
International Journal of Control Theory and Applications155

Heterogeneous Scheduling Using Controlled Duplications on
Multiprocessor System

Mehak Aggarwala and Nirmal Kaurb

a,bDepartment of CSE, University Institute of Engineering and Technology, Panjab University, Chandigarh, India. Email: amehak10oct@
gmail.com

Abstract: Scheduling of parallel applications on the multiprocessors is the critical issue which emerged with the parallel
systems, distributed systems and with the developments in the processing technology to achieve high performance
computing. In order to gain high efficiency, increased speedup and overall improved makespan of fine grain task
graphs of parallel applications, we have proposed an algorithm called “Heterogeneous Scheduling with Controlled
Duplications On Multiprocessor System (HCDM)” is proposed which utilizes reduced ancestor nodes duplications
for finding optimal solution. The performance of the proposed algorithm is compared with well known duplication
based scheduling algorithm: HLD and list based scheduling algorithms: HEFT and ECTS. The exhaustive simulation
results reveal better performance in terms of efficiency and makespan.
Keywords: Heterogeneous Scheduling, Multiprocessor System, Controlled Duplication, Heuristic.

Introduction1.	
In recent years, the growth of technology (powerful processors, high speed networks, standard software tools, etc.)
led the parallel and distributed systems come into role for many large scale applications processing in different
areas of science, engineering and commerce viz. scientific computing, image processing, system modeling
and simulation, database systems, optimization problems and many more. To efficiently process the parallel
applications, many key factors contribute such as hardware design, number of processors, parallelism, software
tools, and scheduling. But scheduling is the keystone of the parallel computing. Scheduling is broadly classified
as static and dynamic (1). In static scheduling, the characteristics of an application represented in the directed
acyclic graph (DAG), such as execution time of tasks (or nodes) on processors, data size of communication
between tasks, bandwidth, and tasks dependencies are known priori. On the other hand, dynamic scheduling is
done at run time for load balancing and the above stated characteristics are not known in advance. To achieve
high performance computing, the parallel applications are partitioned into independent subtasks and scheduled
on multiple processors simultaneously. Parallel application scheduling is a scheduling problem to find the spatial
and temporal assignments (14) of the tasks onto the processors of the target system which results in shortest

International Journal of Control Theory and Applications

ISSN : 0974-5572

„ International Science Press

Volume 9  •  Number 46  •  2016

Mehak Aggarwal and Nirmal Kaur

International Journal of Control Theory and Applications 156

possible execution time of the tasks; where task is a set of instructions which are executed consecutively without
any preemption on the same processor. It aims to achieve high efficiency, reliability and quick response from
the system.

The multiprocessor systems are classified into homogeneous and heterogeneous systems. (1) Homogeneous
systems comprise of identical processors with similar computing capacity whereas heterogeneous systems
may have more than single type of processor having different processing capabilities to handle particular
tasks. Although scheduling on heterogeneous computing environment is much complex but the diverse set of
parallelism in the application program and diverse computation capability of processing elements has triggered
the use of heterogeneous computing environment. The application scheduling is NP-complete (1) problem for
general cases. Optimal solutions could be found through some restrictions or through exhaustive search over all
processors for all tasks. Exhaustive search method guarantee optimal solutions but not suitable for large sized
task graphs due to time consuming as well as large resource utilization. Hence, the heuristics (rely on rule of
thumb) are worked upon.

In this paper, we have proposed a scheduling algorithm called HCDM which hybridizes the list scheduling
heuristic and duplication based scheduling heuristics based on controlled duplications for heterogeneous systems.
The redundant duplications which may occur for a join task is eliminated using backtracking without increasing
schedule length and therefore prevents the excess resource usage.

The organization of paper is presented as follows. In section 2, the previous related work and motivation
has been described. Section 3 formulates the parallel application scheduling problem. Section 4 discusses the
proposed algorithm for scheduling problem. Simulation results obtained for HCDM are presented in Section 5.
Section 6 concludes the paper based on the simulation results and performance analyses.

Related Work and Motivation2.	
Because of the NP-completeness of the scheduling problem in deterministic computing environment, a large
set of heuristics have been proposed and these heuristics are characterized into three categories: List scheduling
heuristics, duplication based scheduling heuristics and clustering heuristics.

In list scheduling heuristic, an ordered list of tasks is created by allotting priority to each task and thereafter
based on the priority; tasks are selected from the list for execution. List scheduling algorithms are generally
preferred because they generate schedules of good quality with less complexity. The heuristics in this category
include HEFT (6), CPOP (6), PETS (15), ECTS (22), and PEFT (24). List scheduling heuristics are good for fine
grain (i.e. less communicating) tasks. It is preferred as it generates good quality schedules with less complexity.
But the performance deteriorates significantly for task graphs having high communication to computation cost
ratio (CCR).

Clustering heuristics makes the clusters of heavily communicating tasks and schedule them onto the same
processor even if other processors are available, thus there is a tradeoff between parallelism and inter process
communication. It is also known as three phase scheduling heuristic. The first phase is comprised of grouping of
the tasks which are massively communicating into a set of clusters. In the second phase, the generated clusters
are mapped onto the set of available processors. In the third phase, merging of clusters or de-clustering is done
based on the available set of processors. The heuristics in this category include TRIPLET (5), LDBS (7), and
HCDDSL (19). But the trading off between inter process communication and parallelism is a major drawback
of this heuristic.

In task duplication based scheduling heuristics; the parent node of the task to be scheduled is duplicated to
the processor which minimizes task’s execution time, thus reducing the communication overhead. The duplication

Heterogeneous Scheduling Using Controlled Duplications on Multiprocessor System

International Journal of Control Theory and Applications157

based scheduling can lessen the communication overhead for a given task graph by allocating or duplicating
some of the tasks to more than one processor. A number of different strategies can be used to duplicate ancestor
nodes. The algorithms in this category include SD (8), HLD (13), HCPFD (12), RD (17), and HED (17). The
complexity of heuristic increases but these heuristics outperforms when CCR values are high.

Guided random search methods are approximate algorithms which use random choice to guide themselves
through the problem space. These techniques combine the knowledge of previous search result with some
randomizing features to generate new results. Examples are A* algorithm (20), simulated annealing (21), Genetic
algorithms (23) and particle swarm optimization (14). It provide good quality schedule. But they have higher
execution time than other alternatives and hence extensive tests are required to find optimal values for the set
of control parameters.

Parallel Application Scheduling Problem3.	
Parallel Application Scheduling problem is to schedule the application on target system in an efficient manner
and is represented with two models: Application Model and Target System Model.

3.1.	 Application Model
The application to be scheduled is represented by the application task graph (also known as macro dataflow graph).
(1). The static application scheduling problem is represented by weighted DAG in which nodes represent the tasks
and edges represent the intertask dependencies or precedence relations among them as shown in Figure 1.

Figure 1: (a) Example DAG representing precedence constraints between tasks
(b) Computation Costs on different processors

Each node ni of DAG is labeled with the computation cost, wi and the directed edges in the parallel program
graph correspond to communication data and precedence constraints between the tasks. The weight of the edge
from node ni to node nj is referred to as the communication cost, cij (or c(ni, nj)). The node at which edge starts
is called the parent node, while the destination node is called the child node. A node without a parent is called
an entry node and a node without a child is called an exit node. The entry or exit node can be more than one. If a
task scheduling algorithm requires single-entry and single-exit task graphs, a zero-cost pseudo exit and/or entry
node with zero-cost edge is used.

3.2.	T arget System Model
The target system model is a set of heterogeneous multiple processors, P = {p1, p2, …, pm}. The processor
heterogeneity is given by the factor, b which is the range percentage of computation cost on each processor

Mehak Aggarwal and Nirmal Kaur

International Journal of Control Theory and Applications 158

for each task in a task graph. There are few assumptions made about target computing system for scheduling
problem: the communication network of processors is fully connected, communications among processors can be
performed concurrently, local communication has zero cost, and there is dedicated communication subsystem.

3.3.	B asic Terminology of Scheduling Algorithm
(a)	 pred(ni): It denotes the immediate predecessors of task ni in a DAG.

(b)	 availj: It is defined as the earliest available time of processor at which it is ready for task execution
and is calculated by analyzing the suitable idle time slot for node ni.

(c)	 Makespan: Makespan is the total time span for executing an application and is given by

	 Makespan = max{AFTi}	 (1)

	 where, AFTi is the actual finish time of node ni.

(d)	 DAT(ni,pj): The DAT is the latest data arrival time of node ni from all of its predecessors or immediate
parent on processor pj. The node ni can start its execution only after collecting data from its parent
nodes.

	 DAT(ni, pj) = max{AFTy + ci, y} "ny Œpred(ni)	 (2)

	 where, AFTy is the actual finish time of node ny.

(e)	 EST(ni,pj): The EST refers to the expected execution start time of node ni on processor pj. It is
constrained by the precedence between the nodes and is given by

	 EST(ni, pj) = max{DAT(ni, pj), availj}	 (3)

(f)	 EFT(ni,pj): The EFT refers to the expected earliest finish time of node ni on processor pj and is given
by

	 EFT(ni, pj) = EST(ni, pj) + wi, j	 (4)

3.4.	 Scheduling Constraints
The scheduling problem has considered two types of constraints to be followed:

1.	 Precedence Constraint

2.	 Processor Constraint

Precedence Constraint states that a task node nj in a DAG can start it’s execution on processor pk only after
the arrival of all data from it’s all immediate parent node on that processor.

	 ST(ni, pk) ≥ DAT(ni, pk), "ni Œpred(nj), "pk ŒPy	 (5)

where, Py is the subset of processors on which parent node of the task node is either scheduled or duplicated,
ST(nj, pk) is the start time of node nj on processor pk.

Processor Constraint states that for any two nodes ni and nj to be scheduled on the same processor than
other task can start it’s execution after the completion of execution of first task.

	 FT(ni, pk) ≥ FT(nj, pk) or FT(nj, pk) ≥ FT(ni, pk), "pk ŒP	 (6)

where, FT(ni, pk) is the finish time of node nj on processor pk.

Heterogeneous Scheduling Using Controlled Duplications on Multiprocessor System

International Journal of Control Theory and Applications159

Proposed Algorithm HCDM4.	
The proposed algorithm is a three phase algorithm, namely task prioritization phase, processor selection phase
and redundant duplication removal phase.

4.1.	 Prioritization Phase
In this phase, priority list is maintained by assigning priorities to each task of the DAG using level prioritization
and rank of the task at each level. The tasks which are at the same level are independent to each other and may
be executed parallel. The task with the highest priority is considered as candidate node from the priority list
for scheduling till the list is empty. Hence, they are assigned a same level priority using bottom up traversing
technique. In the next step, Expected Time (ET) is calculated using Average Computation Cost (ACC), Maximum
Data Arrival of Communication (MDC) and maximum rank of parent node.

Definition 1: Given the graph G, the ACC(ni) or ACCi of a node ni to be scheduled in heterogeneous system is
the average of the execution time on each processor and is given by

	 ACC() ,n
w
mi
i j

j

m
=

=Â 0
	 (7)

where, wi,j represents the computation cost of task ni on processor pj and j = 1, 2, ..., m.

Definition 2: MDC is the maximum time the task node is waiting from the start of the execution the of parent
node to the data arrived from that parent node and is calculated as:

	 MDC(nj) = maxni Œpred(nj) {ACC(nj) + Ci,j}	 (8)

Rank of the task node nj is computed as

	 Rankj = ACC(nj) + MDC(nj)	 (9)

At same level, highest priority is assigned to task with highest rank. Priority list is maintained by starting
from top level of DAG.

4.2.	 Processor Selection Phase
In the second phase, the best fit processor which provides earliest finish time of the node is selected for task
scheduling. For estimating the finish time on each processor, node insertion and node duplication techniques
are used. The node ni can start execution after receiving the data from all its immediate parents to satisfy the
precedence constraint. The parent node from which the data arrives latest is termed as Most Important Immediate
Parent (MIIP). After receiving the data from MIIP, the node ni can start execution either at the available time
of processor (availk) or at the earlier if suitable idle slot is available. The earliest idle slot is found by scanning
the whole time span of processor. The duplication can be done redundantly by duplicating the ancestor nodes
to the top of graph and horizontally.

4.3.	R edundant Duplication Removal
In the third phase, redundant duplications have been removed. According to K. Shin et. al, if a join node ni
has only one child and this child node has multiple parent node than ni can contribute to redundant duplication
condition. K. Shin et. al has explained the two necessary conditions for the redundant duplications as follows:

1.	 A join node is the only child node of atleast one of its parent node.

2.	 The computation cost of the parent node is smaller than communication cost between any one of the
parents and the join node.

Mehak Aggarwal and Nirmal Kaur

International Journal of Control Theory and Applications 160

The above two conditions are referred as Redundant Duplication Condition (RDC) To handle RDC, a set
of tuples (J(m), RDC(n)) is prepared, where J(m) is the array of join nodes and RDC(n) is the array of parents
of join node in J(m). If the node to be scheduled belongs to join set and the parent node has single child than
original allocation will be redundant after duplication, which would be removed. For two or more such tuples
are cascading, the bottom up approach has been used to remove redundant duplications. The pseudo code for
proposed algorithm HCDM is shown in Figure 2.

Figure 2: Pseudo code for HCDM

Heterogeneous Scheduling Using Controlled Duplications on Multiprocessor System

International Journal of Control Theory and Applications161

Simulation and Result Analysis5.	
In this paper, the performance of the proposed algorithm is compared with list scheduling algorithms: HEFT and
ECTS, and duplication based heuristic: HLD and are simulated on a set of irregular benchmark task graphs (4).

5.1.	 Performance Metrics
To measure the performance of the simulated graphs, following performance metrics have been used:

1.	 Makespan: It is the schedule length of the application graph on heterogeneous system which is computed
by considering the maximum value of finish time of each node on every processor (equation 1).

2.	 Efficiency: It is the ratio of speedup and number of processors.

	 Efficiency = Speedup
Number of processors

¥100,

	 where,

	 Speedup = Schedule length on uniprocessor system
Schedule length on multiproccessor system

	 To have optimum utilization of resources, lower schedule length and high efficiency is desirable.

Simulation Environment6.	
To simulate the stated algorithms (HCDM, HEFT, ECTS, and HLD) on regular benchmark task graphs, the
different parameters and corresponding range of values used have been shown in Table 1.

Table 1
Parameters used in simulation environment

Parameter Range of values
Number of nodes 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32
Number of processors 3, 5, 7, 9, 11
CCR 0.1, 1.0, 10
Heterogeneity Factor, b 0.1, 0.2, 0.5, 1.0, 2.0

The DAG for heterogeneous system is generated by modifying the benchmark task graphs for homogeneous
system (1) using heterogeneity factor, b. A total of 900 different DAGs was generated using for three different
values of CCR = {0.1, 1.0, 10}, five different values of heterogeneity factor, b = {0.1, 0.2, 0.5, 1.0, 2.0} and five
different number of processors which are fully connected, P = {3, 5, 7, 9, 11}. For each DAG, the size varies
from 10 to 32 with an increment of 2.

Performance Results7.	
In this subsection, the performance results and comparisons of the four scheduling algorithms is presented. The
performance of the heuristics for a given DAG are compared with respect to different graph characteristics viz.
number of nodes, number of processors, CCR, and b.

The average makespan produced by the four algorithms is plotted as a function of number of nodes in
Figure 3. The graph reveals that the makespan increases with the number of nodes in a graph for all algorithms
but proposed algorithm HCDM gives substantial improvement than HEFT and ECTS and somewhat better than
HLD in each case.

Mehak Aggarwal and Nirmal Kaur

International Journal of Control Theory and Applications 162

Figure 3: Average makespan for various number of nodes

Figure 4 shows the average makespan for different CCR values. It can be observed that the average
makespan increases when the CCR increases. From the Figure 4, it is observed that when the CCR is low i.e.
for computation intensive applications, HLD performs slightly well than HCDM whereas HCDM outperforms
the ECTS and HEFT. But with increasing CCR i.e. for coarse grain DAG, HCDM performs much better than
HLD, HEFT and ECTS.

Figure 4: Average makespan for various values of CCRs

Figure 5 analyses the performance in terms of average makespan for a DAG scheduled on different number
of processors. From the analysis, it has been observed that with increasing number of processors, the makespan
of list based heuristics decreases up to a point and then starts increasing whereas duplication based heuristics
improve the makespan consistently. When number of processors is 3, HCDM performs better than HEFT and
ECTS but lower than HLD. But as the number of processors increases, the gap of improved performance in
terms of average makespan between HCDM and other three heuristics increase. HCDM outperforms the HEFT,
ECTS and HLD.

Figure 5: Average makespan for various numbers of processors

Heterogeneous Scheduling Using Controlled Duplications on Multiprocessor System

International Journal of Control Theory and Applications163

In Figure 6, the average makespan is observed with the heterogeneity factor, b. As the b value increases,
the makespan of an application decreases due to different computing capability of processors. The figure shows
that the HCDM is better than other comparing heuristics.

Figure 6: Average makespan for different heterogeneity of processors

Figure 7 and 8 show the simulation results for the efficiency of the algorithms for different number of
processors and various CCRs respectively.

	 	
	Figure 7: Average Efficiency for different number of nodes	 Figure 8: Average Efficiency for various values of CCR

Figure 7 shows that the performances, in terms of average efficiency, of the four heuristics tend to degrade
as the number of nodes increases because of more number of nodes spread the execution on large processors.
Figure 8 shows the comparison of average efficiency with the different values of CCR. The exploitation of
the processors drastically deteriorates with increasing CCR duplications that come to be required. However,
the proposed algorithm HCDM is able to cope effectively with this problem, by reducing the number of
duplications in comparison with the other algorithms. For higher CCR, HCDM appears to perform better than
other heuristics.

Conclusions8.	
In this paper, a hybridized (list scheduling heuristics and duplication based heuristics) heuristic has been developed
for heterogeneous systems and parallel applications which try to minimize the duplications by exploring the
redundant duplication conditions at join node and removing those redundant duplications. Hence sophisticated
scheduling strategy saves the number of duplications on the system. The duplication strategy tries to exploit the
idle time slots for duplications of ancestor nodes in order not to increase the schedule length via duplication. The
priority list maintained enables all the nodes at previous level to start their execution at earliest, thus maintaining
precedence among nodes. From the performance analysis, it is concluded that the proposed algorithm improves
the overall performance of the system and maintains efficiency. Performance comparison with algorithms HEFT,
HLD, and ECTS shows that proposed algorithm, HCDM outperforms them.

Mehak Aggarwal and Nirmal Kaur

International Journal of Control Theory and Applications 164

References
Ashfaq A. Khokhar, Viktor K. Prasanna, Muhammad E. Shaaban, and Cho-Li Wang. Heterogeneous Computing: Challenges [1]	
and Opportunities. IEEE International Symposium on High-Performance Distributed Computing; 1993.

I. Ahmad, Y.K. Kwok. A New Approach to Scheduling Parallel Programs Using Task Duplication. Proceedings of [2]	
International Conference Parallel Processing; volume 2, 1994. P. 47–51.

I. Ahmad, Y.K. Kwok. On Exploiting Task Duplication in Parallel Program Scheduling. IEEE Transactions on Parallel and [3]	
Distributed Systems; 1998. P. 872–892.

Y.K. Kwok and I. Ahmad. Benchmarking and Comparison of the Task Graph Scheduling Algorithms. Parallel and Distributed [4]	
Computing. 1999 Dec.; 59(3): 381-422,.

Bertrand Cirou and Emmanuel Jeannot. Triplet : a Clustering Scheduling Algorithm for Heterogeneous Systems. Proceedings [5]	
of the IEEE; 2001.

H. Topcuoglu, S. Hariri and M.Y. Wu. Performance effective and low-complexity task scheduling for heterogeneous [6]	
computing. IEEE Transactions on Parallel and Distributed Systems. 2002; 13(3).

A. Dogan and F Ozguner. LDBS: A duplication based scheduling algorithm for heterogeneous computing systems. [7]	
Proceedings of the International Conference on Parallel Processing (ICPP’02); 2002 Aug, Vancouver, B.C., Canada; 2002,
P. 352.

S. Bansal, P. Kumar, K. Singh. An improved duplication strategy for scheduling precedence constrained graphs in [8]	
multiprocessor systems. IEEE Transactions on Parallel and Distributed Systems. 2003; 15, P. 533–544.

R. Bajaj, D.P. Agrawal. Improving scheduling of tasks in a heterogeneous environment. IEEE Transactions on Parallel and [9]	
Distributed Systems. 2004; 15(2). P. 107–118.

T. Hagras and J. Janeˇcek. A Simple Scheduling Heuristic for Heterogeneous Computing Environments. Proceedings of [10]	
Second International Symposium on Parallel and Distributed Computing. 2004; P. 104-110.

T. Hagras and J. Janeˇcek. A high performance, low complexity algorithm for compile-time task scheduling in heterogeneous [11]	
systems. Parallel Computing. 2005; 31: 653–670.

Sanjeev Baskiyar, Christopher Dickinson. Scheduling directed a-cyclic task graphs on a bounded set of heterogeneous [12]	
processors using task duplication. Parallel Distributed Computing. 2005; 65: 911 – 921.

S. Bansal, P. Kumar, Kuldip Singh. Dealing with heterogeneity through limited duplication for scheduling precedence [13]	
constrained task graphs. Journal of Parallel and Distributed Computing.2005; 65.

Oliver Sinnen, Leonel Augusto Sousa, Senior Member, IEEE, and Frode Eika Sandnes. Toward a Realistic Task Scheduling [14]	
Model. IEEE Transactions on Parallel and Distributed Systems. 2006 March; 17(3).

E. Ilavarasan and P. Thambidurai. Low complexity performance effective task scheduling algorithm for heterogeneous [15]	
computing environments. Journal of Computer sciences. 2007; 3(2): 94-103.

Kwang Sik Shin, Myong Jin Cha, MunSuck Jang, JinHa Jung, Wan Oh Yoon, SangBang Choi. Task scheduling algorithm [16]	
using minimized duplications in homogeneous systems. Parallel Distributed Computing. 2008; 68:1146–1156.

Amit Agarwal and Padam Kumar. Economical Duplication Based Task Scheduling for Heterogeneous and Homogeneous [17]	
Computing Systems. WEE International. Advance Comnputing Conference (LACC 2009). 2009 March, Patiala, India;
2009. P. 6-7.

L.F. Bittencourt, R. Sakellariou and E.R.M. Madeira. Scheduling Using a Lookahead Variant of the Heterogeneous [18]	
Earliest Finish Time Algorithm. 18th Euromicro International Conference on Parallel, Distributed and Network-Based
Processing(PDP’10). 2009; P. 27-34.

Hui Cheng. A High Efficient Task Scheduling Algorithm Based on Heterogeneous Multi-core processor. IEEE; 2010.[19]	

Heterogeneous Scheduling Using Controlled Duplications on Multiprocessor System

International Journal of Control Theory and Applications165

Ahmed Zaki, Semar Shahul, and Oliver Sinnen. Scheduling task graphs optimally with A *. Supercomputing. 2010; 51: [20]	
310–332.

Mahboobeh Houshmand et. al. Efficient Scheduling of Task Graphs to Multiprocessors Using a Combination of Modified [21]	
Simulated Annealing and List based Scheduling. IEEE 3rd International Symposium on Intelligent Information Technology
and Security Informatics; 2010.

R. Eswari and S. Nickolas. A Level-wise Priority Based Task Scheduling for Heterogeneous Systems. International Journal [22]	
of Information and Education Technology. Dec 2011; 1(5).

Yan Kang and Defu Zhang. A Hybrid Genetic Scheduling Algorithm to Heterogeneous Distributed System. Scientific [23]	
Research. 2012; 3: 750-754.

Hamid Arabnejad and Jorge G. Barbosa. List Scheduling Algorithm for Heterogeneous Systems by an Optimistic Cost [24]	
Table. 2014.

