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A Novel Hyperchaotic Hyperjerk System
with Two Nonlinearities, its Analysis,
Adaptive Control and Synchronization
via Backstepping Control Method

Sundarapandian Vaidyanathan*

Abstract: A hyperjerk system is a dynamical system, which is modelled by an n—th order ordinary differential
equation with n>4 describing thetimeevolution of asinglescal ar variable. Equival ently, using achain of integrators,
a hyperjerk system can be modelled as a system of n first order ordinary differential equationswith n >4. In this
research work, a novel 4-D hyperchactic hyperjerk system with two nonlinearities has been proposed, and its
qualitative properties have been detailed. The Lyapunov exponents of the novel hyperjerk system are obtained as
L,=0.13403, L, = 0.03849, L, = 0 and L, = —1.20579. The Lyapunov dimension of the novel hyperjerk system is
obtained as D, = 3.1431. Next, an adaptive backstepping controller is designed to stabilize the novel hyperjerk
chaotic system with three unknown system parameters. Furthermore, an adaptive backstepping controller isdesigned
toachieve global hyperchaos synchronization of theidentical novel hyperjerk systemswith three unknown system
parameters. MATLAB plotsareshown toillustrateall the main results of thisresearch work.

Keywords Chaos, hyperchaos, chaotic systems, hyperchaoti c systems, chaos control, chaos synchronization, adaptive
control, backstepping control, stability.

1. INTRODUCTION

A chaotic system is commonly defined as a nonlinear dissipative dynamical system that is highly sensitive
to even small perturbations in its initial conditions [1]. In other words, a chaotic system is a nonlinear
dynamical system with at least one positive Lyapunov exponent. Some paradigms of chaotic systems can
be listed asArneodo system [4], Sprott systems[5], Chen system [6], LU-Chen system [7], Liu system [8],
Ca system [9], Tigan system [10], etc.

In the last two decades, many new chaotic systems have been also discovered like Li system [11],
Sundarapandian systems [12-13], Vaidyanathan systems [14-33], Pehlivan systems [34-35], Pham systems
[36-37], Jafari system [38], etc.

Hyperchaotic systems are the chaotic systems with more than one positive Lyapunov exponent. They
have important applications in control and communication engineering.

Some recently discovered 4-D hyperchaotic systems are hyperchaotic Vaidyanathan systems [39-40],
hyperchaotic Vaidyanathan-Azar system [41], etc. A 5-D hyperchaotic system with three positive Lyapunov
exponents was aso recently found [42].

Chaostheory has several applicationsin avariety of fields such as oscillators [43-44], chemical reactors
[45-58], biology [59-80], ecology [81-82], neural networks [83-84], robotics [85-86], memristors[87-89],
fuzzy systems [90-91], etc.
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The problem of control of achaotic systemisto find a state feedback control law to stabilize a chaotic
system around its unstable equilibrium [92-93]. Some popular methods for chaos control are active control
[94-98], adaptive control [99-100], diding mode control [101-103], etc.

Chaos synchronization problem can be stated as follows. If a particular chaotic system is called the
master or drive system and another chaotic system is called the dave or response system, then the idea of
the synchronization is to use the output of the master system to control the Save system so that the output
of the dave system tracks the output of the master system asymptotically.

The synchronization of chaotic systems has applications in secure communications [104-107],
cryptosystems [108-109], encryption [110-111], etc.

The chaos synchronization problem has been paid great attention in the literature and a variety of
impressive approaches have been proposed. Since the pioneering work by Pecoraand Carroll [112-113] for
the chaos synchronization problem, many different methods have been proposed in the control literature
such asactive control method [114-142], adaptive control method [ 143-149], sampled-data feedback control
method [150-151], time-delay feedback approach [152], backstepping method [153-164], sliding mode
control method [165-173], etc.

In mechanics, if the scaar x(t) representsthe position of amoving object at timet, then thefirst derivative
X(t) represents the velocity, the second derivative X(t) represents the acceleration and the third derivative

X(t) representsthejerk or jolt. Inmechanics, ajerk systemisdescribed an explicit third order ODE describing
the time evolution of a single scalar variable x according to the dynamics

dt® | dt? ot (@
A particularly simple example of a jerk system is the famous Coullet system [174] given by
d®x _d®x dx
dat®*  dt®  dt 9) @)

where g(x) is anonlinear function such as g(x) = b(x* — 1), which exhibits chaos for a = 0.6 and b = 0.58.
A generalization of the jerk dynamics (1) is given by the dynamics

d”x _(d™%  dx
a F""’E’X’ (n>4) ©)

An ordinary differential equation of the form (3) is caled a hyperjerk system since it involves time
derivatives of a jerk function [175].

In this research work, we propose a novel 4-D hyperchaotic hyperjerk system by adding a quadratic
nonlinearity to the Chlouverakis-Sprott hyperjerk syssem [176]. Our novel hyperjerk system thus consists of
two nonlinearities. First, we detail the qualitative properties of the novel hyperchaotic hyperjerk sysem. Then
we obtain the Lyapunov exponents of the novel hyperjerk sysemasL, =0.13403, L,=0.03849, L,=0and L,
=-1.20579. The presence of two positive Lyapunov exponents demonstrates that the novel hyperjerk sysem
is hyperchaotic. The Lyapunov dimension of the novel hyperjerk systemis obtained as D, = 3.1431.

Next, this paper derives an adaptive backstepping control law that stabilizesthe novel hyperjerk system
when the system parameters are unknown. The backstepping control method is a recursive procedure that
links the choice of a Lyapunov function with the design of a controller and guarantees global asymptotic
stability of strict feedback systems. This paper also derives an adaptive backstepping control law that
achievesglobal chaossynchronization of theidentica 4-D novel hyperjerk systemswith unknown parameters.
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All the main adaptive control results derived in this paper are established using Lyapunov stability
theory [177]. MATLAB simulations are depicted to illustrate the phase portraits of the novel hyperjerk
system, adaptive stabilization and synchronization of the novel hyperjerk system with unknown parameters.
This paper concludes with a summary of the main results for the novel 4-D hyperchaotic hyperjerk system
with two nonlinearities.

2. ANOVEL 4-DHYPERCHAOTIC HYPERJERK SYSTEM

In [176], Chlouverakis and Sprott discovered a simple hyperchaotic hyperjerk system given by the
dynamics

d*x d®% , .d?x dx
+ X+ A +—+x=0 4
dt*  dt® dt>  dt @

In system form, the differential equation (4) can be expressed as

X =Xy
X =%
X =X, )
Xy =—Xl—X2—AX3—X14X4
When A = 3.6, the Chlouverakis-Sprott hyperjerk system (5) exhibits hyperchaos with Lyapunov
exponentsL, =0.132, L,=0.035, L,=0and L, = -1.25.
The Lyapunov dimension of the Chlouverakis-Sprott hyperjerk system (5) is calculated as
D, =3+ % ~3.1336 ©)
4

In thisresearch work, we propose a novel hyperjerk system by adding a quadratic nonlinearity to
the Chlouverakis-Sprott hyperjerk system (5) and with a different set of values for the system
parameters.

Our novel hyperjerk system is given in system form as
X =%

X, = X
X3 =X, (7)
X, =—Xl—X2—aX3—bX22—CX14X4

where a, b, c are constant, positive, parameters.

In this research work, we shall show that the hyperjerk system (7) is hyperchaotic for the parameter
values

a=37, b=0.05 c=1.3 (8

For the parameter valuesin (8), the Lyapunov exponents of the novel hyperjerk system (7) are obtained
as

L, =0.13403, L,=0.03849, L,=0, L, =-1.20579 9)
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From the LE spectrum givenin (9), it is easily seen that the hyperjerk system (7) is hyperchaotic since
it has two positive exponents. Also, the maximal Lyapunov exponent (MLE) of our novel hyperjerk system
(7) isL, = 0.13403, which is greater than the MLE of the Chlouverakis-Sprott hyperjerk system (5).

Also, the Lyapunov dimension of the novel hyperjerk system (7) is calculated as
D =3+ leth 393 (10)
IL, |
We observe that the Lyapunov dimension of the novel hyperjerk system (7) isgreater than the Lyapunov
dimension of the Chlouverakis-Sprott hyperjerk system (5). This showsthat the novel hyperjerk system (7)
exhibits more complex behaviour than the Chlouverakis-Sprott hyperjerk system (5).
For numerical simulations, we take the initial values of the novel hyperjerk system (7) as
x(0)=0.5, x,(0)=0.5 x,(0)=0.5 x,(0)=0.5 (1)
Figures 1-4 depict the 3-D projections of the 4-D novel hyperjerk system (7) on (X, X,, X)), (X, X, X,),
(X, X, X,) and (X, X,, X,) spaces, respectively.

4. a.
3 G-
2- 4
1 2.
[ - 0.
> .,
. 2.
2., 4.
3 -6
sl -8
3 e 3
2 ~ N 2 =
- " 1 e
o e 1 o 1
1 e o 13 - 0
% 2 e 1 27 1
. -
2 3 2 % % 3 2 X

Figure 1: 3-D projection of the 4-D novel hyperjerk systemon  Figure 2: 3-D projection of the 4-D novel hyperjerk system on
the (x,, X,, X,) space the (x,, x,, X,) space
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Figure 3: 3-D projection of the 4-D novel hyperjerk syssemon  Figure 4: 3-D projection of the 4-D novel hyperjerk system on
the (x,, X,, X,) space the (x,, X,, X,) space
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3. PROPERTIESOF THE NOVEL 4-D HYPERJERK SYSTEM

In this section, we detail the qualitative properties of the novel 4-D hyperchaotic hyperjerk system (7),
which is described in Section 2.

3.1. Equilibrium Points

The equilibrium points of the novel 4-D hyperjerk system (7) are obtained by solving the following system
of equations

X5 =

X, =
—X =X, —a% -G —ox'x, =

(12)

o O O O

We take the parameter values as in the hyperchaotic case, viz

a=37, b=0.05 c=1.3 (13)
Solving the equations (12) using the values (13), we obtain the unique equilibrium point

(14)

1 0

O 1 O
1 (15)
0

The eigenvalues of J are numerically obtained as

A4, =0.1550 + 1.8674i, A,,=-0.1550 + 0.5107i (16)
This shows that the equilibrium E, is a saddle-focus, which is unstable.

3.2. Lyapunov Exponents
We take the parameter values of the novel hyperjerk system (7) as

a=37, b=005 c¢=13 (17)
We take the initial conditions of the novel hyperjerk system (7) as
x(0)=0.5, x,(0)=0.5, x,(0)=0.5 x,(0)=0.5 (18)
The Lyapunov exponents of the system (7) are numerically obtained with MATLAB as
L, =0.13403, L,=0.03489, L,=0, L, =-1.20579 (19)
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Thus, the hyperjerk system (7) is chaotic, since it has two positive Lyapunov exponents.

The MATLAB plot of the Lyapunov exponents of the novel chaotic system (1) is depicted in Figure 5.
From this figure, we see that the maximal Lyapunov exponent (MLE) of the novel hyperjerk system (7) is
obtained as L, = 0.13403.

Sincel, +L,+L,+L,=-1.0333 <0, the novel hyperjerk system (7) is dissipative.

3.3. Lyapunov Dimension
The Lyapunov dimension of the novel 4-D hyperjerk system (7) is determined as

D, =3+ % = 3.1431 20)
4

which is fractional.
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Figure 5: Lyapunov exponents of the novel 4-D hyperjerk system

4. ADAPTIVE CONTROL OF THE NOVEL 4-D HYPERJERK SYSTEM WITH
UNKNOWN PARAMETERS

In this section, we design new results for the adaptive controller to stabilize the novel 4-D hyperjerk system
with unknown parameters for all initial conditions.

Thus, we consider the novel 4-D hyperjerk system with a single control given by

X =%

X, = X

X =X, (21)
X, ==X — X, — X, — xS —cx'x, +u
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where X, X,, X,, X, are state variables, a, b, ¢ are constant, unknown, parameters of the system and u is a
backstepping controller to be designed using estimates of the unknown system parameters.

The parameter estimation errors are defined as.

e(t)=a-a(t)

(1) =b-b() 2)
e.(t) =c—c(t)

Differentiating (22) with respect to t, we obtain

&,(t) =-a()
&,(1) =-b(t) 23
&,(t) = —¢(t)

Next, we shall state and prove the main result of this section.

Theorem 1. The 4-D novel hyperjerk system (21), with unknown parameters a, b and c, isglobally and
exponentialy stabilized by the adaptive feedback control law

u(t) = —4x — 9%, —[9— A(t)]X; — 4x, + b(t)xZ + &(t)X'X, — kz,, (24)
where k > 0 isa gain constant,
Z, = 3X +5%, + 3%, + X, (25)

and the update law for the parameter estimates A(t), b(t), &(t) is given by

a=-x2,
b=-xz, (26)
C=-x'%,2,

Proof. We prove this result via backstepping control method and Lyapunov stability theory [177].
First, we define a quadratic Lyapunov function

1
Vi(z)=27 (27)
where

Z=% (28)
Differentiating V, along the dynamics (21), we get

v1: 2, = XX, :_le+zl()(1+xz) (29)
Now, we define

Z,=%+% (30)
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Using (30), we can simplify the equation (29) as

V,=-Z +22,
Secondly, we define a quadratic Lyapunov function
_ 1 2 1 2 2
V,(2.,2,)=V,(z)+>Z =2(Z +2)

2 2
Differentiating V, along the dynamics (21), we get
V, =7 =2+ 2,(2% + 2% + X))
Now, we define
Zy = 2%+ 2%, + X
Using (34), we can simplify the equation (33) as
V,=-Z-Z +2,2
Thirdly, we define a quadratic Lyapunov function
1( 2

1
Vol2:2,2) V(2. 2) + 52 = (Z + 5 + %)

Differentiating V, along the dynamics (21), we get
V,=-Z -2, — 2%+ 2,(3% + 5%, + 3%, + X,
Now, we define
Z, =3X + 5%, + 3%, + X,
Using (38), we can simplify the equation (37) as
V,=-Z-Z-Z+27,
Finally, we define a quadratic Lyapunov function
V(2.2,2,2,8,6,8) =Vs(2,2,2) +%Z§ +%(e§ +€ +€)
which is a positive definite function on R'.
Differentiating V along the dynamics (21) and (23), we get
V=-2-Z-Z-Z+27(z,+2+ 24)—eaé—e06—ecé
Eq. (41) can be written compactly as
Ve-Z-Z-7_7+75-eh-ab-et
where

S=2,+72,+2,=2,+,+ (3% + 5%, + 3%, + X,)
A simple calculation gives

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)
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S=4x +9%, +(9—a)x, + 4x, —bxZ —cx'x, +U (44)
Substituting the adaptive control law (24) into (44), we obtain
S=-{a-aM)x -[b-b{)]x ~[c-EMIX'x, ~ Iz, (45)
Using the definitions (22), we can simplify the equation (45) as
S:_eaxi‘s_eoxz2 _ecX14X4_kZ4 (46)
Substituting the value of from (46) into (42), we obtain
V--z-Z-2-0rlZ +e(xz-a)rq( 6z -blre(Xxz-8) @)
Substituting the parameter update law (26) into (47), we obtain
V=-z-Z-Z-1+k3z, (48)

which is a negative semi-definite function on R’.

From (48), it follows that the vector z(t) = (z(t), z(t), z,(t), z,(t)), and the parameter estimation error

(e,(t), e(t), e(t)) are globally bounded, i.e.

[2() z® z®) z0) &) &® e®]el,
Also, it follows from (48) that

Vez-g-d-d=fdf
That is,

|2 <-v
Integrating the inequality (51) from O to t, we get

j |z(z)[[dz <V(0) -V (1)

From (52), it follows that z(t) L.,
From (21), it can be deduced that z(t) e L, .

(49)

(50)

(51)

(52)

Thus, using Barbalat’s lemma [177], we conclude that z(t) — 0 ast — o exponentially for al initial

conditions z(0) eR.
Hence, it follows that x(t) — 0 ast — « exponentially for al initial conditions x(0)eR*.
This completes the proof. m

4.1. Numerical Simulations

The classical fourth-order Runge-Kutta method with step-size h = 1078 is used to solve the systems of

differential equations (21) and (26), when the adaptive control law (24) is applied.

The parameter values of the novel 4-D hyperjerk system (21) are taken as in the hyperchaotic case, i.e.

a=3.7,b=0.05and c = 1.3. The positive gain constant k istaken ask = 9.
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The initial conditions of the novel 4-D hyperjerk system (21) are taken as
x(0)=-8.7, x,(0)=124, x(0)=-9.2, x,(0)=15.1 (53)

The initial conditions of the parameter estimates are taken as

4(0)=7.9, b(0)=5.2, ¢(0)=10.3 (54)
Figure 6 shows the exponential convergence of the controlled states X, (t), X(t), X(t), X,(t).
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Figure 6: Time history of the controlled novel hyperjerk system

5. ADAPTIVE SYNCHRONIZATION OF THE NOVEL 4-D HYPERJERK SYSTEMSWITH
UNKNOWN PARAMETERS

In this section, we use backstepping control method to derive an adaptive control law for globally and
exponentially synchronizing the identical novel 4-D hyperjerk systems with unknown parameters.

As the master system, we consider the novel 4-D hyperjerk system given by

X =X

X, =%

X5 =X, (55
>‘<4:—xl—x2—ax3—bx22—cxfx4

where x , X,, X,, X, are the states and a, b, ¢ are constant, unknown, parameters.
As the dave system, we consider the novel 4-D hyperjerk system with a control given by

Yi=Y,
Yo=Y,
Ys=VYs (56)

Y4:_Y1_y2_aY3_byZ2_Cyl4y4+u



A Novel Hyperchaotic Hyperjerk System with Two Nonlinearities, its Analysis, Adaptive Control... 267

wherey,, v,, ¥, Yy, are the states and u is a backstepping control to be determined using estimates of the
unknown system parameters.

We define the synchronization error between the hyperjerk systems (55) and (56) as

E=%1—X%X
&=Y,—%
&=Y;—X% (57)
CG=Yi—X%

Then the error dynamics is easily obtained as

<D
I

&
&

S P
[T
O

(58)
& =—6-6—ag—b(y; — %) —C(¥, Y, — X'%,) +U

The parameter estimation errors are defined as.

e (t)=a-a(t)

& (t)=c—c(t)

Differentiating (59) with respect to t, we obtain

&,(t) =-a()
‘?0“) =—t:(t) (60)
&,(t) = —¢(t)

Next, we shall state and prove the main result of this section.
Theorem 2. The 4-D novel hyperjerk systems (55) and (56) with unknown system parameters are
globally and exponentially synchronized by the adaptive feedback control law
u(t) =—4e, —9e, ~[9- &(t)]e, — 4e, +b(1)(¥5 —X) + B (Y, Vs — %X,) - Kz, (61)
where k > 0 isa gain constant,
z,=3g +5€e,+3g,+ €, (62)
and the update law for the parameter estimates A(t), b(t), &(t) is given by

b= _()/22 _X22)24

. ) , (63)
C= _(yl Ya—X X4)24
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Proof. We prove this result via backstepping control method and Lyapunov stability theory [177].
First, we define a quadratic Lyapunov function

1
Vi(z) = 2 z (64)
where
z=¢ (65)
Differentiating V, along the dynamics (58), we get
V=22 =66=-Z +7(g+e) (66)
Now, we define
z,=¢+e (67)
Using (67), we can simplify the equation (66) as
V,=-Z +22, (68)
Secondly, we define a quadratic Lyapunov function
1 1
Vo(z.2) =Vi(2)+5Z =2 (72 + Z) (69)
Differentiating V, along the dynamics (58), we get
V,=-Z' -7 +2,(26 + 2¢,+8) (70)
Now, we define
Z,=26+26,+6 (71)
Using (71), we can smplify the equation (70) as
V,=-Z -7 +2,2 (72)
Thirdly, we define a quadratic Lyapunov function
1 1
Vo(2:2,2) =Va(2,2) + 52 = (2 + 4+ ) (73)
Differentiating V, along the dynamics (58), we get
v3=_212_222_232+23(3el+5%+3%+e4) (74)
Now, we define
z, = 3% +5x, + 3%, + X, (79)

Using (75), we can simplify the equation (74) as
V3:—Zf—222—25+2324 (76)
Finally, we define a quadratic Lyapunov function

1 1
V(22,2,2,,6,6,8) =Vo(2, 2, 2) + S 2+ (€ + € +€) (77)

which is a positive definite function on R'.
Differentiating V along the dynamics (58), we get

2

V:—zf—22—z§—zf+z4(z4+23+z4)—eaé—e06—ecé (78)
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Eq. (78) can be written compactly as

V=—zf—z§—z§—z§+z4S—eaé—e06—ecé (79)
where
S=7,+2,+2,=2,+2,+ (3¢ +5¢&,+3¢,+¢,) (80)
A simple calculation gives
S=4g +9, +(9-a)e,+4e,—b(y; - x3) - c(y;'y, —X'%,) +u (81)
Substituting the adaptive control law (61) into (81), we obtain
S=—{a-a(t)]e,~[b—b®I(y; —x5) ~[c—EOI (¥, Ys — X'%) — Kz, (82)

Using the definitions (59), we can smplify the equation (82) as

S=- aes)_eo(ys_xzz)_ec(yfﬁ_X14X4)_kz4 (83)
Substituting the value of from (83) into (79), we obtain

V--Z-Z-Z-@+lz +e[ -0z -4]+e| (i -¥)2-b|

£ (84)
+& [_(yfy4 - X14X4)Z4 - C}
Substituting the parameter update law (63) into (84), we obtain
V=-7-Z-7-1+K)Z, (85)

which is a negative semi-definite function on R’.

From (85), it follows that the vector z(t) = (z(t), z(t), z,(t), z,(t)), and the parameter estimation error
(e,(t), e (1), e(t), are globally bounded, i.e.

[z®) zt) z®) zO el &) e®]eL, (86)
Also, it follows from (85) that
Ve-z-Z-Z-Z=—| (87)
That is,
I <~ (@)
Integrating the inequality (88) from O to t, we get

! |z(z)[[dz <V(0) -V (1) (83)

From (83), it follows that z(t)L,. From (58), it can be deduced that z(t) e L, .

Thus, using Barbalat’s lemma [177], we conclude that z(t) — 0 ast — o exponentially for al initial
conditions z(0) eR*. Hence, it follows that e(t) —» 0 ast — oo exponentialy for al initial conditions This
completes the proof. m
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5.1. Numerical Simulations

The parameter values of the novel 4-D hyperjerk systems (55) and (56) are taken as in the hyperchaotic
case, i.e.a=37,b=0.05andc=1.3.

The positive gain constant k istaken ask = 9.
The initial conditions of the novel hyperjerk system (55) are taken as

%(0)=3.2, x,(0)=-24, x(0)=-1.8, x,(0)=0.1 (84)
The initial conditions of the novel hyperjerk system (56) are taken as

Y1(O) =-2.1, Y, (0)=13, Y3(O) =-54, Y4(O) =29 (85)
The initial conditions of the parameter estimates are taken as

4(0)=6.8, b(0)=5.4, &0)=9.2 (86)

Figures 7-10 show the complete synchronization of the novel 4-D hyperjerk systems (55) and (56).

Figure 11 shows the time-history of the synchronization errors e, e, e,, €,.
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e
— ){3 —_— )(4
3 - ys yli
a1
41
/
ko
H =
S
-6 L 1
i 1 2 3 4 5 i 7 [ 2 3 4 5 6 7 a
Time (sec) Time (sec)
Figure 9: Complete synchronization of the states Figure 10: Complete synchronization of the states
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Figure 11: Time history of the chaos synchronization errorse,, e, e, €,

6. CONCLUSIONS

In this paper, anovel 4-D hyperchaotic hyperjerk system with two nonlinearities has been proposed, and its
gualitative properties have been detailed. Next, an adaptive backstepping controller wasdesigned to stahilize
the novel hyperjerk chaotic system with three unknown system parameters. Furthermore, an adaptive
backstepping controller was designed to achieve global hyperchaos synchronization of the identical novel
hyperjerk systems with three unknown system parameters. MATLAB have been shown to illustrate al the
main results of this work.
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