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A CLARK-OCONE TYPE FORMULA UNDER CHANGE OF
MEASURE FOR MULTIDIMENSIONAL LEVY PROCESSES

RYOICHI SUZUKI

ABSTRACT. In this paper, we derive a Clark-Ocone type formula under change
of measure for multidimensional Lévy processes. This is a multidimensional
version of [14, 15, 9]. By using it, we obtain explicit representations of lo-
cally risk-minimizing hedging strategy for markets driven by multidimen-
sional Lévy processes. This is a generalization of [3].

1. Introduction

The representations of functionals of Lévy processes by stochastic integrals are
important theorems in Probability theory. In particular, the Clark-Ocone (in
short, CO) formula is an explicit stochastic integral representation for random
variables in terms of Malliavin derivatives:

d

F=E[F]+) /[O.T]XRE[D{JFU-}]Qj(dt, dz)

d T . d T . -
F)+ Z oj /0 E[D‘g7OF|ft_]de)t + ZA /R E[D€72F|ft_]ZNj(dt, dz).
Jj=1 j=1 0

We precisely define notations and give sufficient conditions for this formula in
section 4. There are many results of CO formulas (see introduction of [9, 14, 15] and
[6]). Girsanov transformations versions of CO formulas were also studied by many
people because many applications in mathematical finance require representation
of random variables with respect to risk neutral martingale measure. In this paper,
we derive a Clark-Ocone type formula under change of measure (in short, COCM)
for multidimensional Lévy processes:

F = Ep:[F +ZUJ/ Ep- [DgOF FK] ]—"t] aw?,

+Z / / Ep-[F(H]? — 1) + 2H}} D] _F|F,_INT (dt, dz),a
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We precisely define notations and give sufficient conditions for this formula in
section 5.

On the other hand, locally risk-minimizing hedging strategy (LRM, for short)
is a very well-known hedging method for contingent claims in a quadratic way
(see [11, 12]). In this paper, we obtain an explicit representation of LRM in an
incomplete financial market driven by a multidimensional Lévy process by using
Malliavin calculus because in real markets, investors sell an option and want to
replicate its payoff F(T, St) by trading many stocks (liquid assets). This result is
a multidimensional version of Arai-Suzuki [3].

This paper is organized as follows: In Section 2-4, we develop Malliavin calculus
for multidimensional Lévy processes. In Section 5, by using results of Section 2-
4, we derive a COCM for multidimensional Lévy processes. In Section 6, we
consider LRM for multidimensional Lévy markets. In Section 7, by using the
result of Section 5, we derive explicit representations of LRM for markets driven
by multidimensional Lévy processes.

2. Malliavin Calculus for Multidimensional Canonical
Lévy Processes

2.1. Setting. We begin with preparation of the probabilistic framework. Let
T > 0 be a finite time horizon, (Qw, Fw,Pw) a one-dimensional Wiener space
n [0,7); and W a one-dimensional standard Brownian motion with Wy = 0.
Let (27, Fs,Ps) be the canonical Lévy space (see Solé et al. [13], Delong and
Imkeller [5] and Di Nunno et al. [6]) for a pure jump Lévy process J on [0,T]
with Lévy measure v, that is, Q; = US2,([0,T] x Rg)™, where Ry := R\ {0};
and Jy(wy) = Y1 zilgy<yy for t € [0,7] and wy = ((t1,21),---, (tn:2n)) €
([0,T] x Rg)™. Note that ([0,T] x Rg)? represents an empty sequence. Now,
we assume that [, 2?v(dz) < oo; and denote (Q°,F°,P%) = (Qw x Qs, Fw X
F1,Pw xP;) and we call it canonical space. Let F = {F{},c[0,7] be the canonical
filtration completed for P. Let X° be a square integrable centered Lévy process
on (Y, F° P%) represented as

XY = oW, + J; — t/ 2v(dz), (2.1)
Ro

where o > 0. Denoting by N the Poisson random measure defined as N(t, A) :=
> e<t 1a(AX;), A€ B(Ro) and ¢ € 0,77, where AX := X — X, we have J;
fg fRo 2N (ds, dz). In addition, we define its compensated measure as N (dt, dz) :=
N(dt,dz) — v(dz)dt. Thus, we can rewrite (2.1) as

XP =W, + / /R N(ds,dz). (2.2)
0

Now, let (1, FLPY), ... (4, F4 P9) be d independent copies of (20, 7O, P0) for
some d > 1. We set (Q,F,P) = (21 X -+ X Qg, F1 X -+« X Fg,P1 X -+ x Py)
and we call it multidimensional canonical space. Let X = (X!,---,X%) be a
d-dimensional square integrable centered Lévy process on (2, F,P) where X,gj =
oiWis + fg e, 2Nj(ds,dz),1 < j < d where o; > 0, W,; a Brownian motion
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n (Q7, 7, P7), N; the compensated Poisson random measure on (Q7, 7, P7) has
Lévy measure v; satisfies [p 2%v;(dz) < oco.
We consider the finite measure ¢’ defined on [0, 7] x R by

¢(E) =07 /( )dtéo(dz) —|—/ 22dtvj(dz), E € B([0,T] x R),
E(0 '

where E(0) = {(¢,0) € [0,T] x R; (¢,0) € E} and E' = E — E(0), and the random
measure @; on [0,7] x R by

Qi(B) =0 [

AWV, 180 (d=) + / Nj(dt,dz), E e B(0,T] x R).
E(0) /

We consider the product of the form H,(w) := H;l:l I, (fj o )(w;) for any

a € J¢, which is the set of indexes of the form a = (a(V), ..., a(¥) with o)) =
0,1,---, for j = 1,---,d. Here I, (fj,a(j)) is the a¥)-fold iterated It integral
with respect to random measure Q:

I, (fjam)

3:/ o Fiaw (t1,21), (ot 20@))Qj(dtr, d21) - - - Qj(dt o), Az i)
([0,T] xR)2V

where f; ) is deterministic function satisfying

/ o |fiao (T 21), -+ 5 (bats Za )P (b1, dz1) -+ - ¢ (db g dzg )
([0.7)xR)

< 00.

The elements H,,a € J¢, constitute an orthogonal basis in L?(P). Any real Fr
-measurable random variable F' € L?(P) can be written as F = > ;a H, for
an appropriate choice of deterministic symmetric integrands in the iterated Ito
integrals.

Definition 2.1. (1) Let D'2 denote the set of F -measurable random variables
F € L*(P) with the representation

F = Z Ha,H H ad) f]a(]) w])

acJd
satisfying
d
N 2
Z Z a(a)a(a)nyj’a(j)|\L2(([O)T]Xﬂ§)au)) < 0.
j=1aeJgd

(2) Let F € DY2. Then we define the Malliavin derivative DF of a random variable
F € D2 as the gradient

Dy.F = (D F,--- ,D{.F)
where

Dg»zF = Z a(j)Ha—e(j) (ta Z)vt € [OvT]v'Z € Rv] =1, 7d'
acgd
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Here €) = (0,---,0,1,0,---,0) with 1 in the jth position.
(3) Let D712 5 = 1,--- d denote the set of F -measurable random variables
F € L*(P) with the representation

F = Z HQ,HQ—H o (fj.a0)(Wj)

acJd
satisfying

Z Oé(j)a(j)!Hfj,a(j) ||i2(([O)T]XR)Q(j)) < o
acJd

forj=1,---,d.
We next establish the following fundamental result.

Proposition 2.2 (The closability of operator D). Let F € L*(P) and Fy €
D742 k€ N such that

(1) limy o0 Fy, = F in L*(P),

(2) {D] ,F.}32, converges in L*(¢/ x P).

Then F € D42 and lim—o0 D] Fx = D] _F in L?(q x P).

Proof. We can show this proposition by the same sort argument as Theorem 12.6
of Di Nunno et al. [6]. Let F = Y, 7u Ha,Ho = [19_, I,0) (f; o) and F* =
Yaeqe HE HE = Hd, I, (f;.“_a(j)). Then by assumption (1), we have

Z ||f],0¢(7) _7 a(]) HL2 [0 T]XR)Q(J)) 0
aeJd
This implies that limy_ o ffa(j) = fjat in LQT_’q_’n for all @ € J%. From assumption
(2), we deduce that
k
& }711300 aVa (J)'Hf )~ f;,nam ||L2 (([0,T] xR)>))
acegd

— lim E/ (szFk—szFm) i(dt,dz)| =
k,m—o0 [0,T]xR ¥ ’

Hence we obtain

i @ @) £E _ 12
k‘li{rolo Z & ! & ! !”fJQ(J) fj,a(])|‘L2(([07T]XR)Q(J'))

acJd
: @D a1 imi ko _pm |2 ;
§2k1i>ngo Zda « 'lmglofojva(]) fj)a(ﬂ)HLz(([O)T]XR)Q(J))
acJ

<2 hm lim inf Z ali (j)!Hf]].fa(j) fj,a“)”m(([o TIxR)e) = =0.

k—o00 m—o0
acJ?

Therefore, we can see that F € D712 and limy_, oo Disz = DizF in L2(¢7 x
P). O

We next introduce a chain rule for the Malliavin derivatives.
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Proposition 2.3. Let ¢ : R®™ — R,n > 1 be a C-function with bounded deriva-
tive. If F = (F1,--+,F,) € (D?12)", then o(F) € D»Y2 and

. n SD
Di o(F Z 3— D o Fxlioy(2)
k=

¢(Fy + 2D} _F\, - ,F, + 2D} _F,) — p(F1, - , F,)

z

1]R0 (Z)
holds.

Proof. We can show this proposition by the same sort argument as Proposition
2.6 in [14]. O

Proposition 2.4 (Chain rule). Let p € C1(R™;R) and F = (Fy,--- , F,), where
Fy, -+ F, € DI12 Suppose that o(F) € L*(P) and

"9
Za— DtoFkl{O}( )

<P(F1+ZDt,zF17"' 7Fn+ZDg,an)_<P(F17"' 7Fn)

1g,(2) € L*(¢7 x P).

z
Then we obtain ¢(F) € DI12 and
) "y )
Di o(F) = Z a—%(F)Di_,oFkl{o}(Z)

el
Il
—

<P(F1+ZDg,zF17"' aFn+ZDg,an)_<P(F17"' aFn)

z

]-Ro (Z)

Proof. We can show this proposition by the same sort argument as Lemma A.1 of
Ocone-Karatzas [7]. O

If we take p(z,y) = xy, then we can derive the following product rule.

Corollary 2.5. Let Fy,Fy € D312 and FiFy € L2(]P’). Moreover, assume that
FlDt ZFQ + FQDt zFl + ZDt zFl DiZFQ S LQ(qJ X ]P)) Then F1Fy € D2 and

DI F\Fy = FyD!_Fy+ FyD) [Fy + 2D!_Fy - DI P, (2.3)
¢ —ae. (t,2) € [0,T] x R,P — a.s.

3. Commutation of Integration and the Malliavin Differentiability

In this section, we consider commutation of integration and the Malliavin dif-
ferentiability.

Definition 3.1. For 1 < 4, < d, we define the following: (1) Let L7'}? denote
the space of product measurable and F -adapted processes G; : 2 x [0,T] xR — R

satisfying
E/ |Gi75)m|2qi(ds,dx) < 00,
[0,T]xR
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Gisz €DI12 gi—ae. (s,x) € [0,T] x R and
E / |DJ G s0l?q (ds, dx)g? (dt,dz) | < co.
(0,T)xR)2

2) LJ’1’2 denotes the space of G : [0,T] x  — R satisfying
i) st € D¥2 for ae. s € [0,7T),

ii) B [f |G s|? ds] < 00,

(

(

(

(i) & [I[O T]xR fo |D G s|*dsq’ (dt, dz)} < 00.

(3) L2 is defined as the space of G : [0,T] x Ry x Q — R such that
(i) HIE]D)J”forq -a.e. (s,2) € [0,T] x R,
(
(iif)
(
(

11) |:f0 T]xRo |Gz s z| V¢(d$)d$j| < 00,

iii [f[o TIxR f[o T xRo |Dj is.x | vi(dz)dsg? (dt, dz)} < 00.
4) LJ 12 is defined as the space of G € L2 such that

1) |:(f[0 T1xRo |Gz s m|V7,(d(E)d3) :| < 00,
E |:f[O,T]><R (I[O T]xRg |Dt sz s :g|VZ(d:E)ds) qj(dt, dz)] < 00.
We next discuss the commutation relation of the stochastic integral with the

Malliavin derivative. By the same arguments of Lemmas 3.2 and 3.3 of Delong
and Imkeller [5], we can derive the following:

Proposition 3.2. Let G; : Q2 x [0,T] Xx R — R be a predictable process with

E l/ |Gi,sﬁz|2qi(ds,d:€)] < 0.
[0,T]xR

Then

G e L7'12 if and only if Gi,s,zQi(ds,dz) € Do12,
[0,T]xR

Furthermore, if fo TIxR Gs,2Qi(ds,dx) € D2, then we have
D{z/ Gs..Q(ds,dx) :G;’z+/ D! G,.Qi(ds,dx), P-aus.,
" J0,T)xR ’ [0,7]xR
fori=j and
D}, / Gis2Qilds,dx) = / D} .G .Qi(ds,dz), P-as.,
[0,T]xR [0,T]xR

fori#£j.
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Proposition 3.3. Assume that G; : Q x [0,T] x R — R is a product measurable
and F -adapted process, n on [0,T] X R a finite measure, so that conditions

IE/ |Gi)s7w|2n(ds,d;v) < 00,
[0,T]xR

Gise €DPM2 for n—ae. (s,2) €[0,T] x R,

IE/ |DI G s.|*n(ds, dx)q(dt, dz)| < oo
(0, T]xR)2

are satisfied. Then we have

/ Gi.s.2n(ds,dz) € D12
[0, T]xR
and the differentiation rule

Dt)z/ Gi,s,zn(ds, dz) :/ DgZGS@n(ds,dx)
[0, T]xR [0,T]xR ’

holds for ¢ -a.e. (t,z) € [0,T] x R, P -a.s.

By using o-finiteness of v and Proposition 3.3, we can show the following propo-
sition.

Proposition 3.4. Let G € L. Then

/ G v(dz)ds € DV?
[0,T]xRo

and the differentiation rule

Dt_,Z/ Gsymy(da:)drs:/ D, .G, zv(dx)ds
[O,T]XR() [O,T]XRO

holds for q -a.e. (t,z) € [0,T] x R,P -a.s.
Proof. We can show the same step as Proposition 3.5 in [14]. (I

4. Clark-Ocone Type Formula for Canonical Multidimensional
Lévy Functionals and Girsanov Type Theorem

4.1. Clark-Ocone type formula for canonical multidimensional Lévy
functionals. We next present an explicit form of the martingale representation
formula by using Malliavin calculus (see e.g., Theorem 12.20 in Di Nunno et al.

[6]).
Proposition 4.1. Let F € DY2. Then we have
d
F =E[F] + Z/ E[D] F|F,_)Q;(dt, dz)
[0,T]xR

j=1

d T . d T . -
= E[F] + Zaj/o E[D] oF|F-]dW;, + Z/O /R E[D] ,F|F;_]zN;(dt, dz).
j=1 Jj=1 0

(4.1)
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Proof. The martingale representation theorem (see, e.g. Section 2 of Benth et al.
[4]) provides that

—I—Z/ ®;. S_dWJS—i-Z/ / <p§)2s)_m (ds, dx)
+Z/ P UdWJS-i-Z/ / %’5"”” V; (ds, da)
Ro

(2

d T (1)
90‘5— <P’S—LE
F|+ // D157 3 e (2) + 22221, (2) | Q;(ds, da),
] ;:10 R(Uj {03 (@) —1ro(2) | Qs )

where <p§-1) and <p§-2)/x, x # 0 are L?(¢’ x P)-predictable processes. Since F' € D2,
Proposition 3.3 implies that

ot ot
DI F ="210)(2) + 22221, (2)
Uj z
Lot o2
+ Z/ /Di,z <%1{0}($) + %111%(&6)) Qi(ds,dz). (4.2)
i=1/t= /R g
Hence we have
| ) o2
BID]FIFi-] = 22100y (2) + 2215, (),

J
Therefore, we can see that
() — o,E[DI F|F,
Pjt— = 0j [ t,0 | Fi-]
@S?t)—,z = ZE[Dg,zFLFt*]
|

4.2. Girsanov theorem for Lévy processes. We recall the Girsanov theorem
for Lévy processes (see, e.g., Theorem 2.5 of Dksendal and Sulem [8]).

Theorem 4.2. Let 0(s,x) € R with 0, 5, < 1,5 € [0,T],2 € Ry and us € R, s €
[0,T], be predictable processes such that

d T
Z/ / {|log(1 — 0, s.2) > + 07, ,}vi(dx)ds < oo, aus.,
i=1 70 JRo h

d T

2
E / u; (ds < 00, a.s.
=170



COCM FOR MULTIDIMENSIONAL LEVY PROCESSES 29

Moreover, we denote

d t 1 d t
7, := exp ( - Z/ wi s dWis = 5 Z/ uf ds
: =1 70
—i—Z/ / log(1 — 6;.6 »)Ni(ds, dz)
Ro
+Z/ / lOg - zs,w)+9i,s,m)yi(dx)d5)a
Ro

€ [0,T). Define a measure P* on Fr by
dP*(w) = Zp(w)dP(w),
and we assume that Z(T) satisfies the Novikov condition, that is,

1< (T d T
E[exp (— / u?  ds + / /
2; o ; 0 JRro

{(1 —0;5.0)10g(1 —60; 54) + 9i75,$}ui(dx)ds)] < 0.

Then E[Z1] =1 and hence P* is a probability measure on Fr. Furthermore, if we
denote ) )

NF(dt, dx) := 0; 4 pv(dzx)dt + N(dt, dzx)
and

dW it = utdt + dWl ts

then NF"(-,-) and W} () are the compensated Poisson random measure of Ni(-,-)
and a standard Brownian motion under P*, respectively.

5. A Clark-Ocone Type Formula under Change of
Measure for Canonical Lévy Processes

5.1. A Clark-Ocone type formula under change of measure for canonical
Lévy processes. In this section, we introduce a Clark-Ocone type formula under
change of measure for canonical Lévy processes. Throughout this section, under
the same setting as Theorem 4.2, we assume the following.

Assumption 1. (1) u;, u? € Ly™?; and 2ui,5Dgyzui_,s —I—Z(ngzui,s)2 € L*(¢ x P) for
ae. s€0,T),i,j=1,---,d. .

(2) 0; +1log(1 — 6;) € L7"?, and log(1 — 6;) e LI'2 i, =1,--- ,d.

(3) For g-a.e. (s x) € [0,T] x Ry, there is an £;5, € (0,1) such that 6; 5, <
l—¢€isa,0=1,---,d.
(

4) Zy € IA(P); and Zr{D]glog Zr10)(2) + S =115 ()} € L2 (7 x P).
5 FE]D)12W1thFZTEL2P;andZTDJ F+FD] Zr+ 2D}l F-D] Zr €
t,z t,z t,z t,z
L*(¢? xP),j=1,---,d. ‘ .
6) FH) " HP* DJ _F € LY(P*), (t, 2) -a.e. where H}", = exp(zD; ,log Zr—log(1—
t,z t,z t,z t,z t,z
t,z

0j1.2))-
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To show the main theorem, we need the following:
Lemma 5.1. We have
D} yZr

:ZT

d T
—05 M —Z/ Dy gui,sdW, Z/ /R t_o e N{ (ds,dx)]
i=1 Y0 z s, T
(5.1)
forj=1,---,d, ¢/-a.e. (t,2) €[0,T] x {0}, P-a.s. and

DgyzZT = z_lZT[eXp(zD{7Z log Zr) — 1] for g—a.e. (t,2) € [0,T] x Ry, P—a.s.,
(5.2)

where

d T
Di,z log ZT = - Z/ Dt 2 Us, s WP* Z / Dt S Us, s
+ Z/ ~/]R - z s, z Dg 2 10g( - 6‘1‘,5,1) + D{)ZHZ-,S@) Vi(dib)ds

+Z/ / DI log(1 — 0; ¢ )NF (ds, dz) + 2 log(1 — 0;.,..),
i1J0 JRo

(5.3)
for ¢7-ae. (t,z) € [0,T] x Rg, j=1,---,d, P-as.

Proof. By conditions (1), (2) and (3) in Assumption 1, Propositions 3.2, 3.3 and
3.4 imply log Zr € D12, Moreover, from (4) in Assumption 1, Proposition 2.4
leads to Zp € D712,

D} Zr = Zr

o d T 1. d T
_DiOZ/ u; sdWi s — §Dix02/0 uisds
) 1=1
OZ/ /R log(1 — 0.« .)N;(ds, dx)
oZ/ /R (log(1 asz)+9j,s,z)Vj(dI)dS] - (54)

and

exp(log Z1 + ZD{)Z log Z7) — Zr

nyzZT = = z_lZT[exp(zDiZ log Z7) — 1].

z

We next calculate right side of (5.4). From assumption (1) in Assumption 1,
Proposition 3.3 implies

-~ d T d T
Di, Z/o ufysds = Z/o Di)ouisds (5.5)
im1 i=1
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and by Proposition 3.4,

Di 0 Z/ /]R lOg — Ug s,m) + ei,s,m)l/(d,’b)ds
= Z/ / 1olog(l —0;s.2) + Dg709i75,$)ui(dx)ds. (5.6)

Since condition (1) in Assumption 1 holds, by Corollary 2.5, we have
Diouis = 2ui=sD{)0uS. (5.7)

We calculate Dio log(1 — 6; 5.2). From (3) in Assumption 1, we have 0;, <
1 —¢;s,4 Wefix (s,x) € [0,T] x Ry. We denote

lisa(y) = —a;iw + a;slm —1+4loge;sa
and

. — log(l - y)v y < 1- €i,s,x
Gi,s m(y) - { ls)w(y), y>1l—¢€isq

Then g; 5. € C}(R) and
log(l - ei,s,m) = gi,s,z(ei,s,m)-

Hence Proposition 2.4 implies that log(1 — 6; 5 ,) € D% and

- - » D] obisa
Dio log(l - oi,s,z) = Diogi,s,m(ei,s,z) = gzl'ysw(oi,s,z)Di)Qoi,s,z = _ﬁ
From condition (1), (2) in Assumption 1, Proposition 3.2 implies
DIy / i dWis = 07 g+ / D] qui s dW (5.8)
i=170 i=170

and

DiOZ/ /Rlog — 0;.4.2)N;(ds, dz)
= Z/ / Df)o log(1 — 6; 5 »)Ni(ds, dz). (5.9)
i=170 /Ro
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Hence, by (5.4) - (5.9), we obtain
D} yZr

:ZT

d T d T ‘
_aj_luj,t - Z/O D} yui,sdWi s — Z/o wi,s D] gus sds
=t i=1
_Z/ / tO lsm (ds i)
Ro - z s, T
O z S,T .
+ Z/ A ( — Z oo + Dgﬁooi,s,z> Vl(dx)d5‘|

-1 r j Dt 091 s,x ~IF’*
05 Ujt — Z/ Di,oul s Z/ / (ds,dx)
i=1 0 Ro - z S,T

We next calculate D; . log Zr. By conditions (1) and (2) in Assumption 1, Propo-
sition 3.2, Proposition 3.3 and Proposition 3.4 show that

:ZT

D{)z log Z

d T 1 d T
:_Dj ideis__ Dj : d
t’zZ/o Uy, , 22 t’Z/O Ui s@S
Z/ / “log(1 —6;, sym)xNi(ds, dx)
Ro
Z/ / 10g - 1 s,m) + ei,s,z)yi(dx>ds
Ro
T 1 T o
= — Z/ Dgﬁzui,dei,s - 5 Z/ Dg,z(ui=5)2ds
= Jo i=17/0
+ Z/ / D . log(1 — 9i75,1)]\~fi(ds, dx)

/ / log —0isz)+ D{ﬁZHi,S@) v;(dx)ds
Ro

n log(1 — 9j,t,z)'

z

(5.10)

Now we calculate D{ﬁz(uiys)? Corollary 2.5 implies

DJ Ui s —2u”D u”—l—zD u” , 5.11
t,z s t,z
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because, u’ € D712 and condition (1) in Assumption 1 hold. From equations
(5.10) and (5.11), we have

. d T
DiﬁzlogZT:—Z/ D LU sd W]P Z / uzs ds
+ Z/ / —0is2) D;Z Llog(1—0;5.)+ D{)ZHZ-,S@) vi(dz)ds
Ro

+ Z/ / Diz log(1 — 91»75)1)]@-1)* (ds,dz) + P log(1—0;.).
i=170 JRo

O

We next introduce a Clark-Ocone type formula under change of measure for
canonical multidimensional Lévy processes.

Theorem 5.2.

F = Ep-[F +Za]/ Ep*{D oF — FK]

]

Ro

holds, where

; d r . D ozsz *
Kj :Z/ Dgyouiysd —I—Z/ /R t_o NF(ds, dx).
=170 zsm

Proof. First we denote A; := Z; ' = e=198% t € [0,T]. Then by the It6 formula
(see, e.g., Theorem 9.5 of Di Nunno et al. [6]), we have
d

dAt = At, Z <%u?ﬁt — / (10g(1 — 91 t z) + 91 t z)V'L(dZ)> dt + = Atf ZUZ tdt
Ro

i=1 i=1

d
1
+ Z / [At T Av_ + Ay log(1 — 9“&)} vi(dz)dt

2

d
01’. z
= At, Z |:U?tht + uiytdWi_,t + AO ﬁyz(d?j)dt

91' t,z 7
+ / itz N (at, dz)}
Ro 1 - 9’L,t,z

d
. Oirr p
=N [ude}j’t + / #N}”’ (dt,dz)] :
i—1 — Uitz

Ro
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Denoting Y; := Ep-[F|F],t € [0,T], we have Y; = A{E[Z7F|F:] by condition (5)
in Assumption 1 and the Beyes rule (see, e.g., Lemma 4.7 of Di Nunno et al. [6]).
From (5) in Assumption 1, Corollary 2.5 implies that Z7F € D'2. Hence we apply
Proposition 4.1 to ZpF and take conditional expectation, we have

E|[ZpF|F)) = E[Zr F) +Z/ / (Z7F)|F._|Q;(ds, dz).

Denoting V; := E[Z1 F|F;], we have Y; = A;V;. 1td’s product rule implies that

dYy = Ay dVy + Vi_dAy + d[A, V],
d

= A Y [0/E[D] o(ZrF)|Fi AW, + / E[D].(ZrF)|F;-|2N;(dt, dz)]
i=1 fo
d 0
]P* .7t)Z ~]P*
+ Vi Ap Z {uj,tdwt + /R I_J%Nj (dt,dz)]
Jj=1 0 T
d
+ Ao Z [UJUJ tE[Dt o(ZrF)|Fi-]
j=1
+ / ME[D@(ZTF)W]zuj(dz)]dt
Ro 1 - 9j7t z '
+At_z / ”’Z ! (ZrF)|Fi_]2N;(ds, dz)
J t,z
d ) d
=AY Elo; D] o(ZoP)|FiJdW! + A Y E[Zr Fuj | FyJdW,
jzl j=1
ZTF)|}} |

+ A / ZNY (dt, dz

t Z _],t B J ( )
+ A Z/ [ZTFA }'t_} N} (dt,dz). (5.12)

j,t,z

Now we shall calculate D, o(ZrF) and Dy ,(Z7F). As for D, o(ZrF), by (5) in
Assumption 1, Corollary 2.5 yields that

Dt70(ZTF) = FDt)QZT + ZTDt)QF. (513)
Therefore combining (5.13) with (5.1), we can conclude
Dg,o(ZTF)
= FD] Zr + Zr D] F

d T
_ 1 0 z 8, T <~ p*
_Uj 1uj,t — ;/0 .l)i)(J’lLl‘7SClV[/iIED Z/ /R T 01 - IP’ (dS, dLL')

+ ZrD}  F

=FZr
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= Zr [DioF = F (o7 'usu+ K7 )] (5.14)
Next we calculate D{)Z(ZTF ). From condition (5), Corollary 2.5 implies that

D] .(ZyF) = FD] .Zr + ZrD]__F + 2D} _Zr - D] _F. (5.15)
From (5.2),
D] . Zp =2 Zr[(1 — 0,..)HYY —1]. (5.16)

Therefore, combining (5.15) and (5.16), we obtain

D} (ZrF)
=2 Zp[(1 = 0,42 )H)S — 1|F + ZpD] JF + Z7[(1 - 0;,..)H,;> — 1]D] _F
= Zp [zfl((l — 04 HPT — 1)F + (1 — Hj,t7z)Hf7’;D{)zF] . (5.17)

From (5.12), (5.14), (5.17), we arrive at:
d . .
dY; =AY E [ZT [ajD;OF -F (uj,t + oij)} ‘ft_} AWy,
j=1
d
g 1 J*yi 7P
+ Ay Z/ E[ZT {F <Ht - 7> + zH* D] F} ‘]-'t} N¥(dt, dz)
= IR T 105 s
d

+ A Z E[ZTF“j>t|ft—]dWJI'F::

Jj=1

d 0. _
+At,2/ E[ZTF$ ]—"t] NT(dt,dz)

j=1 Ro — Uitz

d
=Y ;A E [ZT [D;OF - FK,{}

ft_} awr,

=1
+3 A / E[ZT{F (Hg;; - 1) +zH§7’jD§)ZF}‘ft_} NF(dt, dz).
i=1 Fo

From (1) and (2) in Assumption 1, we have K7 € L%(P) t-a.e. Hence, by (5) in
Assumption 1,

Bp-(|FK7|| = E|FK? | Z7) < EIKLP) 2 BIFZr )Y < o0,

Moreover, from (5) in Assumption 1, we have DiOF € L*(P) t-a.e. and

Ep- (D] oF|] = E[|D] oF| Z7] < (B[ D] o F’))/(E[Z3])'/* < cc.
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Then by (6) in Assumption 1 and F, DgyOF, FK,{ € LY(P*) t-a.e., the Beyes rule
implies

d
dy; = Z 0, Ep- [D{)OF —- FK]

.7:,5_} aw.

+Z/ Ep- [F(H]? — 1) + 2H]": D] _F|F,_|NT" (dt, dz). (5.18)

Since Y; = Ep«[F|Fr] = F,Y(0) = Ep+[F|Fo] = Ep+[F], Integrating equation
(5.18) gives

d T ) ) )
F —Ep«[F] = Z oj / Ep« [DQOF - FK} ] dWJ]-P:t
=1 70
d T )
#3 [ ] Belp s - 1)+ 2B D) FIFN i dz),
=0 R
The proof is concluded. (I

Corollary 5.3. Assume in addition to all assumptions of Theorem 5.2, that u
and 0 are deterministic functions, then we have

F= E[p* +ZUJ/ E[p* 0F|]:t ]

+Z/ / Ep- [D] ,F|F_]eNY" (dt, dz).
Ro

Proof. If u and 6 are deterministic functions, then we have D{)zuiﬁs =0= Diz@i,&m
and H*J(t,z) = 1 for i,j = 1,--- ,d. Therefore, thanks to Theorem 5.2, we can
get the claimed equation. ([l

Remark 5.4. (1) If F € DY2, v =0 and 6 = 0,, then we can see that assumptions
of Theorem 4.2 and Assumption 1 hold and we obtain equation (4.1).
(2) If d = 1, we obtain Theorem 4.4 and Corollary 4.8 in [14].

6. Local Risk Minimization for Lévy Markets

6.1. Model description. We consider a financial market being composed of one
risk-free asset and d > 1 risky assets with finite time horizon 7. For simplicity,
we assume that the interest rate of the market is given by 0, that is, the price
of the risk-free asset is 1 at all times. The fluctuations of the risky assets S =
(S, -, ST are assumed to be given by solutions to the following stochastic
differential equations (SDE, for short) on canonical space (£, F,P; {F}iejo,1)):

dSi = Si_ | aldt + B dWis + /

%,mNi(dt,dz)} , Si>0,i=1,---,d, (6.1)
Ro
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where «, # and y are predictable processes. Recall that v is a stochastic process
measurable with respect to the o-algebra generated by A x (s,u] x B, A € Fg,
0<s<u<T, BeB(Ry). Now, we assume the following:

Assumption 2. (1) (6.1) has a solution S satisfying the so-called structure con-
dition (SC, for short). That is, S is a special semimartingale with the canonical
decomposition S = Sy + M + A such that

d

>

i=1

< 00, (6.2)
L2(P)
where M = (M"Y,  MHT A= (A, ADT,
dM} = Si_ (BitdW; ¢ + fRo Vit Ni(dt,dz)) and dAl = Si_aidt for i = 1,--- ,d.
Moreover, defining a process

T
MMW+AIMQ

o= — ol ,

Si—( i2,t + fRO ”Yzz,t,z’/i(dz))
we have A® = [Ad(M?). Thirdly, the mean-variance trade-off process Kj :=
fot A2d(M?%) is finite, that is, K% is finite P-a.s.

(2) vit. > —1, (t,z,w)-ae. fori=1,---,d, that is,

T
E / / l{wtz<,1}l/j(d2’)dt =0.
0 JRg T

Remark 6.1. (1) The SC is closely related to the no-arbitrage condition. For more
details on the SC, see Schweizer [11] and [12].

(2) The process K as well as A is continuous.

(3) (6.2) implies that sup,c(o 77 [S¢| € L*(P) by Theorem V.2 of Protter [10].

(4) Condition 2 ensures that S, > 0 for any ¢ € [0,T].

6.2. Locally risk-minimizing. We define locally risk-minimizing (LRM, for
short) for a contingent claim F € L?(P). The following definition is based on
Theorem 1.6 of Schweizer [12].

Definition 6.2. (1) Og denotes the space of all R-valued predictable processes
€= (¢!, ¢)7 satistying

d 4 1\ 2 1 d 4 T 7 2
S [ eranrys (3 [ leas)

(2) An L2-strategy is given by ¢ = (£,7n), where £ € ©g and 7 is an adapted
process such that V(p) := &S+ n = Z‘j:l(gi)si + 7 is a right continuous process
with E[V;3(¢)] < oo for every t € [0,7]. Note that & (resp. 7;) represents the
amount of units of the risky asset S? (resp. the risk-free asset) an investor holds
at time ¢.

(3) For F € L*(P), the process C¥(¢) defined by CF'(p) := Fly—ry + Vi(p) —
PO fg £1dSt is called the cost process of ¢ = (€,m) for F.

(4) An L2-strategy ¢ is said locally risk-minimizing for F if Vr(¢) = 0 and C¥ ()

E < Q.
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is a martingale orthogonal to M, that is, [CF(¢), M] is a uniformly integrable
martingale.

The above definition of LRM is a simplified version, since the original one, intro-
duced in Schweizer [11] and [12], is rather complicated

Now, we focus on a representation of LRM. To this end, we define Follmer-
Schweizer decomposition (F'S decomposition, for short).

Definition 6.3. An F € L*(P) admits a Fdllmer-Schweizer decomposition if it
can be described by

T
F=Fo+/ ¢Fds, + LY, (6.3)
0

where Fy € R, ¢F' € ©g and L is a square-integrable martingale orthogonal to
M with LY = 0.

Proposition 5.2 of Schweizer [12] shows the following:

Proposition 6.4 (Proposition 5.2 of Schweizer [12]). Under Assumption 2, an
LRM ¢ = (&,n) for F exists if and only if F admits an FS decomposition; and its
relationship is given by

t
6 =¢ nt=F0+/ €FdS, + LF — Flyery — €°S..
0

As a result, it suffices to obtain a representation of £ in (6.3) in order to obtain
LRM. Henceforth, we identify ¢ with LRM. To this end, we consider the process
Z = E(— [ AdM), where E(Y') represents the stochastic exponential of Y, that is,
Z is a solution to the SDE dZ; = — ¢ Z;_dM;. In addition to Assumption 2, we
suppose the following;:

Assumption 3. Z is a positive square integrable martingale; and ZrF € L2(P).

Definition 6.5. A martingale measure P* ~ P is called minimal if any square-
integrable P-martingale orthogonal to M remains a martingale under P*.

We can see the following:

Lemma 6.6. Under Assumption 2, if Z is a positive square integrable martingale,
then a minimal martingale measure P* exists with dP* = ZpdP.

Proof. Since d(ZS) = S_dZ+Z_dM+Z_\d{M)— Z_\d[M], the product process
Z S is a P-local martingale. So that, defining a probability measure P* as dP* =
ZrdP, we have that S is a P*-martingale, since sup,¢(o 7] |S¢| and Zz are in L*(P).
Next, for any L a square-integrable P-martingale with null at 0 orthogonal to
M, LZ is a P-local martingale. By the square integrability of L, L remains a
martingale under P*. Thus, P* is a minimal martingale measure. ]

7. Representation Results for LRM

In this section, we focus on representations of LRM ¢F for claim F. First of
all, we study it through the martingale representation theorem.
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7.1. Approach based on the martingale representation theorem.
Throughout this subsection, we assume Assumptions 2 and 3. Let P* be a minimal

martingale measure, that is, dP* = ZpdP holds. The martingale representation
theorem (see, e.g. section 2 of Benth et al. [4]) provides

ZpF = Ep.|[F +Z/ gZOszt—i-Z/ /g;;N (dt, dz)

for some predictable processes i’ and gzjz, 1 <4 < d. By the same sort of
calculations as the proof of Theorem 5.2, we have

EZ F . .
F = Ep.[F +Z/ "+ E[ZrF|Fi ]“tdW}j’t

gtz+EZTF|]:t ] itz o p
+Z//R . NP (dt, dz)

=: Ep. [F +Z/ hZOdWlPt—i—Z/ / hLNT (dt, dz)

where Uit = /\iSz_ﬂi_,t, 91'_’,572 = )\%S;_FYi,t,m

AWE, = dWi g + u;edt

and
NP: (dt7 dz) = Nz(dt, dZ) + ei,t,zu’i(d‘z)dt'

Girsanov’s theorem implies that W}  and NP are Brownian motions and the

compensated Poisson random measures of IV; under P*, respectively. Additionally,
we assume that
d

;E VOT {(hi’°)2 + /Ro(h;i;i)%i(dz)} dt] < 0. (7.1)

: -3,0 .__ 17,0 i Qi il
Denoting @7 := hy" — £,.5;{_Bi+, zt 2= hy, — ft Vit and

N i
6 = 20t [ Hitaen(@)), (7.2)
t

Ro
we can see

4,0 1
z;@¢+/za%mwu@=0
Ro

for any t € [0, T], which implies i; u; ; + fR iié@i’tyzui(dz) = 0. We have then

F—]ED»[F]—/OTgtdSt:zd:/O dWZ]Pt—i—Z/ / iy L NE(dt, dz)
=1
:i/o th+Z//thz (dt, dz).
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The following lemma implies that L := E[F — Ep«[F] — fOT &,dSs|Fi] is a square
integrable martingale orthogonal to M with L =

Lemma 7.1. Under Assumptions 2 and 3, and (7.1), we have

d
ZE / dt—i—/ / th 2v;(dz)dt| < .
i=1 0 Ro

f]pgo 'Yz t,x Z(dm)
ﬁfﬁrfko 'Yl t, LVi(dz)

. 7.t
Proof. Noting that grp-2s =iy and

l/g St )22 dt

. 2
T B0 + B2, (fo, hibisai(d))
U ST
- ( Rt I Vi,t,w’/i(d‘r))

4 (b 0 i, 1 . 2
<2E /T Bia(hi ( fRo (R, )?vi(dz) f]RO Vit Vildz)
0

2
i ¢t fRO ”Yi,t,mVi(dx))

<2E _/OT {(hi*o)2 + Ao(hi:i)zui(dz)} dt] .

By the same way as the above, we can see E [IOT Jo, (€D)2(S12)*77, Lvi(dz)dt| < oo
Together with (7.1), Lemma 7.1 follows. O

are less than 1, we

have

<2E dt

dt

Theorem 7.2. Assume that Assumptions 2, 3, and (7.1). We have then ff =&,
1<j<d defined in (7.2).

In the above theorem, a representation of LRM & is obtained under a mild setting.
Since the processes h7? and h?! appeared in (7.2) are induced by the martingale
representation theorem, it is almost impossible to calculate them explicitly, and
confirm if (7.1) holds. In the rest of this section, we aim to get concrete expressions
for h?"% and k7! by using Malliavin calculus.

7.2. Main results of LRM. We now calculate h° and k! by using Theorem 5.2.
Together with Theorem 7.2, we obtain the following:

Theorem 7.3. Under Assumptions 2, 3 and 1, h%° and h9, 1 < j < d are
described as

_ DI ez o -
1 = o,Ese | DI \F — FZ / D} yui d WY +/ / RO SF (g, d:c} ’]—}} :
(7.3)
hiz = Ep-[F(H]T = 1) + 2H] I D] _F|F,_]. (7.4)

Moreover, LRM ¢F = (¢ ... ¢4IT qre given by substituting (7.3) and (7.4) for
h30 and b7, 1 < j <d in (7.2) respectively, if (7.1) holds.
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Remark 7.4. (1) LRM for Lévy markets (one dimensional ) has been also discussed
in Vandaele and Vanmaele [16] without Malliavin calculus. They considered the
case where all coefficients in (6.1) are deterministic; and studied LRM for unit-
linked life insurance contracts.

(2) Benth et al [4] also concerned a similar issue by using Malliavin calculus. They
however studied minimal variance portfolio which is different from LRM, and con-
sidered only the case where the underlying asset price process is a martingale.
(3) Yang et al. [17] derived an explicit representation of LRM for a European call
option in the Hull and White model by using the Malliavin calculus in Wiener
space. They also give a numerical result of it.

(4) Arai and Suzuki [3] derived explicit representations of LRM for one dimensional
Lévy markets. They also calculated its concrete expressions for call options, Asian
options and lookback options.

(5) Arai et al. [1] illustrate how to compute LRM of call options for exponential
Lévy models by using the result of [3] and the fast Fourier transform method.

(6) Arai et al.[2] obtained explicit representations of LRM of call and put options
for the Barndorff-Nielsen and Shephard models, which are Ornstein-Uhlenbeck-
type stochastic volatility models. They also investigated the Malliavin differen-
tiability of the density of the minimal martingale measure. Moreover, they gave
some numerical experiments for LRM strategies.

Acknowledgment. The author would like to thank Professors Takuji Arai and
Noriyoshi Sakuma for helpful comments and advice.
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