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Abstract: In underwater, dunking sonar generates underwater target range and bearing measurements and the 
same information is communicated to a helicopter for further processing. The noise corrupted measurements are 
processed to estimate target motion parameters using online Extended Kalman Filter. These estimates are useful to 
find out weapon present parameters and then to release the weapon on to the target. Results obtained in simulation 
are presented.
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INTRODUCTION1.	
Target motion analysis (TMA), in two dimensional scenario is generally used in underwater environment 
[1]. Dunking sonar is positioned in the sea from a helicopter in hovering mode to find out the path of the 
target submarine in sea waters. The sonar in active mode finds out target bearing and range measurements. 
These are communicated to the helicopter signal processing system through a cable. It is to assume that 
the target moves with uniform velocity and the observer is standstill. Observer estimates the target range, 
bearing, course and speed using the noise corrupted bearing and range measurements [2-3]. Extended 
Kalman filter is used to smooth the measurements and to estimate course and speed the target. Using the 
estimated parameters, weapon preset parameters (this topic is not dealt here) are calculated in helicopter 
fire control system to release weapon on the target.

Mathematical modeling of target state vector, measurements and Kalman filter in brief are described in 
section2. Section 3 deals with implementation of the algorithm and generation of target motion measurements 
in simulation environment. In section 4 results obtained in simulation are described.

MATHEMATICAL MODELING2.	

A.	 Modeling of State Vector and Measurements[4-5]
The Xs(k) be state vector is

	 XS(k) = [ ( ) ( ) ( ) ( )] x k y k k kx y
TR R 	 (1)

where x k( )  and y k( )  are target velocity in x and y directions and Rx(k) and Ry(k) are target range in x and 
y directions. The State equation of the target is

	 Xs(k + 1) = f(k + 1/k)Xs(k) + b(k + 1) + w(k)	 (2)

where w(k) is noise having zero mean white Gaussian power spectral density and f(k + 1/k) is transient 
matrix and it is
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where t is measurement interval and b(k + 1) is deterministic matrix

	 b(k + 1) = [0  0  - [x0(k + 1) + x0(k)] - [y0(k + 1) + y0(k)]T	 (4)

where x0(k) and y0(k) are observer position components. To reduce the mathematical complexity, all angles 
are measured with respect to True North. Z(k) is measurement vector
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where Bm(k) and Rm(k) are measurements and they are defined as

	 Bm(k) = B(k) + g(k)  	  (6)
	 Rm(k) = R(k) + h(k) 	  (7)

where B(k) and R(k) are true bearing and range
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	 R(k) =	 R Rx yk k2 2( ) ( )+ 	 (9)

The noises h(k) and g(k) are uncorrelated. Measurement equation is

	 Z(k) =	H(k) Xs(k) + x(k)	 (10)
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B( )k  and R ( )k  denotes estimated values. And
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The Extended Kalman filter [2-6] algorithm is presented in Table 1.

Table 1 
Extended Kalman Filter equations

1.	 To start with estimation X(0/0), P(0/0) which are initial state vector and its covariance matrix respectively are chosen.
2.	 Predicted state vector Xs(k + 1) is
		  Xs(k + 1) = f(k + 1/k)Xs(k) + b(k + 1) + w(k)
3.	 The predicted state covariance matrix is
		  P(k + 1/k) = f(k + 1/k)P(k/k)fT(k + 1/k) + Q(k + 1))	 (13)
	 where, Q(k) is the covariance of plant noise and it has the value s2

w
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4.	 Kalman gain is given as
		  G(k + 1) = P(k + 1/k)HT(k + 1)[r(K + 1) + H(k + 1)P(k + 1/(k)HT(k + 1)])-1	 (14)
	 where, r(k) is input measurement covariance matrix.
5.	 The state estimation and its error covariance are
		  X(k + 1/k + 1) =	X(k + 1/k) + G(k + 1)[Z(k + 1) - Z (k + 1)]	 (15)
		  P(k + 1/k + 1) =	[1 - G(k + 1)H(k + 1)P(k + 1/k)	 (16)
6.	 For the next iteration
		  X(k/k) = X(k + 1/k + 1)	 (17)
		  P(k/k) = P(k + 1/k + 1)	 (18)

MPLEMENTATION OF THE PROCESS3.	
Initial of the target state vector, target velocity components are computed using first and second measurement 
sets of range and bearing measurements as shown in Table 2. The detailed processing of Kalman filter is 
shown in Figure 1.

A.	 Generation of Target Motion Measurements in Simulation Environment
A simulator is developed to generate target range and bearing measurements. This simulator accepts the 
inputs given and simulates the observer and target positions. It generates range and bearing measurements 
at each second and corrupts with white Gaussian noise.

Table 2 
Extended Kalman filter Algorithm

Initial target state vector X(2/2) is given by

	 X(2/2) = [term 1  term 2  Rm(2)sin Bm(2)]T	 (19)

where term1 and term 2 are defined by

	 term 1 =	Rm(2) sin Bm(2) - Rm(1) sin Bm(1)/t

	 term 2 =	Rm(2) cos Bm(2) - Rm(1) cos Bm(1)/t	 (20)

Assume that X(2/2) follows uniform distribution. Its covariance matrix is diagonal and given by

	 P00(2/2) = 4 2 2
12

2¥ x ( )/ 	 (21)

	 P11(2/2) = 4 2 2
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From the estimated state vector target motion parameters are calculated and given as
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It is assumed that observer is at origin and stand still. The target moves with uniform speed (Vt) and 
course (tcr). Initially the observer and target are assumed at be a distance R meters. An imaginary line 
joining target and observer positions is called line of sight (LOS) and it makes an angle (bearing) with 
respect to True North /Y-axis as shown in Figure 2. It is assumed that target and observer are in the same 
plane. The measurements are made in active mode for every t seconds.

Figure 1: Extended Kalman filter process

The target position (xt, yt) with respect to origin is given by

	 xt = R ¥ sin (B)	 (27)

	 yt = R ¥ cos (B)	 (28)

After t seconds

	 dxt = vt ¥ sin(tcr) ¥ t	 (29)

	 dyt = vt ¥ cos(tcr) ¥ t	 (30)

Now the new target position after time t is given as

	 xt = dxt ¥ xt	 (31)

	 yt = dyt ¥ yt	 (32)

True bearing and range are calculated as follows

	 True bearing = tan- -
-

1 0

0

x x
y y

t

t
	 (33)

	 True range = ( ) ( )x x y yt t- + -0
2

0
2 	 (34)

Figure 2: Target and Observer scenario
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Block diagram of TMA in simulation mode is shown in Figure 3. The corrupted measurements are used 
to estimate target motion parameters (TMP) using EKF. The estimated TMP are compared with that of true 
values and the performance analysis of the algorithm is carried out against a number of scenarios.

SIMULATION AND RESULTS4.	
It is assumed that experiment is conducted at favorable environmental conditions and hence the range and 
bearing measurements are available continuously. This simulation is carried out on a personal computer 
using Matlab. The scenarios chosen for evaluation of algorithm are shown in Table 3. For example, 
scenario1 describes a target moving at an initial range of 3000 m with course and speeds of 255° and 10 m/s 
respectively. The initial line of sight is 45°. The bearing and range measurements are corrupted with 
0.33°(1s) and 7 m (1s) respectively.

The velocity of sound in seawaters is 1500 m/s. As the maximum range of target is chosen as 3000m, 
the time taken for the transmitted pulse to reach the target and come back to observer is (6000/1500) 4 
seconds. Hence measurements are taken at 4 s interval. In simulation mode, estimated and actual values 
are available and hence the validity of the solution based on certain acceptance criterion is possible. The 
following acceptance criterion is chosen based on weapon control ([7], this topic is not discussed here) 
requirement. The solution is converged when error in course estimate <= 3° and error in speed estimate 
<= 1 m/s.

The estimates and true paths of target are shown in Figure 4 and 5 for scenario1 and 2 respectively. 
For clarity of the concepts, the errors in estimated speed and course for scenario1and 2 are presented in 
Figure 6(a), 6(b) and 7(a) and 7(b) respectively. The solution is converged when the course and speed 
are converged. The convergence time (seconds) for the scenarios is given in Table 4. In simulation, 
it is observed that the estimated course and speed of the target are converged at 8th sample and 25th 
sample respectively for scenario1.So, for scenario 1, the total solution is obtained at 25 samples (that 
is 100s). Similarly for scenario 2, it is observed that the estimated course and speed are converged at 
10th and 22nd sample respectively. So the convergence time for scenario 2 is obtained at 22nd sample 
(that is 88 s).

Figure 3: Block diagram of TMA in simulation mode.

Table 3 
Input scenarios chosen for the algorithm

Scenario Target range
(m)

Target bearing
(deg)

Target Course
(deg)

Target speed
(m/s)

Noise in 
bearing (1s)

(deg)

Noise in 
range (1s)

(m)
1 3000 45 255 10 0.33(rad) 7m
2 4000 135 315 8.5 0.33(rad) 7m
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Table 4 
Convergence time in samples for the chosen scenarios

Scenario1 Course Speed Total solution
1 8 25 25
2 10 22 22

Figure 4: Simulated and estimated target paths

Figure 5: Simulated and estimated target pathss
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(a) Error in speed estimate

(b) Error in course estimate
Figure 6: Errors in estimates in scenario1

CONCLUSION5.	
Extended Kalman filter is used to estimate target course and speed in dunking Sonar system. Simulation 
is carried out and results are presented. Based on the results, EKF is recommended to track underwater 
targets using dunking sonar system.



122 T. Vaishnavi Chandra, S. Koteswara Rao, M. Kavitha Lakshmi and B. Omkar Lakshmi Jagan

(a) Error in speed estimate

(b) Error in course estimate
Figure 7: Errors in estimate in scenario 2
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