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ABSTRACT: We consider hydrogen atoms in a nonuniform electric field and study whether or not the Center-of-Mass
(CM) motion and the relative motion can be separated. First, we show that in the general problem of two charges in a
nonuniform electric field, the CM and relative motions, rigorously speaking, cannot be separated. Second, we use an
approximate analytical method of the separation of rapid and slow subsystems to achieve a pseudoseparation of the CM
and relative motions for hydrogenic atoms/ion in an arbitrary nonuniform electric field. Third, we further develop these
results for the case of a hydrogen atom in the nonuniform electric field, where the field is due to the nearest (to the
hydrogen atom) ion in a plasma. Fourth, we apply the results to the ion dynamical Stark broadening of hydrogen lines
in plasmas. Fifth, we present specific examples of laboratory plasmas (e.g., magnetic fusion plasmas or radiofrequency
discharges) and astrophysical plasmas (e.g., in atmospheres of flare stars) where the allowance for these CM effects
leads to a significant increase of the width of hydrogen spectral lines.

Key words: center-of-mass effects; pseudoseparation in a nonuniform electric field; Stark broadening of hydrogen lines
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1. INTRODUCTION

It is well-known that for hydrogenic atoms/ions in a uniform magnetic field, the Center-of-Mass (CM)
motion and the relative (internal) motion are coupled and, rigorously speaking, cannot be separated – see, e.g.,
papers [1-3] and references therein. For hydrogen atom it is possible to achieve a pseudoseparation leading
to a Hamiltonian for the relative motion that still depends on a CM integral of the motion called
pseudomomentum [3].

As for hydrogenic atoms/ions in a uniform electric field, it is well-known that the CM and relative motions can
be separated rigorously (exactly) – see, e.g., [4]. As for hydrogenic atoms/ions in a nonuniform electric field, there
seem to be nothing about the separation (or non-separation) of the CM and relative motions in the literature, to the
best of our knowledge.

In the present paper we study this issue for hydrogenic atoms/ions in a nonuniform electric field. First, we show
that in the general problem of two charges in a nonuniform electric field, the CM and relative motions, rigorously
speaking, cannot be separated. Second, we use an approximate analytical method of the separation of rapid and
slow subsystems to achieve a pseudoseparation of the CM and relative motions for hydrogenic atoms/ion in an
arbitrary nonuniform electric field. Third, we further develop these results for the case of a hydrogen atom in the
nonuniform electric field, where the field is due to the nearest (to the hydrogen atom) ion in a plasma. Fourth, we
apply the results to the ion dynamical Stark broadening of hydrogen lines in plasmas. Fifth, we present specific
examples of laboratory and astrophysical plasmas where the allowance for these CM effects leads to a significant
increase of the width of hydrogen spectral lines.
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2. GENERAL CASE OF THE PSEUDOSEPARATION OF THE CENTER-OF-MASS AND RELATIVE
MOTIONS IN A NONUNIFORM ELECTRIC FIELD

We consider a system of two charges e
1
 and e

2
 of masses m

1
 and m

2
, respectively, in a nonuniform electric field. The

Lagrangian of the system is

L = [m
1
(dr

1
/dt)2 + m

2
(dr

2
/dt)2]/2 – e

1
e

2
/|r

2
 – r

1
| – e

1
�(r

1
) – e

2
�(r

2
), (1)

where r
1
 and r

2
 are radii-vectors of charges e

1
 and e

2
, respectively and � is the potential of the nonuniform electric

field. After the substitution

R = (m
1
r

1
+ m

2
r

2
)/(m

1
 + m

2
),       r = r

2
 – r

1
, (2)

so that R and r are the coordinates related to the CM motion and the relative motion, respectively, the Lagrangian
takes the form

L(R, r) = L
CM

(R) – U(R, r) + L
r
(r), (3)

where

L
CM

(R) = (m
1
 + m

2
)(dR/dt)2/2 – (e

1
 + e

2
)�(R) (4)

is the Langrangian of the CM,

L
r
(r) = µ(dr/dt)2/2 – e

1
e

2
/r (5)

is the Lagrangian of the relative motion, and

U(R, r) = µ(e
1
/m

1
 – e

2
/m

2
)rF(R) (6)

is the coupling of the CM and relative motions. Here

µ = m
1
m

2
/(m

1
 + m

2
) (7)

is the reduced mass of the two particles, and

F(R) = – d�(R)/dR (8)

is a nonuniform electric field (in the expansion of the electric potential we disregarded terms higher than the dipole
one). In Eq. (6) and below, for any two vectors A and B, the notation AB stands for the scalar product (also known
as the dot-product) of the two vectors.

The Hamiltonian, corresponding to the Langrangian from Eq. (3), has the form

H = H
CM

(R, P) + U(R, r) + H
r
(r, p), (9)

where

H
CM

(R, P) = P2/[2(m
1
 + m

2
)] + (e

1
 + e

2
)�(R) (10)

is the Hamiltonian of the CM, P being the momentum of the CM motion, and

H
r
(r, p) = p2/(2µ) + e

1
e

2 
/ r (11)

is the Hamiltonian of the relative motion, p being the momentum of the relative motion.

Thus, the above equations show that at the presence of a nonuniform electric field, the CM motion and the
relative motion are coupled (by U(R, r) from Eq. (6)) and therefore, rigorously speaking, cannot be separated.
However, in the case where m

1
 << m

2
, the CM and relative motions can be separated by using the approximate

analytical method of separating rapid and slow subsystems: in this case, the characteristic frequency of the relative
motion is much greater than the characteristic frequency of the CM motion, so that the former and the latter are the
rapid and slow subsystems, respectively. Below are the details of this method that can be found, e.g., in [5].
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The first step is to freeze the coordinates R of the slow subsystem and to solve for the motion of the rapid
subsystem characterized by the truncated Hamiltonian

H
tr
 = H

r
(r, p) + U(R, r) = p2/(2µ) + e

1
e

2 
/ r + µ(e

1
/m

1
 – e

2
/m

2
)rF(R), (12)

where R is treated as a fixed parameter rather than as the dynamical variable. In the situation where the charges e
1

and e
2
 are of the opposite sign (say, for definiteness e

1
 < 0 and e

2
 > 0), this becomes the Hamiltonian of a hydrogenic

atom/ion in a “uniform” electric field.

By treating the last term in Eq. (12) in the first order of the perturbation theory, one obtains the following
expression for the energy of the relative motion, i.e., the rapid subsystem (see, e.g., the textbook [6])

E(R) = – µe
1

2e
2

2/(2n2�2) + µ(e
1
/m

1
 – e

2
/m

2
)<r>F(R) = (13)

– µe
1

2e
2

2/(2n2�2) – (3n2�2/2)[1/(m
1
e

2
) + 1/(m

2
|e

1
|)] AF(R),

where there was used the well-known relation between the mean value <r> of the radius-vector and the Runge-Lenz
vector A (see, e.g., [7, 8]):

<r> = – 3e
1
e

2
A/|E

0
|,          E

0
 = – µe

1
2 e

2
2/(2n2�2). (14)

Here and below n is the principal quantum number.

By choosing the z-axis along the Runge-Lenz vector A, we rewrite Eq. (13) in the form

E(R) = – µe
1

2e
2

2/(2n2�2) – (3n|q|�2/2)[1/(m
1
e

2
) + 1/(m

2
|e

1
|)] F(R)cos[�(R)], (15)

where �(R) is the polar angle of the vector F(R) and q is the electric quantum numbers (q = n
1
 – n

2
, where n

1
 and n

2

are the parabolic quantum numbers).

The second step of the analytical method of separating rapid and slow subsystems is to proceed to the slow
subsystem (the CM motion), for which E(R) from Eq. (15) will play the role of an effective potential. The effective
Hamiltonian H

CM,eff
(R, P) for the CM motion becomes (the first, R-independent term in E(R) has been omitted

because it does not affect the CM motion)

H
CM,eff

(R, P) = P2/[2(m
1
+m

2
)]+(e

1
+e

2
)�(R) –(3n|q|�2/2)[1/(m

1
e

2
) +1/(m

2
|e

1
|)] F(R)cos[�(R)] (16)

Thus, the application of this analytical method allowed the pseudoseparation of the CM motion and the relative
motion for any two oppositely charged particles of significantly different masses in a nonuniform electric field.

In the particular case of hydrogen atoms one has

e
1
 = e,  e

2
 = –e,      µ = m

e
m

p 
/ (m

e
 + m

p
), (17)

where e > 0 is the electron charge, m
e
 and m

p
 are the electron and proton masses, respectively. Then Eq. (16)

simplifies to

H
CM,eff

(R, P) = P2/(2m) – [3n|q|�2/(2µe)] F(R)cos[�(R)],      m = (m
e
 + m

p
). (18)

3. ANALYTICAL SOLUTION FOR THE CENTER-OF-MASS MOTION OF A HYDROGEN ATOM IN
THE FIELD OF THE NEAREST ION AND ITS APPLICATION TO THE DYNAMICAL STARK
BROADENING OF HYDROGEN LINES IN LABORATORY AND ASTROPHYSICAL PLASMAS

Now we consider the situation where the nonuniform electric field is due to the nearest (to the hydrogen atom) ion
of the positive charge Ze and mass m

i
 in a plasma located at the distance R from the hydrogen atom. Then the

Hamiltonian from Eq. (18) can be rewritten as

H
CM,eff

(R, P) = P2/(2m) – (D/R2)cos�,     D = [3n|q|�2/(2ì)] Z,   cos� = AR/AR. (19)
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This Hamiltonian represents a particle of mass m in the dipole potential. Since this particle is relatively heavy
(m >> m

e
), its motion can be described classically and the corresponding classical solution is well-known – see, e.g.,

paper [9]. For this physical system, the radial motion can be exactly separated from the angular motion resulting in
the following radial equation:

m[R(dR/dt) + (dR/dt)2] = E
CM

(20)

where E
CM

 is the total energy of the particle. This equation allows the following exact general solution:

R(t) = (2E
CM

t2/m +2R
0
v

0
t + R

0
2)1/2,     R

0
 = R(0),     v

0
 = (dR/dt)

t=0
. (21)

It is well-known that in plasmas of relatively low electron densities N
e
, the Stark broadening of the most intense

hydrogen lines, i.e., the lines corresponding to the radiative transitions between the levels of the low principal
quantum numbers (such as, e.g., Ly-alpha, Ly-beta, H-alpha, etc.), is dominated by the ion dynamical broadening –
see, e.g., publications [10-16]. The corresponding validity condition is presented in Appendix. In the so-called
“conventional theory” of the dynamical Stark broadening (also known as the “standard theory”) [17-20], the relative
motion within the pair “radiator – perturber” was assumed to occur along a straight line – as for a free motion (in our
case the radiator is a hydrogen atom and the perturber is the perturbing ion).

However, from the preceding discussion it follows that in the more advanced approach, the relative motion
within the pair “radiator-perturber” should be treated as the motion in the dipole potential – (D/R2)cos�, as seen
from Eq. (19). The relevant setup of the problem is to choose the instant t = 0 as the instant of the smallest distance
(the closest approach) within the pair “radiator-perturber”. Then v

0
 = v

0
 = (dR/dt)

t=0
 = 0, so that Eq. (21) simplifies

to

R(t) = (2E
CM

t2/m + R
0

2)1/2. (22)

The energy E
CM

 can be represented in the form

E
CM

 =  P
0

2/(2m) – (D/R
0

2)cos�
0
,    P

0
 = P(0),    �

0
 = �(0). (23)

By considering the motion within the pair “radiator-perturber” in the reference frame where the perturbing ion
is at rest, so that P

0
 = mV

0
, where V

0
 is the relative velocity within the pair “radiator-perturber” at t = 0, the energy

E
CM

 can be rewritten as

E
CM

 = mV
0

2/2 – (D/R
0

2)cos�
0
. (25)

Then Eq. (22) becomes

R(t) = {[V
0

2 – 2D cos�
0 
/ (m R

0
2)] t2 + R

0
2}1/2. (26)

By introducing the effective velocity

V
eff

(R
0
, �

0
) = [V

0
2 – 2D cos�

0 
/ (mR

0
2)]1/2, (27)

we can make Eq. (26) to be formally equivalent to the usual case of the rectilinear trajectories:

R(t) = {[V
eff 

(R
0
, �

0
)]2t2 + R

0
2}1/2. (28)

Now we consider a radiative transition between hydrogen energy levels a and b. In the general case, the ion
dynamical broadening operator �

ab
 is defined as follows (by analogy with the electron dynamical broadening

operator defined, e.g., in paper [17]):

�
ab

(t) = – � dV
0
 f(V

0
) N

i
 V

0
 <�(V

0
, �

0
, t)>�o

. (29)

Here <…>�o
 denotes the averaging over the angle �

0
, and the operator �(V

0
, �

0
, t) has the form:

�(V
0
, �

0
, t) = � dR

0
 2�R

0
 [1 – U(Ro,Vo, �o )

a
 (t, 0) U(Ro,Vo, �o)

b
* (t, 0)]

ang.av
. (30)
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Here N
i
 is the ion density, f(V

0
) is the distribution of the velocities (usually assumed to be Maxwellian), � is the

impact parameter of the perturbing ion, U
a
 and U

b
 are the corresponding time-evolution operators, the symbols *

and […]
ang.av

 stand for the complex conjugation and the angular average, respectively. If the time t would be considered
as a parameter, then the diagonal elements of the operator �(V

0
, t) would have the physical meaning of cross-

sections of so-called optical collisions, i.e., the cross-sections of collisions leading to virtual transitions inside level
a between its sublevels and to virtual transitions inside level b between its sublevels, resulting in the broadening of
Stark components of the hydrogen spectral line.

By using the trajectories from Eq. (26) and averaging over the polar angle �
0
, one can obtain the evolution

operators and then the ion dynamical broadening operator with the allowance for the effect of the CM motion.
However, in this general case, the results cannot be obtained analytically.

Therefore, for obtaining the final results analytically (which should help getting the message across in the
simple form), we now employ the so-called impact approximation and substitute the evolution operators by the
corresponding scattering matrices (see, e.g., papers [18, 19] or books [16, 20]):

�
ab

 = – � dV
0
 f(V

0
) N

i
 V

0
 < �(V

0
, �

0
)>�o

, (31)

�(V
0
, �

0
) = � dR

0
 2�R

0
 [1 – S

a
(R

0
, V

0
, �

0
) S

b
* (R

0
, V

0
, �

0
)]

ang.av
. (32)

In the case where non-diagonal matrix elements of the �
ab

 are relatively small, the lineshape is a sum of
Lorentzians, whose width ��� and shift ��� are equal (apart from the sign) to the real and imaginary parts of diagonal
matrix elements <�|<�|�

ab
|�>|�>, respectively:

��� = – Re[��(�ab
)��],      ��� = – Im[��(�ab

)��]. (33)

Here � and � correspond to upper and lower sublevels of the levels a and b, respectively. Here and below, for
any operator G, for brevity we denote its matrix elements <�|<�|G|�>|�> as��G��.

As we calculate the scattering matrices by the standard time-dependent perturbation theory, we obtain the
following expression for the operator �

�(R
0
, V

0
, �

0
) = � dR

0
 2�R [K2Q(R

0
, V

0
, �

0
)/R

0
2]. (34)

Here

Q(R
0
, V

0
, �

0
) = 2�2/[3µ2V

eff
(R

0
, �

0
)2] = Q

0
/[1 – 2D cos�

0 
/ (mV

0
2 R

0
2)], Q

0
 = 2Z2�2/(3µ2V

0
2), (35)

and

K2 = K
a

2 + K
interf 

+ K
b

2, K
a

2 = r
a
2/ a

B
2, K

interf
 = – 2r

a
r

b
*/ a

B
2,   K

b
2 = r

b
*2/ a

B
2, a

B
 = �2/(µe2), (36)

where a
B
 is the Bohr radius, K

interf
 represents the so-called interference term. In the conventional theory [18-20], in

Eq. (35) instead of V
eff

(R
0
, �

0
), it would be V

0
2.

The next step is the averaging of 1/V
eff

(R
0
, �

0
)2 in Eq. (35) over the angle �

0
:

1
22 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0

1

(1/ 2) (cos ) /[ 2 cos /( )] [ /(2 )] ln[( ) /( )],D D Dd V D mR R R V R R R R (37)

where

R
D
 = [2D/(mV

0
2)]1/2, (38)

so that the quantity Q(R
0
, �

0
) after the averaging over �

0
 becomes

Q(R
0
) = [Q

0
R

0
2/(2R

D
2)] ln [(R

0
2 + R

D
2)/(R

0
2 – R

D
2)] (39)

with Q
0
 defined in Eq. (35).
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The way the quantity D (entering Eq. (38)) was defined in Eq. (19) as D = [3n|q|�2/(2µ)] Z is valid only for the
Lyman lines. For all other hydrogen lines one should use the arithmetic average of the values of D for the upper and
lower Stark sublevels – as suggested in the similar case in paper [21] and used in paper [22]. Therefore, in the
present paper for all other hydrogen lines we use the following value of D

D = 3(n|q| + n‘|q‘|)Ze2a
B
/4, (40)

where the quantum numbers with the prime symbol and without it relate to the lower and upper levels, respectively.

The next step is the averaging over R
0
. The integral over R

0
 in Eq. (34) has a weak, logarithmic divergence at

both small and large impact parameters – just like in the conventional theory [17-20]. Therefore, as in the conventional
theory, we subdivide collisions into “weak” (R

0
 > R

min
) and “strong” (R

0
 < R

min
), and introduce also the upper cutoff

R
max

 (just as in the conventional theory) discussed later. Then the diagonal elements of the cross-section of optical
collisions can be represented in the form

max min
2 2

, 0 0 0 0 0 0

min 0

( ) 2 [ ( ) ( ) / )] 2 ,
R R

D

R

dR R K Q R R dR R C (41)

where R
min 

is defined by the condition:

��(K
2)�� Q(R

min
) / R

min
2 = ��(K

2)�� [Q0
/(2R

D
2)] ln [(R

min
2 + R

D
2) / (R

min
2 – R

D
2)] = C (42)

(naturally, R
min 

> R
D 

). Here and below the superscript “D” in ��(�)��,D
 signifies that this cross-section was obtained

with the allowance for the CM motion. The constant C in Eq. (42) is called “strong collision constant” in the
conventional theory. It arises from the preservation of the unitarity of the S-matrices:

|1 – S
a
(R

0
, V

0
, �

0
) S

b
*(R

0
, V

0
, �

0
)| = C,     C � 2 . (43)

For example, according to Griem book [20], page 43, his choice was C = 3/2. More details can be found in paper
[23]*/.

As for the upper cutoff R
max

, following the conventional theory we choose it as the Debye radius

R
max

 = R
Debye

 = [T/(4pe2N
e
)]1/2, (44)

(though more rigorously, it should have been R
max

 = min(R
Debye

, V
0
/��), where �� is the detuning from the center of

the spectral line; physically, the requirements R
max

 < V
0
/�� being the allowance for incomplete collisions).

By integrating analytically over R
0
 in Eq. (41) and substituting into the result the expression for the strong

collision constant C from Eq. (42) we obtain:

��(�)��,D
 = 2�

 ��(K
2)��Q0

{ln[(R
max

4 – R
D

4)1/4 /(R
min

4 – R
D

4)1/4]+[R
max

2/(4R
D

2)]ln[(R
max

2 + R
D

2)/(R
max

2 –R
D

2)]}.
(45)

The boundary R
min

 between the weak and strong collisions in Eq. (45) is the solution of Eq. (42) with respect to
R

min
:

R
min

 = R
D
 {[exp(2CR

D
2/

 ��(K
2)��Q0

) + 1]/[exp(2CR
D

2/
 ��(K

2)��Q0
) – 1 ]}1/2. (46)

The next step is the averaging of several quantities from the above equations over Stark sublevels of the upper
and lower levels, so that each of these quantities will have the unique value for the particular hydrogen spectral line.
First, the square root of the averaged matrix element (<�|<�|K2|�>|�>) is asserted to be

*/ On page 43 of book [20], Griem explicitly chose 3/2 for the quantity |1 – S
a
(R

0
, V

0
, �

0
) S

b
*(R

0
, V

0
, �

0
)| that we denoted as C. To avoid any confusion we

note that what Griem called “strong collision term” was C/2. The extra factor 1/2 arises from the following integral for the strong collision term:

min

2
min

0

(1/ ) / 2.d C C
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[��(K
2)��]av

1/2 = [�(Ka
2)�

1/2 – �(Kb
2)�

1/2]
av

(47)

following the conventional theory justification [20] that in this form it allows for the partial cancellation of terms in

��(W
2)�� when the principal quantum number n‘ of the lower level is close to the principal quantum number n of the

upper level. The diagonal elements of the operators K
a

2 and K
b

2 have the following form in the parabolic coordinates
(see, e.g. [7, 24])

�(Ka
2)� = (9/8)n2(n2 + q2 – m2–1),   �(Kb

2)� = (9/8)n‘2(n‘2 + q‘2–m‘2–1)]. (48)

The averaging over Stark sublevels (since (q2)
av

 = (m2)
av

) results in the following leading term in the quantity
[��(K

2)��]av
1/2:

[��(K
2)��]av

 = (9/8)(n2 – n’2). (49)

We mention that the same result (49) can be obtained after the corresponding averaging in the spherical quantization.

We denote

R
WA

(C) = {[��(K
2)��]av

 Q
0
/C}1/2 = (3/C)1/2(n2 – n‘2)�Z/(2µV

0
). (50)

This quantity has the meaning of the so-called Weisskopf radius: it is defined here more accurately than in the
conventional theory by Griem [20] (which is why here and below the superscript “A” stands for “accurate”). The
next quantity to be averaged over Stark sublevels of the upper and lower levels, so that it will have the unique value
for the particular hydrogen spectral line, is the quantity D from Eq. (40). The result reads:

<D>
av

 = (n2 + n‘2)Ze2a
B
/4. (51)

After substituting this into the definition of R
D
 in Eq. (38), we obtain:

<R
D
>

av
 = [(n2 + n‘2)Z/2]1/2 �/(µV

0
). (52)

Thus, from Eqs. (46), (50), and (52), we get the unique value <R
min

>
av

 for the entire hydrogen spectral line:

<R
min

>
av

 = <R
D
>

av
 {[exp(2<R

D
>

av
2/

 
R

WA
(C)2) + 1]/[exp(2<R

D
>

av
2/

 
R

WA
(C)2) – 1 ]}1/2. (53)

As the last step we substitute R
min

 by <R
min

>
av

 and R
D
 by <R

D
>

av
 in Eq. (45), and also introduce dimensionless

parameters

w = <R
D
>

av 
/ R

max
,     b = <R

D
>

av
/
 
R

WA
(C) = [2C/(3Z)]1/2(n2 + n‘2)1/2/(n2 – n‘2), (54)

By doing so, we finally obtain:

��(�)��,A,D
= 2�

 ��(K
2)��Q0

{ln[(exp(2b2) –1)1/2(1/w4–1)1/4/21/2] –b2/2 +[1/(4w2)] ln [(1+w2)/(1–w2)]}, (55)

where Q
0
 was defined in Eq. (35) and

��(K
2)�� = (9/8)[n2(n2 + q2–m2–1) – 4nqn‘q‘ + n‘2(n‘2+q‘2–m‘2–1)]. (56)

From Eq. (54) it is seen that the ratio Z1/2b/C1/2 is just a combination of the principal quantum numbers n and n‘
specific for each hydrogen spectral line: it is independent of the temperature T and of the electron density N

e
 of the

plasma. Since the strong collision constant C � 2, it follows from Eq. (54) that b < 1 always. It reaches maximum
values for n‘ = n – 1, i.e., for the most intense hydrogen spectral line of each spectral series. Here are examples for
the case where the charge of the perturbing ions is Z = 1. For the Balmer-alpha line (H�) we get b = 0.59 C1/2. For the
Paschen-alpha, Brackett-alpha, and higher alpha lines, the ratio b/C1/2 rapidly approaches 1/31/2 = 0.58. For the
Lyman lines the expression for the ratio b/C1/2 should be 2/(31/2n) instead of Eq. (54), so that for the Lyman-alpha
line one gets b/C1/2 = 1/31/2 since n = 2.

 The other dimensionless parameter w = <R
D
>

av
/R

max
, which enters Eq. (55), significantly depends on plasma

parameters. In the most frequent case, where R
max

 is equal to the Debye radius R
D
 (given in Eq. (38)), the parameter

w can be expressed as follows
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w = [2e�/(µT)][(n2 + n‘2)Zm
r
N

e
]1/2 = 8.99x10–10[(n2 + n‘2)ZN

e
m

r
/m

p
 ]1/2/T, (57)

where

m
r
 = (m

e
 + m

p
)m

i 
/ (m

e
 + m

p
+ m

i
). (58)

In the utmost right part of Eq. (57), the temperature T is in eV and the electron density N
e
 is in cm-3. While

deriving Eq. (56), the quantity 1/V
0
 in the expression for <R

D
>

av
 (given by Eq. (52)) was substituted by its average

over the Maxwell distribution <1/V
0
> = [2m

r
/(�T)]1/2 – just as in the conventional theory [20]. For the Lyman-lines

the expression for w should be modified to

w = [e�n/(µT)](2m
r
ZN

e
)1/2 = 1.27x10–9n[ZN

e
m

r 
/ m

p
 ]1/2/T, (59)

For presenting the effect of the CM motion in the universal form, it is convenient to introduce the ratio of the
cross-section ��(�)��,A,D

 to the corresponding cross-section ��(�)��,G
 from the conventional theory by Griem [20].

Since the parameter w in Eq. (57) was obtained by averaging over the Maxwell distribution of the velocities, then
the ratio of the cross-sections is essentially the same as the ratio of widths ���,A,D

/���,G
:

ratio = ��(�)��,A,D
/��(�)��,G

 = ���,A,D
/���,G

 = (60)

{ln[(exp(2b2) –1)1/2(1/w4–1)1/4/21/2] – b2/2 +[1/(4w2)]ln[(1+w2)/(1–w2)]}/{ln[b/(wC1/2)] + 0.356}.

The matrix element ��(W
2)�� cancels out from this ratio, so that it becomes indeed a universal function of just

two dimensionless parameters w and b applicable for any set of the five parameters N
e
, T, n, n‘, and C.

 Below we provide numerical examples for some laboratory and astrophysical plasmas where the allowance for
the CM motion significantly affects the ion dynamical Stark width. The first example is edge plasmas of magnetic
fusion machines (such as, e.g., tokamaks), characterized by the electron density N

e
 = (1014 – 1015) cm-3 and the

temperature of one or few eV (see, e.g., review [25]). For these plasma parameters, the Stark broadening of the most
intense hydrogen spectral lines (Ly-alpha, Ly-beta, H-alpha, etc.) can be dominated by the ion dynamical broadening
(see, e.g., [10-16]).

 The second example is plasmas in the atmospheres of flare stars. They are characterized by practically the
same range of plasma parameters as the edge plasmas of magnetic fusion machines – see, e.g., book [26] and paper
[27].

For both the edge of magnetic fusion machines and the atmospheres of flare stars, for the H
á
 line emitted from

a hydrogen plasma at N
e
 = 5x1014 cm-3 and T = 1 eV, the ratio from Eq. (60) yields 1.19 for C = 2 and 1.13 for

C = 3/2. Figure 1 presents this ratio (for the H� line emitted from a hydrogen plasma) versus the electron density N
e

at T = 1 eV for C = 2 (solid line) and for C = 3/2 (dashed line). It is seen that the allowance for the CM motion
increases the ion dynamical Stark width of the H

á
 line in these kinds of plasmas by up to (15 – 20)%.

Our third example relates to plasmas of radiofrequency discharges, such as, e.g., those studied in papers
[28-30]. The plasma parameters, e.g., in the experiments [28, 29], are N

e
 = 1.2x1013 cm-3 and T = (1850 – 2000) K,

i.e., T = (0.16 – 0.17) eV. For the H� line emitted from such a hydrogen plasma, the ratio from Eq. (60) yields 1.18
for C = 2 and 1.13 for C = 3/2. Figure 2 presents this ratio (for the H� line emitted from a hydrogen plasma) versus
the electron density N

e
 at T = 0.17 eV for C = 2 (solid line) and for C = 3/2 (dashed line). It is seen that the allowance

for the CM motion increases the ion dynamical Stark width of the H� line in these kinds of plasmas by up to (15 –
20)%.

4. CONCLUSIONS

We studied the general problem whether the CM motion and the relative motion can be separated for hydrogenic
atoms/ions in a nonuniform electric field. We demonstrated that, strictly speaking, they cannot be separated. Then
we used the approximate analytical method of the separation of rapid and slow subsystems to achieve the
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Figure 2: The ratio of the ion dynamical Stark width with the allowance for the center-of-mass motion to the ion dynamical Stark
width from the conventional theory [20] versus the electron density N

e
 (cm-3) for the H  line emitted from a hydrogen plasma at T

= 0.17 eV for C = 2 (solid line) and for C = 3/2 (dashed line). Plasma parameters correspond to radiofrequency discharges

Figure 1: The ratio of the ion dynamical Stark width with the allowance for the center-of-mass motion to the ion dynamical Stark
width from the conventional theory [20] versus the electron density N

e
 (cm-3) for the H

á
 line emitted from a hydrogen plasma at

T = 1 eV for C = 2 (solid line) and for C = 3/2 (dashed line). Plasma parameters correspond to edge
plasmas of magnetic fusion machines and to atmospheres of flare stars
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pseudoseparation of the CM and relative motions for hydrogenic atoms/ion in an arbitrary nonuniform electric
field. This is a fundamental result in its own right.

 Next we further developed these results for the case of a hydrogen atom in the nonuniform electric field, where
the field is due to the nearest (to the hydrogen atom) ion in a plasma. We showed that the effect of the CM motion
can be formally taken into account via the substitution of the initial relative velocity V

0
 in the pair “atom – ion” by

an effective velocity V
eff

 that depends on the quantum numbers of the hydrogen atom, as well as on the initial
separation R

0
 in the pair “atom-ion” and on the ion charge Z.

 Then we applied the results to the ion dynamical Stark broadening of hydrogen lines in plasmas. We obtained
analytical results for the cross-sections of the optical collisions that control the corresponding Stark width. We
presented specific examples of laboratory plasmas (such as magnetic fusion plasmas or plasmas of radiofrequency
discharges) and astrophysical plasmas (such as in atmospheres of flare stars) where the allowance for these CM
effects leads to a significant increase of the width of hydrogen spectral lines – by up to (15 – 20)%.

 Thus, in addition to the fundamental importance, the results of the present paper seem to have also practical
importance for spectroscopic diagnostics of laboratory and astrophysical plasmas.

Appendix A. Validity condition for the ion dynamical Stark broadening

The ion dynamical Stark broadening of hydrogen spectral lines is effective when the number �
Wi

 of perturbing
ions in the sphere of the ion Weisskopf radius is smaller than unity – see, e.g., review [7]. (In the opposite case of
�

Wi
 >> 1, the perturbing ions can be treated in the quasistatic approximation.) By using the ion Weisskopf radius

R
WA

(C) defined in Eq. (50), one arrives to the following validity condition:

�
Wi

(C) = [31/2�/(2C3/2)](m
r 
/ T)3/2[(n2 – n‘2)�/µ]3Z2N

e
 < 1. (A.1)

For C = 3/2 (which is the choice of the strong collision constant in the conventional theory by Griem [20]) the
numerical coefficient in the first brackets in the right side of Eq. (A.1) becomes 21/2�/3. Thus, the ion dynamical
Stark broadening can become effective for the most intense hydrogen spectral lines (i.e., for low values of n and n‘)
in plasmas of relatively low electron densities.

Under the condition (A.1), for the overwhelming majority of perturbing ions, the frequency of the variation of
the ion field v

i 
/ R

N
, where R

N
 is the mean interionic distance, exceeds the instantaneous Stark splitting in the ion

field. Therefore the above requirement is called the modulation-type condition.

We note that there is another condition in Griem book [20], Eq. (82): v
i 
/ R

N
 > �

e
, where �

e
 is the electron impact

width. This kind of requirement is called the damping-type condition. While both the modulation-type condition
and the damping-type condition are necessary, the modulation-type condition (A.1) is more restrictive: it requires
the electron (and ion) density to be by the factor ~ (m

p
/m

e
)3/4 ~ 300 smaller than the damping-type condition. Thus,

the modulation-type condition overrides the damping-type condition.

References

[1] P. Schmelcher and L.S. Cederbaum, Phys Rev. Letters 74 (1995) 662.

[2] P. Schmelcher and L.S. Cederbaum, Phys Rev. A 47 (1993) 2634.

[3] M. Vincke and D. Baye, J. Phys. B: At. Mol. Opt. Phys. 21 (1988) 2407.

[4] G.L. Kotkin and V.G. Serbo, Collection of Problems in Classical Mechanics (Pergamon, Oxford) 1971, problem 2.22.

[5] V. Galitski, B. Karnakov, V. Kogan, and V. Galitski, Jr., Exploring Quantum Mechanics (Oxford Univ. Press: Oxford) 2013, p. 363.

[6] L.D. Landau and E.M. Lifshitz, Quantum Mechanics (Pergamon, Oxford) 1965.

[7] V.S. Lisitsa, Sov Phys Uspekhi 122 (1977) 603.

[8] V.S. Lisitsa, Atoms in Plasmas (Springer, Berlin) 1994, p. 13.



Hydrogen Atoms in a Nonuniform Electric Field: Center-of-Mass Effects and their Applications

International Review of Atomic and Molecular Physics, 8 (1), January-June 2017 51

[9] K. Fox, J. Phys. A (Proc. Phys. Soc.), ser. 2, 1 (1968) 124.

[10] V.A. Abramov and V.S. Lisitsa, Sov. J. Plasma Phys. 3 (1977) 451.

[11] J. Seidel, Z. Naturforsch. 34a (1979) 1385.

[12] C. Stehle and N. Feautrier, J. Phys. B 17 (1984) 1477

[13] A. Derevianko and E. Oks, Phys. Rev. Letters 73 (1994) 2059.

[14] A. Derevianko and E. Oks, J. Quant. Spectr. Rad. Transfer 54 (1995) 137.

[15] A. Derevianko and E. Oks, Rev. Sci. Instrum. 68 (1997) 998.

[16] E. Oks, Stark Broadening of Hydrogen and Hydrogenlike Spectral Lines in Plasmas: The Physical Insight (Alpha Science International,
Oxford) 2006.

[17] A.C. Kolb and H.R. Griem, Phys. Rev. 111 (1958) 514.

[18] M. Baranger, Phys. Rev. 111 (1958) 494.

[19] P. Kepple and H.R. Griem, Phys. Rev. 173 (1968) 317.

[20] H.R. Griem, Spectral Line Broadening by Plasmas (Academic, New York) 1974.

[21] G. Nienhuis, Physica 66 (1973) 245.

[22] J. Szudy and W.E. Baylis, Canad. J. Phys. 54 (1976) 2287.

[23] E. Oks, J. Quant. Spectr. Rad. Transfer 152 (2015) 74.

[24] G.V. Sholin, A.V. Demura, and V.S. Lisitsa, Sov. Phys. JETP 37 (1973) 1057.

[25] A. Pospieszczyk, Phys. Scripta 2005 (2005) T119.

[26] R.E. Gershberg, Solar-Type Activity in Main-Sequence Stars (Springer, Berlin) 2005.

[27] E. Oks and R.E. Gershberg, Astrophys. J. 819 (2016) 16.

[28] R.D. Bengston, J.D. Tannich, and P. Kepple, Phys. Rev. A 1 (1970) 532.

[29] R.D. Bengtson and G.R. Chester, Astrophys. J. 178 (1972) 565.

[30] G. Himmel, J. Quant. Spectrosc. Rad. Transfer 16 (1976) 529.




