
and θ are deterministic functions, then we have

F = EP∗ [F ] +

d
∑

j=1

σj

∫ T

0

EP∗ [Dj
t,0F |Ft−]dW

P
∗

j,t

+
d
∑

j=1

∫ T

0

∫

R0

EP∗ [Dj
t,zF |Ft−]zÑ

P
∗

j (dt, dz).

Proof. If u and θ are deterministic functions, then we haveDj
t,zui,s = 0 = Dj

t,zθi,s,x
and H∗j,(t, z) = 1 for i, j = 1, · · · , d. Therefore, thanks to Theorem 5.2, we can
get the claimed equation. �

Remark 5.4. (1) If F ∈ D
1,2, u ≡ 0 and θ ≡ 0,, then we can see that assumptions

of Theorem 4.2 and Assumption 1 hold and we obtain equation (4.1).
(2) If d = 1, we obtain Theorem 4.4 and Corollary 4.8 in [14].

6. Local Risk Minimization for Lévy Markets

6.1. Model description. We consider a financial market being composed of one
risk-free asset and d ≥ 1 risky assets with finite time horizon T . For simplicity,
we assume that the interest rate of the market is given by 0, that is, the price
of the risk-free asset is 1 at all times. The fluctuations of the risky assets S =
(S1, · · · , Sd)T are assumed to be given by solutions to the following stochastic
differential equations (SDE, for short) on canonical space (Ω,F ,P; {Ft}t∈[0,T ]):

dSi
t = Si

t−

[

αi
tdt+ βi,tdWi,t +

∫

R0

γi,t,zÑi(dt, dz)

]

, Si
0 > 0, i = 1, · · · , d, (6.1)
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where α, β and γ are predictable processes. Recall that γ is a stochastic process
measurable with respect to the σ-algebra generated by A × (s, u] × B, A ∈ Fs,
0 ≤ s < u ≤ T , B ∈ B(R0). Now, we assume the following:

Assumption 2. (1) (6.1) has a solution S satisfying the so-called structure con-
dition (SC, for short). That is, S is a special semimartingale with the canonical
decomposition S = S0 +M +A such that

d
∑

i=1

∥

∥

∥

∥

∥

[M i]
1/2
T +

∫ T

0

|dAi
s|

∥

∥

∥

∥

∥

L2(P)

< ∞, (6.2)

where M = (M1, · · · ,Md)T , A = (A1, · · · , Ad)T ,

dM i
t = Si

t−(βi,tdWi,t +
∫

R0
γi,t,zÑi(dt, dz)) and dAi

t = Si
t−α

i
tdt for i = 1, · · · , d.

Moreover, defining a process

λi
t :=

αi
t

Si
t−(β

2
i,t +

∫

R0
γ2
i,t,zνi(dz))

,

we have Ai =
∫

λd〈M i〉. Thirdly, the mean-variance trade-off process Ki
t :=

∫ t

0
λ2
sd〈M

i〉s is finite, that is, Ki
T is finite P-a.s.

(2) γi,t,z > −1, (t, z, ω)-a.e. for i = 1, · · · , d, that is,

E

[

∫ T

0

∫

R0

1{γi,t,z≤−1}νj(dz)dt

]

= 0.

Remark 6.1. (1) The SC is closely related to the no-arbitrage condition. For more
details on the SC, see Schweizer [11] and [12].
(2) The process K as well as A is continuous.
(3) (6.2) implies that supt∈[0,T ] |St| ∈ L2(P) by Theorem V.2 of Protter [10].

(4) Condition 2 ensures that St > 0 for any t ∈ [0, T ].

6.2. Locally risk-minimizing. We define locally risk-minimizing (LRM, for
short) for a contingent claim F ∈ L2(P). The following definition is based on
Theorem 1.6 of Schweizer [12].

Definition 6.2. (1) ΘS denotes the space of all R-valued predictable processes
ξ = (ξ1, · · · , ξd)T satisfying

E

[

d
∑

i=1

∫ T

0

(ξit)
2d〈M i〉t +

(

d
∑

i=1

∫ T

0

|ξitdA
i
t|
)2
]

< ∞.

(2) An L2-strategy is given by ϕ = (ξ, η), where ξ ∈ ΘS and η is an adapted

process such that V (ϕ) := ξS + η =
∑d

i=1(ξ
i)Si + η is a right continuous process

with E[V 2
t (ϕ)] < ∞ for every t ∈ [0, T ]. Note that ξit (resp. ηt) represents the

amount of units of the risky asset Si (resp. the risk-free asset) an investor holds
at time t.
(3) For F ∈ L2(P), the process CF (ϕ) defined by CF

t (ϕ) := F1{t=T} + Vt(ϕ) −
∑d

i=1

∫ t

0 ξ
i
sdS

i
s is called the cost process of ϕ = (ξ, η) for F .

(4) An L2-strategy ϕ is said locally risk-minimizing for F if VT (ϕ) = 0 and CF (ϕ)
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is a martingale orthogonal to M , that is, [CF (ϕ),M ] is a uniformly integrable
martingale.

The above definition of LRM is a simplified version, since the original one, intro-
duced in Schweizer [11] and [12], is rather complicated

Now, we focus on a representation of LRM. To this end, we define Föllmer-
Schweizer decomposition (FS decomposition, for short).

Definition 6.3. An F ∈ L2(P) admits a Föllmer-Schweizer decomposition if it
can be described by

F = F0 +

∫ T

0

ξFt dSt + LF
T , (6.3)

where F0 ∈ R, ξF ∈ ΘS and LF is a square-integrable martingale orthogonal to
M with LF

0 = 0.

Proposition 5.2 of Schweizer [12] shows the following:

Proposition 6.4 (Proposition 5.2 of Schweizer [12]). Under Assumption 2, an
LRM ϕ = (ξ, η) for F exists if and only if F admits an FS decomposition; and its
relationship is given by

ξt = ξFt , ηt = F0 +

∫ t

0

ξFs dSs + LF
t − F1{t=T} − ξFt St.

As a result, it suffices to obtain a representation of ξF in (6.3) in order to obtain
LRM. Henceforth, we identify ξF with LRM. To this end, we consider the process
Z := E(−

∫

λdM), where E(Y ) represents the stochastic exponential of Y , that is,
Z is a solution to the SDE dZt = −λtZt−dMt. In addition to Assumption 2, we
suppose the following:

Assumption 3. Z is a positive square integrable martingale; and ZTF ∈ L2(P).

Definition 6.5. A martingale measure P
∗ ∼ P is called minimal if any square-

integrable P-martingale orthogonal to M remains a martingale under P∗.

We can see the following:

Lemma 6.6. Under Assumption 2, if Z is a positive square integrable martingale,
then a minimal martingale measure P

∗ exists with dP∗ = ZTdP.

Proof. Since d(ZS) = S−dZ+Z−dM+Z−λd〈M〉−Z−λd[M ], the product process
ZS is a P-local martingale. So that, defining a probability measure P

∗ as dP∗ =
ZTdP, we have that S is a P

∗-martingale, since supt∈[0,T ] |St| and ZT are in L2(P).
Next, for any L a square-integrable P-martingale with null at 0 orthogonal to
M , LZ is a P-local martingale. By the square integrability of L, L remains a
martingale under P∗. Thus, P∗ is a minimal martingale measure. �

7. Representation Results for LRM

In this section, we focus on representations of LRM ξF for claim F . First of
all, we study it through the martingale representation theorem.
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7.1. Approach based on the martingale representation theorem.

Throughout this subsection, we assume Assumptions 2 and 3. Let P∗ be a minimal
martingale measure, that is, dP∗ = ZTdP holds. The martingale representation
theorem (see, e.g. section 2 of Benth et al. [4]) provides

ZTF = EP∗ [F ] +

d
∑

i=1

∫ T

0

gi,0t dWi,t +

d
∑

i=1

∫ T

0

∫

R0

gi,1t,zÑi(dt, dz)

for some predictable processes gi,0t and gi,1t,z, 1 ≤ i ≤ d. By the same sort of
calculations as the proof of Theorem 5.2, we have

F = EP∗ [F ] +

d
∑

i=1

∫ T

0

gi,0t + E[ZTF |Ft−]ui,t

Zt−
dW P

∗

i,t

+

d
∑

i=1

∫ T

0

∫

R0

gi,1t,z + E[ZTF |Ft−]θi,t,z

Zt−(1− θi,t,z)
ÑP

i (dt, dz)

=: EP∗ [F ] +

d
∑

i=1

∫ T

0

hi,0
t dW P

∗

i,t +

d
∑

i=1

∫ T

0

∫

R0

hi,1
t,zÑ

P
∗

i (dt, dz)

where ui,t := λi
tS

i
t−βi,t, θi,t,z := λi

tS
i
t−γi,t,z,

dW P
∗

i,t := dWi,t + ui,tdt

and

ÑP
∗

i (dt, dz) := Ñi(dt, dz) + θi,t,zνi(dz)dt.

Girsanov’s theorem implies that W P
∗

i and ÑP
∗

i are Brownian motions and the
compensated Poisson random measures of Ni under P

∗, respectively. Additionally,
we assume that

d
∑

i=1

E

[

∫ T

0

{

(hi,0
t )2 +

∫

R0

(hi,1
t,z)

2νi(dz)

}

dt

]

< ∞. (7.1)

Denoting ij,0t := hj,0
t − ξitS

i
t−βi,t, i

i,1
t,z := hi,1

t,z − ξitS
i
t−γi,t,z, and

ξit :=
λi
t

αi
t

{hi,0
t βi,t +

∫

R0

hi,1
t,zγi,t,zνi(dz))}, (7.2)

we can see

ii,0t βi,t +

∫

R0

ij,1t,zγi,t,zνi(dz) = 0

for any t ∈ [0, T ], which implies ii,0t ui,t +
∫

R0
ii,1t,zθi,t,zνi(dz) = 0. We have then

F − EP[F ]−

∫ T

0

ξtdSt =

d
∑

i=1

∫ T

0

ii,0t dW P

i,t +

d
∑

i=1

∫ T

0

∫

R0

ii,1t,zÑ
P
∗

i (dt, dz)

=

d
∑

i=1

∫ T

0

ii,0t dWi,t +

d
∑

i=1

∫ T

0

∫

R0

ii,1t,zÑi(dt, dz).



40 RYOICHI SUZUKI

The following lemma implies that LF
t := E[F − EP∗ [F ]−

∫ T

0
ξsdSs|Ft] is a square

integrable martingale orthogonal to M with LF
0 = 0.

Lemma 7.1. Under Assumptions 2 and 3, and (7.1), we have

d
∑

i=1

E

[

∫ T

0

(ii,0t )2dt+

∫ T

0

∫

R0

(ii,1t,z)
2νi(dz)dt

]

< ∞.

Proof. Noting that
β2
i,t

β2
i,t

+
∫
R0

γ2
i,t,x

νi(dx)
and

∫
R0

γ2
i,t,xνi(dx)

β2
i,t

+
∫
R0

γ2
i,t,x

νi(dx)
are less than 1, we

have

E

[

∫ T

0

ξ2i,t(S
i
t−)

2β2
i,tdt

]

≤ 2E







∫ T

0

β4
i,t(h

i,0
t )2 + β2

i,t

(

∫

R0
hi,1
t,xγi,t,xνi(dx)

)2

(

β2
i,t +

∫

R0
γ2
i,t,xνi(dx)

)2 dt







≤ 2E







∫ T

0

β4
i,t(h

i,0
t )2 + β2

i,t

∫

R0
(hi,1

t,x)
2νi(dx)

∫

R0
γ2
i,t,xνi(dx)

(

β2
i,t +

∫

R0
γ2
i,t,xνi(dx)

)2 dt







≤ 2E

[

∫ T

0

{

(hi,0
t )2 +

∫

R0

(hi,1
t,z)

2νi(dz)

}

dt

]

.

By the same way as the above, we can see E
[

∫ T

0

∫

R0
(ξit)

2(Si
t−)

2γ2
i,t,zνi(dz)dt

]

< ∞.

Together with (7.1), Lemma 7.1 follows. �

Theorem 7.2. Assume that Assumptions 2, 3, and (7.1). We have then ξFj = ξj,
1 ≤ j ≤ d defined in (7.2).

In the above theorem, a representation of LRM ξF is obtained under a mild setting.
Since the processes hj,0 and hj,1 appeared in (7.2) are induced by the martingale
representation theorem, it is almost impossible to calculate them explicitly, and
confirm if (7.1) holds. In the rest of this section, we aim to get concrete expressions
for hj,0 and hj,1 by using Malliavin calculus.

7.2. Main results of LRM. We now calculate h0 and h1 by using Theorem 5.2.
Together with Theorem 7.2, we obtain the following:

Theorem 7.3. Under Assumptions 2, 3 and 1, hj,0 and hj,1, 1 ≤ j ≤ d are
described as

h
j,0
t = σjEP∗

[

D
j
t,0F − F

d
∑

i=1

[

∫ T

0

D
j
t,0ui,sdW

P
∗

i,s +

∫ T

0

∫

R0

D
j
t,0θi,s,x

1 − θi,s,x
ÑP

∗

i (ds, dx)

]

∣

∣

∣
Ft−

]

,

(7.3)

hj,1
t,z = EP∗ [F (Hj,∗

t,z − 1) + zHj,∗
t,zD

j
t,zF |Ft−]. (7.4)

Moreover, LRM ξF = (ξ1,F , · · · ξd,F )T are given by substituting (7.3) and (7.4) for
hj,0 and hj,1, 1 ≤ j ≤ d in (7.2) respectively, if (7.1) holds.
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Remark 7.4. (1) LRM for Lévy markets (one dimensional ) has been also discussed
in Vandaele and Vanmaele [16] without Malliavin calculus. They considered the
case where all coefficients in (6.1) are deterministic; and studied LRM for unit-
linked life insurance contracts.
(2) Benth et al [4] also concerned a similar issue by using Malliavin calculus. They
however studied minimal variance portfolio which is different from LRM, and con-
sidered only the case where the underlying asset price process is a martingale.
(3) Yang et al. [17] derived an explicit representation of LRM for a European call
option in the Hull and White model by using the Malliavin calculus in Wiener
space. They also give a numerical result of it.
(4) Arai and Suzuki [3] derived explicit representations of LRM for one dimensional
Lévy markets. They also calculated its concrete expressions for call options, Asian
options and lookback options.
(5) Arai et al. [1] illustrate how to compute LRM of call options for exponential
Lévy models by using the result of [3] and the fast Fourier transform method.
(6) Arai et al.[2] obtained explicit representations of LRM of call and put options
for the Barndorff-Nielsen and Shephard models, which are Ornstein-Uhlenbeck-
type stochastic volatility models. They also investigated the Malliavin differen-
tiability of the density of the minimal martingale measure. Moreover, they gave
some numerical experiments for LRM strategies.

Acknowledgment. The author would like to thank Professors Takuji Arai and
Noriyoshi Sakuma for helpful comments and advice.
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13. Solé, J. L., Utzet, F., and Vives, J.: Canonical Lévy process and Malliavin calculus, Sto-
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cesses, Research Report, KSTS/RR-14/002, Keio University.
http://www.math.keio.ac.jp/library/research/report/2014/14002.pdf

16. Vandaele, N. and Vanmaele, M.: A locally risk-minimizing hedging strategy for unit-linked
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