
A SYSTMATIC AND DEVELOPED ALGORITHM FOR
TASK ALLOCATION SYSTEM IN COMPUTER

COMMUNICATION SYSTEM

Manisha Sharma

Abstract: The Computer Communication System [CCS] has several challenging problems,
in this paper we discussed and provide an optimal solution for assigning a set of “m” tasks
of a program to a set of “n” processors where m > n. In Computer Communication
Environment we maximize the overall throughput of the system and allocated load on all
the processors should be balanced. The Inter Task Communication Time [ITCT] and
Execution Time [ET] on different processors has consideration while preparing the task
allocation model. The Task Allocation and Task Execution Time are presented by arrays
i.e. Inter Task Communication Time Matrix [ITCTM (,)] and Execution Time Matrix [ETM
(,)] respectively. This mathematical programming approach has been used to determine
the optimal tasks allocation. The sets of several input data are considered to test the efficiency
and complexity. It is found that the algorithm is suitable for arbitrary number of processor
with the random program structure and workable in all the cases.

Keywords: Computer Communication System in Environment, Tasks Execution Time,
Inter Task Communication Time, Task Allocation, Mathematical Programming

1. INTRODUCTION

The on-set of the microprocessor technology has made the Computer Communication System
[CCS] economically viable and attractive for many applications of computer. However,
many problem areas in CCS are still in their primitive development stages. Computer
Communication System is increasingly drawing attention, yet has a meaning that is not
understood.

The Computer Communication System is used to describe system terms with multiple
processors. However, the term has different meanings to different systems because
processors can be interconnected in many ways for various reasons. In the most general
form, the word distribution implies that the processors are in geographically separate
locations. Occasionally, the term is also applied to an operation using multiple mini-
computers, which are not hardware, connected with each other and are connected through
satellite. A user-oriented definition [1, 2] of distributed computing is “Multiple Computers,
utilized cooperatively to solve problems”.

International Journal of Mathematical Sciences
Vol. 9, No. 3-4, July-December 2010, pp. 441-452

© Serials Publications

442 Manisha Sharma

Distributed processing applications range from large data base installations where
processing load is distributed for organizational efficiency to high-speed signal processing
systems where extremely fast processing must be performed in a real-time environment.
The distributed real time environment in which, the services provided for the network
reside at multiple site.

The total cost of execution of a distributed program consists of processor costs plus
message transmission cost. The potential for distributed computing exists whenever there are
several computers interconnected in some fashion so that a program or procedure running on
one machine can transfer control to a procedure running on another. With increasing complexity
of various real life problems, the demand for faster computer components is increasing.

Assigning tasks to processors is called task allocation, which involves the allocation of
tasks to processors in such a way that some effectiveness measures are optimized. If the
effectiveness measure can be represented as a linear function of several variables subjected
to a number of linear constraints involving these variables, then the task allocation is
classified as a Linear Programming Problem [LPP]. Likewise, for the processor, which can
perform anyone the several tasks, possibly the difference of execution, and the effectiveness
measure is the total ET to perform all tasks when one and only one task is allocated to each
processor. In such cases, task allocation is classified as an assignment problem. Assigning
“m” tasks to “n” processors, through exhaustive enumeration, results in nm possible ways.

Splitting a program into small tasks and distributing them among several computing
elements to minimize the overall system cost is one of the basic strategies adopted for
performance enhancement of DCS. Several methods owing to Integer programming [3,4],
critical delays consideration [5], branch and bound technique [6] and reliability evaluation
[7] to deal with various design and allocation issues in a Distributed Processing Environment
have been reported in the literature. These problems may be categorized in static (cf. Baca
[8], Chu [9], PK [10], Singh [11-12], Peng et al. [13], Sager et al. [14], Singh et al. [15],
Sirinivasan et al. [16], PK Av [17], Zahedi et al. [18]) and dynamic (cf. Bierbaum et al.
[20] have suggested a dynamic model-based reliability analysis Bokhari[21], Casavent et
al. [22], PK [23], Singh [25]) assignment problems. Rotithor [26] have been reported a
general purpose taxonomy of dynamic task allocation in distributed computing. The present
paper addressed an algorithm for systematic allocation of tasks in distributed computing
environment keeping in view the allocated load on each processor should be balanced.

2. DEFINITION AND ASSUMPTIONS

Execution Time: The execution time eij (1 � i � m & 1 � j � n) of each task ti depends on
the processor pj to which it is assigned and the work to be performed by each of tasks of
that processor pj.

A Systmatic and Developed Algorithm for Task Allocation System... 443

Inter Tasks Communication Time: The Inter Task Communication Time cik of the
interacting tasks ti and tk is incurred due to the data unit exchanged between them during
the process of execution.

Processor Graph: Processor graph is a convenient abstraction of the processors together
with interconnection. It has processors as nodes and there is a weighted edge between two
nodes if the corresponding processors can communicate with each other. The weight wij on
the edge between processors pi and pj represent the delay involved in sending or receiving
massage of unit length from one to another. In order to have approximate estimate of this
delay, irrespective of the two processors, we have considered the unit of the weights on all
the edges in the processor graph. This is called the average unit delay.

Assumptions: Several assumptions have been made to keep the algorithm reasonable
in size while designing the algorithm. The program is assumed to be the collection of “m”
tasks, which are to be executed on a set of “n” processors, which have different processing
capabilities. A task may be portion of an executable code or a data file. The number of
tasks to be allocated is more than the number of processors (m>>n), as normally is the case
in the real life distributed computing environment. It is assumed that the ET of a task on
each processor is known, if a task is not executable on any of the processor due to absence
of some resources, then The ET of same task on that processor is taken to be (—) infinite.
We assume that once a task has completed its execution on a processor, the processor
stores the output data of the task in its local memory, if the data are needed by some another
task which being computed on the same processor, it reads the data from the local memory.
The overhead incurred by this is negligible, so for all practical purposes we will consider it
as zero. Using this fact, the algorithm tries to allocate the heavily communicating tasks to
the same processor. Whenever a group of tasks is assigned to the same processor, the ITCT
between them is zero.

3. PROBLEM STATEMENT

The specific problem being addressed is as follows:

Consider an application program that consists a set of m communicating tasks T = {t1,
t2,….tm} and a DCS consisting a of set of n processors P = {p1,p2,….pn}, interconnected by
communication links, and it is assumed that “m>>n”. The processor graph is a convenient
abstraction of the processors together with interconnection network. It has processors as
nodes and there is a weighted edge between two nodes if the corresponding processors can
communicate with each other. The weight wij on the edge between processors pi and pj

represent the delay involved in sending or receiving the message of unit length from one
processor to another. In order to have an approximate estimate of this delay, irrespective of
the two processors, we use the average of the weights on all the edges in the processor

444 Manisha Sharma

graph. This is called the average unit delay. The processing time eij of these tasks on all the
processors is given in the form of Matrix ETM (,) of order m x n. The ITCT cik is taken in
the form of a symmetric matrix named as ITCTM (,), which is of order m. In order to make
the best use of the resources in a distributed computing system we would like to distribute
the load on each processor in such a way that allocated load on the processors should be
balanced.

4. PROPOSED METHOD

Since the number of task are more than the number of processors, so that it is required to
form the order of the tasks for there execution by applying the equation (1) given below.

� � ..,.........2,1,

1

1 mi
e

c

RCE
n

j
ji

m

j
ji

i ��

�

�

�

�

(1)

� � 1 2, 1, 2,......... , //mi
RCE i m is corresponding to the task t t t�

Arrange the tasks in ascending order of their (RCE)i and store them in � �assnonT � .

Select first from task Tnon-ass { }, (say tk) and check the minimum execution time of task tk

in ETM(,) of all the processors say pi, assign the task tk to pi and store the result in Tass{ }.
The processor position is also store in linear array Alloc{,}. The total allocated load on
each processor is also stored in pload{ }. Select next task from the Tnon-ass { } say ti, check
the ITCT of task ti with the assigned task stored in Tass{ } say tk also check the processor
position of task tk in Alloc{ } say pi .If task ti have the ITCT with tk then assigned task ti to
that processor for which the sum of EC and ITCT and Processor load is minimum. If the
task ti has no inter task communication with the task tk which is already assigned then
assign the task ti to that processor for which the sum of EC and processor load is minimum
and then modified the pload{ }. This process is continuing until all the tasks get executed.

Calculate the exaction time and inter tasks communication time of each processor and
store the result in a linear array pet(j) and pitct(j) respectively where j= 1,2,…n.

1,2,....n j , x (j) ij

m

1i

���
�

ijepet

Where xij = 1, if ti and tj are on the same processor.
0, otherwise{ }

A Systmatic and Developed Algorithm for Task Allocation System... 445

And

njTTCTpitct ,......2,1, x(i) (j)
m

1i
i ���

�

Where xi = 1, if ti is on the jth processor.

0, otherwise

Finally, sum up the value of pct(j) and pitct(j), (j=1,….,n) and store the result the
tbtp(j) and pickup the maximum value of tbtp(j) i.e. tost called as total system optimal time.

The Mean Service Rate [MSR] of the processors in terms of Tass(j) is then calculated
by using the equation (2) and store the results in MSR(j) (where j = 1,2,…,n).

),...12j (
)(

1
)(nwhere

jpet
jMSR �� (2)

The overall mean service time and throughput of the processors are calculated by using
the equation (3) and (4) respectively. Store the results of mean service time and throughout
in the linear arrays MST (j) and TRP (j), where j=1, 2…….,n respectively.

),...12j (
)(

1
)(nwhere

jMSR
jMST �� (3)

),...12j (
)(

)(
)(nwhere

jPET

JTTASK
jTRP �� (4)

5. IMPLEMENTATION OF THE METHOD

To justify the application and usefulness of the present method an example of a DCS is
considered which is consisting of a set of “n = 3” processors P = {p1, p2, p3} connected by
an arbitrary network. The processors only have local memory and do not share any global
memory. The processor connections graph is a depicted in figure-1 and tasks execution
graph also pictorially depicted in figure 2. A set of “m = 8” executable tasks T = {t1, t2, t3,
t4, t5, t6, t7, t8,} which may be portion of an executable code or a data file. The Inter tasks
communication graph is depicted in figure 3.

{ }

446 Manisha Sharma

p 1

p 2

p 3

p 1p 1

p 2p 2

p 3p 3

Figure 1: Processors Graphs

p1

p2

p3

t1

t2

t4

t3

t7

t5

t6

t8

6

3
5

5

2

2

2
5

6

6
5

5

7

6

4

3

5

1

3

2

4

3

p1

p2

p3

p1p1

p2p2

p3p3

t1t1

t2t2

t4t4

t3t3

t7t7

t5t5

t6t6

t8t8

6

3
5

5

2

2

2
5

6

6
5

5

7

6

4

3

5

1

3

2

4

3

0.80

1.00

1.20

Figure 2: Tasks Execution Graph

t1

t2

t4
t3

t7

t5

t6

t8

3

2

4

1

6

8

5

4

3

3

2

5

2

5

6

8

5

t1t1

t2t2

t4t4
t3t3

t7t7

t5t5

t6t6

t8t8

3

2

4

1

6

8

5

4

3

3

2

5

2

5

6

8

5

Figure 3: Inter Tasks Communications
Time Graphs

Input of the Algorithm: Data required by the Algorithm is given below: Number of
processors available in the system (n) = 3

A Systmatic and Developed Algorithm for Task Allocation System... 447

Number of tasks to be executed (m)= 8

p1 p2 p3

t1 6 3 5
t2 4 2 3
t3 3 1 2

ECM(,) = t4 5 2 —
t5 3 4 2
t6 6 — 6
t7 5 6 7
t8 — 2 5

t1 t2 t3 t4 t5 t6 t7 t8

t1 0 3 4 2 6 8 1 0
t2 3 0 0 0 0 0 0 5
t3 4 0 0 4 3 2 0 0

ITCCM(,) = t4 2 0 4 0 5 3 2 5
t5 6 0 3 5 0 0 0 0
t6 8 0 2 3 0 0 6 8
t7 1 0 0 2 0 6 0 5
t8 0 5 0 5 0 8 5 0

The mathematical programming approach has been used to determine the optimal
allocation of tasks. The optimization results from the algorithm ensure overall system cost
as well as load on the processors are optimally balanced. Table-1 and figure – 4 are shows
the optimal assignment of tasks to the processors. Table 2 shows the Results of the algorithm.

Table 1

Results of the algorithm

Tasks Processor

t
3

p
1

t
7

p
1

t
2

p
2

t
4

p
2

t
8

p
2

t
1

p
3

t
5

p
3

t
6

p
3

448 Manisha Sharma

Table 2

Processors wise EC and ITCC and total of EC and ITCC

P EC ITCC MSR TPP MSR T

1 2 3 4 5 6 (3+6)
p

1
7 22 0.143 0.286 6.993 28.993

p
2

6 32 0.167 0.501 5.988 37.988
p

3
13 37 0.077 0.231 12.987 49.987

P–Processor, MSR–Mean service rate, TPP-Throughput of the processors, T-Total

The mean service rate and throughput of the processors are given in form of graph in
figure – 5. The Maximum busy time of the system is 49.987, which is related to processor
p3 depicted in figure 6.

p1

p2

p3

p1p1

p2p2

p3p3

t3t

t2t2

t4t4

t1t

t7t7

t5t5

t6t

t8t8

0.80

1.00

1.20

3

2

5
2

2

2

5

6

p1p1

p2p2

p3p3

p1p1

p2p2

p3p3

t3t

t2t2

t4t4

t1t

t7t7

t5t5

t6t

t8t8

0.80

1.00

1.20

3

2

5
2

2

2

5

6

t8t8

0.80

1.00

1.20

3

2

5
2

2

2

5

6

Figure 4: Optimal Assignment Graph

Figure 5: Mean service rate and throughput of the processors

A Systmatic and Developed Algorithm for Task Allocation System... 449

6. CONCLUSION

The present paper deals with a simple yet efficient mathematical and computational algorithm
to identify the Systematic Allocation of tasks for evaluation of performance of the Distributed
Processing Systems number. A simple procedure has been developed to determine the
following:

1. Systematic Allocation of tasks in DPS

2. Mean service rate,

3. Mean service time

4. Throughput of the processors

Table 1 shows that 2 tasks are executing on processor p1, 3 tasks are executing on p3

and 2 tasks are executing on p3. Table 2 shows that results of the algorithm form the table it
is concluded that maximum busy time of the systems as 49.987 which is related to processor
p3. Therefore, the optimal time of the DPS is 49.987. Throughput of the processors is
0.286, 0.501 and 0.231. The average throughput of the DPS is 0.339.

The Performance of the algorithm is compared with [13]. The algorithm suggested in
[13] is not considered the criteria of load balancing and proper utilization of each processor
whereas our model considered both the issues. The run time complexity of the algorithm
suggested by R.Y. Richard et al. [22] is o (nm) which to high and the show the problem is
NP-Hard. The algorithm suggested by G. Sagar et al. [13] runs o (m2n). The run complexity
of the algorithm presented in this paper is o [1/2(5m2+2mn)], which is much less then that
of [13]. Table 3 and figure 7 represents the complexity comparisons of the algorithms.

Figure 6: Maximum busy time of the system

450 Manisha Sharma

Table 4
Results of run time complexity of the algorithms

M N Run time complexity of the algorithms

G. Sagar et al. [13] Present Model

5 3 75.0 78.0

6 3 108.0 108.0
7 4 196.0 151.0

8 4 256.0 192.0
9 5 405.0 248.0

10 5 500.0 300.0
11 6 726.0 396.0

12 6 864.0 432.0
13 7 1183.0 514.0

14 7 1372.0 588.0
15 8 1800.0 683.0

16 8 2048.0 768.0

Figure 7: Comparisons of the complexity of the algorithms

It concluded that algorithm is general and can accommodate a large number of tasks to
be assigned on any number of processors. To tests the generality of our algorithm the
several sets of input data are considered and it is found that the algorithm is suitable for
arbitrary number of processor with the random program structure and workable in all the
cases.

A Systmatic and Developed Algorithm for Task Allocation System... 451

REFERENCES

[1] Bhutani K.K., “Distributed Computing”, The Indian Journal of Telecommunication, pp. 41-
44, 1994.

[2] Sitaram B.R., “Distributed Computing – A User’s View Point”, CSI Communications, Vol.-
18 No. 10, pp.26,28, 1965.

[3] Chu W.W., “Optimal File Allocation in a Multiple Computing System”, IEEE Trans. On
Computer, Vol.C-18 pp.885-889, 1969.

[4] Dessoukiu-EI O.I. and Huna W.H., “ Distributed Enumeration on Network Computers,” IEEE
Trans. On Computer, Vol.C-29 pp.818-825, 1980.

[5] J.B. Sinclayer, “ Optimal Assignment in Broadcast Network” IEEE Trans. On Computer, Vol.37
(5), pp.521-351, 1988.

[6] Richard R.Y., Lee E.Y.S. and Tsuchiya M., “A Task Allocation Model for Distributed Computer
System”, IEEE Tran. On Comp, Vol.C-31 pp.41-47, 1982.

[7] Min-Sheng Lin, , “A Linear-time Algorithm for Computing K-terminal Reliability on Proper
Interval Graphs”, IEEE Trans. Reliability, vol. 51, pp. 58-62, 2002.

[8] Baca, D.F., “Allocation Modules to Processor in a Distributed System”, IEEE Transactions on
Software Engineering, vol. 15, pp. 1427-1436, 1989.

[9] Chu, W.W., “Optimal File Allocation in a Multiple Computing System”, IEEE Transactions
on Computer, vol. 18, pp. 885-889,1969.

[10] P K, Avanish, “An Algorithm for Optimal Index to Tasks Allocation Based on Reliability and
cost”, published to the proceedings of International Conference on Mathematical Modeling
held at Roorkee, pp. 150-155, 2001.

[11] Singh, P.K., “An Efficient Algorithm for Allocating Tasks to Processors in a Distributed
System”, Proc. of the 19th National system conference, SSI, held at Coimbatore, India pp. 82-
87, 1995.

[12] Singh, P.K., “A Fast Algorithm for Allocating Tasks in Distributed Processing System”, Proc.
of the 30th Annual Convention of CSI, held at Hyderabad, India pp. 347-358,1995.

[13] Peng, Dar-Tezen, Shin, K. G. and Abdel, Zoher T. F., “Assignment Scheduling Communication
Periodic Tasks in Distributed real time System”, IEEE Transactions on software Engg. vol.
SE-13, pp. 745-757,1997.

[14] Sagar, G., and Sarje, A.K., “Task Allocation Model for Distributed System”, Int. J. System
Science, vol. 22, pp. 1671-1678,1991.

[15] Singh, Kumar, A., “An Efficient Algorithm for Optimizing Reliability Index in Tasks-
Allocation”, Acta Ciencia Indica, vol. xxv m, pp. 437-444,1999.

[16] Srinivasan, Santhanam and Jha. K. Niraj, “Safety and Reliability Driven Task Allocation in
Distributed System”, IEEE Transactions on Parallel and Distributed Systems, vol. 10, pp. 238-
250,1999.

452 Manisha Sharma

[17] P. K. and Avanish, “An Efficient Static Approach for Allocation through Reliability
Optimization in Distributed Systems”, presented at the International conference on Operations
Research for Development (ICORD2002) held at Chennai, 2002.

[18] Zahedi, E., and Ashrafi, N., “Software Reliability Allocation based on Structure, Utility, Price
and Cost”, IEEE Transactions on Software Engineering, vol. -17, pp. 345-356, 1991.

[19] V. Nefedova, R. Jacob, I. Foster, Z. Liu, Y. Liu, E. Deelman, G Mehta, M. Su, K.
Vahi.”Automating Climate Science: Large Ensemble Simulations on the TeraGrid with the
GriPhyN Virtual Data System”. Presented at the eScience Conference in Amsterdam,
December, 2006.

[20] Bierbaum, Rene L., Brown, Thomas D. and Kerschen, Thomas J., “Model-Based Reliability
Analysis”, IEEE Trans. on Reliability, vol. 51, pp. 133-140, 2002.

[21] Bokhari, S.H., “Dual Processor Scheduling with Dynamic Re-Assignment”, IEEE Transactions
on Software Engineering, vol. 5, pp. 341-349, 1979.

[22] Casavent, T.L. and Kuhl, J. G., “A Taxonomy of Scheduling in General Purpose Distributed
Computing System”, IEEE Transactions on Software Engineering, vol. 14, pp. 141-154, 1988.

[23] P K, Avanish, “Optimizing for the Dynamic Task Allocation”, published to the proceedings of
the III Conference of the International Academy of Physical Sciences held at Allahabad, pp.
281-294, 1999.

[24] Gaurav Khanna, Umit Catalyurek, Tahsin Kurc, Rajkumar Kettimuthu, P. Sadayappan, Joel
Saltz and Ian Foster “Multi-Hop Path Splitting and Multi-Pathing Optimizations for Data
Transfer over Shared Wide-Area Networks using GridFTP” Proceedings of the 17th IEEE
International Symposium on High-Performance Distributed Computing (HPDC 2008), June
2008.

[25] Singh, P.K., “An Efficient Algorithm for Multi-processor Scheduling with Dynamic
Reassignment”, Proc. of the 6th National seminar on theoretical Computer Science, held at
Banasthally Vidyapeeth, India pp. 105-118, 1996.

[26] Rotithor, H.G., “Taxonomy of Dynamic Task Scheduling in Distributed Computing Systems”,
IEEE Proc. Computer Digit Tech., vol. 14, pp. 1-10,1994.

[27] John Bresnahan, Rajkumar Kettimuthu, Michael Link and Ian Foster. “Harnessing Multicore
Processors for High Speed Secure Transfer”. Proceedings of the 26th IEEE Infocom’s High-
Speed Networks Workshop, May, 2007.

Dr. Manisha Sharma
Astt. Prof. / Punjab University
E-mail: manishatewaripu@gmail.com

