
An Extended Efficient Approach to
Dynamic Fragment Allocation in
Distributed Database Systems
Raju Kumar* and Neena Gupta**

ABSTRACT

The distributed database better suits the real world organizations having different branches or sites at different

locations. The performance of the distributed database is heavily dependent on the allocation of fragments at

different sites. The main motive is to place the data fragments at different sites in such a way, so that total data

transfer cost can be minimized while executing a set of queries. Moreover allocating data fragment dynamically is

better than static fragment allocation. This paper proposed an extended approach to redundant and non-redundant

dynamic fragment allocation in distributed database system. It additionally explains how to tackle the dynamic data

fragment transfer, when more than one site simultaneously qualify for fragment allocation in redundant and non-

redundant distributed database system. The comparison with other dynamic data fragment allocation approaches

proved that the proposed extended approach is more capable and improves the overall system performance.

Keywords: Distributed database system,Redundant and non-redundant,Dynamic data allocation,Simultaneous

fragment access.

1. INTRODUCTION

Distributed databases are in great demand among the organizations spread over multiple locations. Distributed

database is defined by [1] as a single logical database that is partioned and distributed over different sites of

a computer network. Each site of the network is independent to perform local applications. Each site must

participate in the execution of at least one global application, which needs data accessing at several sites

using a communication subsystem. The reliability and performance of the distributed database system is

highly depend on fragment allocation [2]. For better performance fragments need to be allocated closer to

the site where they are most frequently used.

Distributed databases can be of redundant or non-redundant nature. Therefore according to [1] and

[3] fragment allocation can be done in redundant and non-redundant manner. In redundant approach

same fragment may be allocated on several sites, whereas in non-redundant approach each fragment is

allocated on single site. Several dynamic data allocation approaches already developed to improve the

performance of distributed databases. In this paper an extended efficient approach of dynamic fragment

allocation algorithm for redundant and non-redundant distributed database systems have been introduced

which is an extension of the work carried out by [4]. The extended approach additionally explains how

to deal the dynamic data transfer, when more than one site simultaneously qualify for data allocation in

redundant and non-redundant distributed database system. The comparison with other dynamic data

allocation approaches justify that the proposed extended approach is more capable and improves the

system performance efficiently.

* Department of Computer Science, Gurukul Kangri Vishwavidyalaya, Haridwar, India, Email: rajuk12@gmail.com

** Department of Computer Science, Kanya Gurukul Mahavidyalaya, Dehradun (Second Campus of Gurukul Kangri Vishwavidyalaya,

Haridwar), India, Email: neena71@hotmail.com

I J C T A, 9(20), 2016, pp. 473-482

© International Science Press

474 Raju Kumar and Neena Gupta

The rest of the paper is organized as follows: In section II the overview of the related work done so far

is described. In section III the proposed extended algorithm for redundant and non-redundant fragment

allocation is described. Section IV demonstrates algorithm working with relevant data. In section V the

comparison of proposed extended algorithm with algorithms proposed by [4], [5], [6] and [7] is performed.

Finally the contribution of the study is concluded in section VI.

2. RELATED WORK

Allocation of data or fragment is one of the key design issues of distributed database. Over the past few

years several works have been published on the issue of dynamic fragment allocation to the nodes in

distributed database systems.A threshold algorithm for non-redundant distributed databases is introduced

by [8]. In this algorithm, the fragments are continuously reallocated according to the changing data access

patterns. Thereafter an algorithm called Threshold and Time Constraint Algorithm (TTCA) was proposed

by [9], which reallocates non-replicated data with respect to the changing data access patterns with time

constraint in distributed database systems. This algorithm suffers from scaling problem. Thereafter [10]

introduced Extended Threshold Algorithm (ETA) which not only eliminated the scaling problem of TTCA

and also reduced space requirements. A new dynamic fragment allocation algorithm based on access

threshold, time constraints of database accesses and volume of data transmission was proposed by [5].

Further [4] extended the work done by [5] and introduced distance parameter besides already existing

parameters such as access threshold, volume of data transmission & time constraints of database accesses

and proposed an extended algorithm for non-redundant allocation which efficiently handle the situation

where multiple sites qualify for fragment relocation.

The redundant dynamic fragment allocation algorithm proposed by[7] considered multiple issues

including lazy replication strategy, fragment’s correlation, and non-uniform distances between network

sites. Experimental results reflect that solution provided by this algorithm is efficient to the fragment

allocation problem. Furthermore[6] and [11] proposed a dynamic fragment re-allocation model to find an

optimum data re-allocation solution in distributed database systems. In this model fragment re-allocation is

performed across sites based on update and communication cost values for each fragment individually. A

systematic survey of total of 31 research papers for dynamic data allocation in redundant and non-redundant

manner is presented by [12]. In this paper, an extended dynamic fragment allocation algorithm is proposed,

which is an extension of the work carried out by [4] and [5]. The proposed extended fragment allocation

approach provides solution for redundant and non-redundant fragment allocation and also improves the

overall system performance.

3. PROPOSED EXTENDED DYNAMIC FRAGMENT ALLOCATION ALGORITHM

The Threshold Time Volume and Distance Constraints Algorithm (TTVDCA) introduced by [4] allocates

fragments on the basis of parameters such as access threshold, volume of data transmission, and time

constraints of database accesses. It additionally includes distance parameter to handle the situation where

multiple sites qualify for fragment reallocation. This algorithm is limited to non-redundant allocation of

fragments. The new proposed extended efficient algorithm is the extension of the work carried out by [4],

[5] and provides solution for redundant and non-redundant allocation of fragments and called it TTVDCA-

RNR. The proposed TTVDCA-RNR algorithm has two phases- preparation phase and action phase. The

notations used in this paper are defined in table 1.

3.1. Preparation Phase

In distributed database system suppose there are Y sites and X data fragments. In this phase, each site has

at least one fragment allocated to it and possesses corresponding row of Site Distance Matrix containing

An Extended Efficient Approach to Dynamic Fragment Allocation in Distributed Database Systems... 475

information about distance of that site with respect to other sites. The fragment allocation matrix is stored

at each site to prepare its access plan. The information about two parameters- Access Threshold for fragment

reallocation () and Time constraint for fragment reallocation () are also stored at each site.

Step1: Initially allocate all the fragments of distributed database over different sites using any static

allocation method in redundant / non-redundant manner.

Step2: Assign constant value for Access threshold () and Time constraint () at each site.

Step3: Store a row of site distance matrix at each site – showing corresponding site distance from all

other sites.

Step4: Store Access_Log table at each site. This table has following schema:

Access_Log (AFID, ASID, ADateTime, DataVol)

Where AFID means ID of the fragment which is accessed, ASID means ID of the site which accesses

the fragment, ADateTime means date and time of fragment access, and DataVol means volume of data

transmitted to and from the accessed fragment. Each site stores an access log record for each access to the

fragments allocated to that site. Each Access_Log record is denoted by A
p

q, which means pth access at site

S
q
, where p=1,2,3,......  and q = 1,2,3,....Y.

Step5: Access Access_Log table daily at a particular time t (say 24 hours i.e. 00:00:00 - hh:mm:ss) and

delete all records older than time constraint  up to current access time t at each site.

Suppose time interval  up to current access time t is 7 days. This may be implemented by executing a

query using SQL at each site like “Delete from Access_Log where DATEDIFF (SYSDATE, ADateTime) >

7”.

Two assumptions are made. Firstly there exists some distributed concurrency control mechanism that

preserves ACID properties of the transactions; and ensures that for each write operation on a fragment

stored at a particular site, changes made to the fragment should be reflected to all sites wherever copy of

that fragment is stored. Secondly all the sites of distributed database system are fully connected.

3.2. Action Phase

This phase has a set of activities. These activities are performed every time after each access to the

fragment. Let at time t, an access is made for fragment F
i
 allocated at site S

q
 from site S

j
, where i=

1,2,3,...X, j=1,2,3,.....Y, q= 1,2,3,...,Y, and q = j or q  j. The local agent at site S
q
 performs the following

Table 1

Algorithm Notations

Notation Meaning

X Number of data fragments in distributed database system

Y Number of sites in distributed database system

F
i

The ith data fragment

S
j

The jth site

 Access threshold for fragment relocation

 Time constraint for fragment relocation

A
p

q Access log record for pth access at site q

n
i

j Total number of accesses from site S
j
 to the fragment F

i
 within time interval  up to current access time t

V
i

j Volume of data transmitted between fragment F
i
 and site S

j
 within time interval  up to current access time t

D
i

j Distance between site S
i
 and site S

j

476 Raju Kumar and Neena Gupta

steps 1 to 8for each access to a fragment allocated at that site by some query or application invoked from

the same or different site:

Step1: For each access to fragment F
i
 stored at site S

q
, write a log record A

p

q in Access_Log table at site

S
q
.

Step2: If the ID of the accessing site in the log record A
p

q is the same as the ID of site S
q
, that means

local access is made (S
q
 = S

j
), then do nothing.

Step3: If the ID of the accessing site in the log record A
p

q is different than ID of site S
q
, that means

remote access is made (S
q
  S

j
), then go to the next step.

Step4: Calculate the total number of accesses made to the fragment F
i
 from each accessing remote

site(s).

Suppose n
i

sdenotes the total number of accesses made to the fragment F
i
 allocated at site S

q
 by each site

s, where s = 1,2,3,...,Y. If (n
i

s<= ) then do nothing, otherwise go to the next step.

Step5: Calculate the average volume of data transmitted between fragment F
i
 and all sites

(including site S
q
 where fragment F

i
 is allocated) from where accesses to the fragment F

i
 are made

(V
i

st) and the average volume of data transmitted between fragment F
i
 and each remote site(s) S

j

from where accesses to the fragment F
i
 are made (V

i

jt) where s = 1,2,3,....,Y and S
j
  S

q
, then go to

next step.

The average volume of transmitted data can be calculated using equation – (1). Consider A
p

q V
i

s denotes

the volume of data transmitted between the fragment F
i
 allocated at site S

q
 and the site s in the access_log

A
p

q, where s = 1,2,3,...,Y. Furthermore let V
i

st denotes the average volume of data transmitted between the

fragment F
i
 allocated at site S

q
 and the all accessing site s, then:

V
i

st = ( A
p

q V
i

s) /  n
i

s (1)

Step6: If each accessing remote site(s) S
j
 does not qualify the condition (V

i

jt > V
i

st), then do nothing,

otherwise go to next step.

Step7: If there is only one remote accessing site S
j
 qualify the condition (V

i

jt > V
i

st), then the reallocate

fragment F
i
 to site S

j
 and removed it from the current site S

q
 and update the fragment allocation matrix at

each site accordingly, otherwise go to next step.

Step8: If more than one remote accessing sites S
j
 simultaneously qualify the condition (V

i

jt > V
i

st), then

find out the distance between the site S
q
 where fragment F

i
 is allocated and the sites which qualified the

condition. Select the site which is at maximum distance from the site S
q
 and reallocate the fragment F

i
 to

that site. Remove the fragment F
i
 from site S

q
 and update the fragment allocation matrix at each site

accordingly.

Delay in operation is reduced by reallocating fragment F
i
 to site which is at maximum distance from

current site S
q
 which results overall faster access.The main functionalities of the proposed algorithm can be

implemented using the following procedures, written in English like language.

/* Deleting data beyond time constraint () */

Create or replace procedure Proc_AccessLog (vTimeCons in Number)

Begin

Delete from Access_Log where DATEDIFF(SYSDATE, ADateTime) >vTimeCons;

End;

This procedure can be executed once at a particular time on daily basis at each site.

An Extended Efficient Approach to Dynamic Fragment Allocation in Distributed Database Systems... 477

/* Checking threshold constraint () and data volume */

Create or replace procedure Proc_AlphaDataVol (vAlpha in Number)

vCnt Number(6);

vAvgVolOne Number(25);

vAvgVolAll Number(25);

Begin

Select Count(*)+1 into vCnt

From Access_Log

Where ASID = S
j
 and AFID= F

i
;

If vCnt > vAlpha then

Select Avg(DataVol) into vAvgVolOne

From Access_Log

Where ASID = S
j
 and AFID= F

i
;

Select Avg(DataVol) into vAvgVolAll

From Access_Log

Where AFID= F
i
;

If vAvgVolOne > vAvgVolAll then

Create table F
i
 at site S

j

As select * from F
i
 at site S

q
 ;

Drop table F
i
 at site S

q
 ;

Update Fragment_Allocation_Matrix at each site

Set F
i
 = 1 where site = S

j
 ;

End if ;

End if ;

End;

/* Checking Simultaneous Multiple Site Qualify */

If multiple site qualify for fragment reallocation simultaneously, i.e.

If (vCntS
j
> vAlpha) and (vCntS

k
> vAlpha) and (vAvgVolOneS

j
> vAvgVolAll) and (vAvgVolOneS

k
>

vAvgVolAll) where j=1,2,3…..,Y and k =1,2,3,….,Y and j ‘“ k, then

Create or replace procedure proc_SimulAccess ()

vMaxDistance Number(6):= 0;

vDistance Number(6) ;

vSite Number(6);

Begin

478 Raju Kumar and Neena Gupta

For c IN j.. k

Loop

Select S
c
 into vDistance at site S

q
 /*Checking site which is at max distance from site S

q
*/

From Site_Distance_Matrix ;

if vMaxDistance < vDistance then

vMaxDistance = vDistance ;

vSite = S
c
 ;

end if ;

end loop ;

Create table F
i
 at site vSite

As select * from F
i
 at site S

q
;

Drop table F
i
at site S

q
;

Update Fragment_Allocation_Matrix at each site

Set F
i
 = 1 where site = vSite ;

End;

4. PROPOSED EXTENDED DYNAMIC FRAGMENT ALLOCATION ALGORITHM

DEMONSTRATION WITH DATA

In order to explain how the new proposed extended fragment allocation algorithm can handle the redundant

fragment reallocation in normal case as well as in special case when more than one site qualify for

fragment reallocation; some hypothetical data are taken into consideration. Let there are four sites in

fully connected distributed database system placed at some distance from one another as per following

Site Distance Matrix:

Table 2

Site Distance Matrix

Site S
1

S
2

S
3

S
4

S
1

0 300 500 650

S
2

300 0 700 400

S
3

500 700 0 600

S
4

650 400 600 0

Each site stores only its respective row of Site Distance Matrix. The distance shown is in km. Suppose

there are total four fragments (F
1
, F

2
,...,F

4
) of global relations in DDS. These fragments are allocated in

replicated manner on 4 sites as per following scheme:

F
1
: S

4
 and S

1

F
2
: S

3
 and S

4

F
3
: S

2
 and S

3

F
4
: S

1
 and S

2

An Extended Efficient Approach to Dynamic Fragment Allocation in Distributed Database Systems... 479

Table 3

Fragment Allocation Matrix

Site  Fragment  S
1

S
2

S
3

S
4

F
1

1 0 0 1

F
2

0 0 1 1

F
3

0 1 1 0

F
4

1 1 0 0





i j1, fragment F is allocated to S
Where

0, otherwise

Figure 1: Distributed database sites with distance and allocated fragments

The entries of Access_Log table at site S
4
 at a particular point of time is shown in table 4. The Access_Log

at site S
4
 shows that till 27-Mar-2015, total number of accesses made for fragment F

1
 from sites S

2
 and S

3

is 2. i.e. n
1

2 = n
1

3 =  = 2. During the simultaneous access on 28-Mar-2015, total number of accesses made

for fragment F
1
 from sites S

2
 and S

3
 becomes 3, i.e. n

1

2 = n
1

3 = 3 > . The last two transactions are on hold

because they indicate that there may be possibility of reallocation of fragment F
1
.

Table 4

Access_Log at site S
4

AFID ASID ADateTime DataVol

F
1

S
4

23-Mar-2015 11:15:19 150

F
1

S
2

23-Mar-2015 15:30:45 200

F
2

S
1

24-Mar-2015 16:58:56 180

F
1

S
4

25-Mar-2015 11:12:13 200

F
1

S
2

25-Mar-2015 12:54:55 274

F
1

S
3

26-Mar-2015 14:15:16 160

F
1

S
3

27-Mar-2015 16:17:18 300

F
1

S
2

28-Mar-2015 12:50:59 - - -

F
1

S
3

28-Mar-2015 12:50:59 - - -

Now, using Eq. (1) calculating following data transfer between different sites for fragment F
1
:

480 Raju Kumar and Neena Gupta

• The average volume of data transferred between site S
4
 and all other sites for fragment F

1

= (150 + 200 + 200 + 274 + 160 + 300) bytes/6 = 1284 bytes/ 6 = 214 bytes

• The average volume of data transferred between site S
4
 and site S

2
 for fragment F

1

= (200 + 274) bytes/2 = 474 bytes/2 = 237 bytes

• The average volume of data transferred between site S
4
 and site S

3
for fragment F

1

= (160 + 300) bytes/2 = 460 bytes/2 = 230 bytes

Since 237 bytes >214 bytes and 230 bytes > 214 bytes, and n
1

2 = n
1

3 = 3 >  so sites S
2
 and S

3
 both

qualified for fragment F
1
 to be reallocated. The site at greater distance from site S

4
 will be selected for

reallocation of the fragment F
1
. Now using Site Distance Matrix fragment stored at site S

4
 following

information can be drawn:

Distance between site S
4
 and S

2
: D

4

2 =400 km and

Distance between site S
4
 and S

3
: D

4

3 =600 km

Therefore fragment F
1
 is reallocated to site S

3
 and removed from the site S

4
 and Fragment Allocation

Matrix is updated accordingly at each site. The site S
3
 is at greater distance from current site S

4
 where

fragment F
1
 is allocated, has to travel a lot as compare to site S

2
, which results delay in operation. Reallocating

fragment F
1
 to site S

3
 results overall faster access. Similarly dynamic fragment allocation for non-redundant

distributed database system can also be performed.

5. COMPARISON

The proposed extended algorithm – TTVDCA-RNR for redundant and non-redundant dynamic fragment

allocation is theoretically compared with other non-redundant algorithms proposed by [4] and [5] as well

as with other redundant algorithms proposed by [6] and [7] on the basis of different properties as shown in

table 5 and table 6:

Table 5

Comparison with non-redundant algorithms

Paper Reference  Property  Proposed Algorithm [4] [5]

(TTVDCA-RNR)

Redundant reallocation capability Yes No No

Handling of multiple sites simultaneously qualified for reallocation Yes Yes No

Additional query required to get target data in Access_Log table No Yes Yes

Efficiency Higher Lower Lower

The proposed algorithm TTVDCA-RNR has dual capability to reallocated fragment dynamically in

redundant and non-redundant manner, while algorithms proposed by [4] and [5] have only capability of

non-redundant reallocation. TTVDCA-RNR and algorithm proposed by [4] have capability of handling the

case when multiple sites qualify for fragment reallocation while algorithm proposed by [5] does not have

such capability. Target data is the data within Time Constraint () upto current access time. While algorithm

TTVDCA-RNR does not require additional query to get target data, algorithms proposed by [4] and [5]

require.Moreover algorithm TTVDCA-RNR is more efficient as compared to algorithms proposed by [4]

and [5] because in TTVDCA-RNR data in Access_Log is always within Time Constraint () upto current

access time, so no additional checking is required for data to be within Time Constraint () upto to current

access time.

An Extended Efficient Approach to Dynamic Fragment Allocation in Distributed Database Systems... 481

Table 6

Comparison with redundant algorithms

Paper Reference  Property  Proposed Algorithm [6] [7]

(TTVDCA-RNR)

Handling of multiple sites simultaneously qualified for reallocation Yes Yes No

Fragment reallocation frequency flexibility Yes No No

Prior information of query frequency requirement No Yes No

Efficiency Higher Lower Lower

For redundant fragment reallocation, the algorithm TTVDCA-RNR and algorithm proposed by [6]

have capability of handling the case when multiple sites qualify for fragment reallocation while algorithm

proposed by [7] does not have such capability. The algorithms proposed by [6]and [7] do not have Fragment

reallocation frequency (FRF) flexibility. FRF flexibility means – the administrator of distributed database

implementing the proposed algorithm has the flexibility to tighten or relax the condition for fragment

reallocation. It is proportional to Time Constraint () / Access Threshold ().

FRF  ( / ) (2)

The proposed algorithm TTVDCA-RNR provide this facility by increasing/decreasing values of Access

Threshold () and Time Constraint (), to tune the algorithm to work best to fulfil the infrastructural,

functional and business requirements of the organization. The algorithm proposed by [6] is working under

the constraint of prior information of query frequency. Prior information of query frequency requirement

means advance information about how many times a query will access a particular fragment. While the

algorithm proposed by [7] and TTVDCA-RNR do not have such limitations. The efficiency of algorithm

TTVDCA-RNR is better as compared to algorithms proposed by [6]and[7]; because in TTVDCA-RNR

only two calculations are performed in general using Access_Log table;Firstly calculating total no. of

accesses made by a site for particular fragment and secondly finding average volume of data transmitted

between accessed fragment site and accessing sites. While algorithm proposed by [6] has to perform a lot

of calculations – such as calculating cost of storing fragments, cost of querying from fragments, cost of

updating fragments and cost of communication using several tables, which takes more time to response.

Algorithm proposed by [7] also performs a lot of calculations – such as calculating fragment read cost,

fragment update cost, fragment joining cost and fragment migration cost using several tables, which requires

more time to response.

In view of the above comparisons it can easily be said that algorithm TTVDCA-RNR is better than all

other algorithms proposed by [4], [5], [6] and [7] and improves the overall system performance.

6. CONCLUSION

The distributed database is the need of the current age. The performance of distributed database is highly

depends on the efficient allocation of fragments to sites. In this paper, an extended efficient approach to

redundant and non-redundant fragment allocation algorithm TTVDCA-RNR is proposed. Calculations

performed on the basis of hypothetical data supports that the proposed extended algorithm TTVDCA-RNR

is more capable; and the comparisons of proposed algorithm with other redundant and non-redundant

fragment allocation algorithms shown that the current proposed algorithm is more efficient; and consequently

improves the overall system performance. In future, experimental implementation of algorithm TTVDCA-

RNR can be performed.

REFERENCES

[1] S. Ceri and G. Pelagatti,Distributed Databases: Principles & Systems, (Edition 2008), McGraw-Hill International, New

Delhi, India, 2008.

482 Raju Kumar and Neena Gupta

[2] S. Agrawal, V. Narasayya and B. Yang, “Integrating vertical and horizontal partitioning into automated physical database

design”, Proc. of ACM SIGMOD International Conf. Management of Data , Paris, France, pp. 359-370, June 2004.

[3] M.T. Ozsu and P. Valduriez, Principles of Distributed Database Systems, (3rd Edition), Springer Science+Business Media,

LLC 2011, New York, USA, 2011.

[4] R. Kumarand N. Gupta, “An extended approach to non-replicated dynamic fragment allocation in distributed database

systems”, IEEE Xplore, ICICT-2014, 978-1-4799-2900-9/14/$31.00, pp. 861-865, 2014.

[5] N. Mukharjee, “Non-replicated dynamic fragment allocation in distributed database systems”, Springer-Verlag Berlin

Heidelberg, CCSIT, Part I, CCIS 131, Bangalore, pp. 560-569, January 2011.

[6] H.I. Abdalla, “A new data re-allocation model for distributed database systems”, International Journal of Database

Theory and Application, Vol. 5, No. 2, pp. 45-59, 2012.

[7] S. Kamali, P. Ghodsnia and K. Daudjee, “Dynamic data allocation with replication in distributed systems”, IEEE Explore,

978-1-4673-0012-4/11/$26.00, 2011.

[8] T. Ulus and M. Uysal, “Heuristic approach to dynamic data allocation in distributed database systems”, Pakistan Journal

of Information and Technology, Vol. 2, No. 3, pp. 231-239, 2003.

[9] A. Singhand K.S. Kahlon, “Non-replicated dynamic data allocation in distributed database systems”, International Journal

of Computer Science and Network Security , Vol. 9, No. 9, pp. 176-180, 2009.

[10] R. Kumar and N. Gupta, “Non-redundant dynamic data allocation in distributed database systems”, International Journal

of Computer Applications, (Special Issue on ICNICT, No.6), pp. 06-10, 2012.

[11] A.A. Amer and H.I. Abdalla, “A heuristic approach to re-allocate data fragments in DDBSs”, Information Technology

and e-Services (ICITeS) International Conference , Sousse, Tunisia, pp. 01-06, March 2012.

[12] R. Kumar and N. Gupta, “Dynamic data allocation in distributed database systems: a systematic survey”, International

Review on Computers and Softwares, Vol. 8, No. 2, pp. 660-667, 2013.

