UNIQUENESS OF PRODUCT OF DERIVATIVES AND Q-SHIFT DIFFERENCE OF ENTIRE FUNCTIONS

Renukadevi S Dyavanal" and Rajalaxmi V Desai*

Abstract

In this paper, we investigate the uniqueness of entire functions of zero order concerning its derivative and q-shift difference. We deduce the results of X M Zheng and $H Y X u[24]$ as particular case of our results and we extend the results of Y Liu, Y H Cao, X G Qi and HX Yi[16].

Keywords: Nevanlinna theory, Meromorphic functions, q-shift difference, Uniqueness, etc.
Subject Classification: 30D35, 39A13

1. INTRODUCTION AND RESULTS

In this paper, the term "meromorphic" will always mean meromorphic in the complex plane \mathbb{C}. We shall use the standard notation in Nevanlinna's value distribution theory of meromorphic functions ([6], [21], [23], [2], [19]), and $S(r, f)$ denotes any quantity that satisfy the condition $S(r, f)=o(T(r, f))$ for all r outside a possible exceptional set E of finite logarithmic measure $\lim _{r \rightarrow \infty} \int_{(1, r) \cap E} \frac{1}{t} d t<\infty$ and also use $S_{1}(r, f)$ to denote any quantity satisfying $S_{1}(r, f)=o(T(r, f))$ for all r on a set F of logarithmic density 1 , where the logarithmic density of a set F is defined by $\lim _{r \rightarrow \infty} \int_{(1, r] \cap F} \frac{1}{t} d t$.

Moreover, we assume in the whole paper thatm, n are positive integers, q is a non-zero complex constant, $c \in \mathbb{C}$, and $\alpha(z)$ non-zero small function with respect to $f(z)$, that is, $\alpha(z)$ is a non-zero meromorphic function of growth $S(r, f)$.

Recently, many articles have focused on value distribution and uniqueness of difference polynomials of entire or meromorphic functions (see example [1]-[11]).

In this paper, we use following notation.
Let $P_{n}(z)=a_{n}(z) z^{n}+a_{n-1}(z) z^{n-1}+\ldots+a_{1}(z) z+a_{0}(z)$ be a non-zero polynomial, where $a_{0}(z), a_{1}(z), \ldots, a_{n}(z)(\neq 0)$ are complex constants and t_{n} is the number of distinct zeros of $P_{n}(z)$.

[^0]In 2012, J F Xuand X B Zhang([20]) investigated the zeros of q-shift difference polynomials of meromorphic functions of finite logarithmic order and obtained the following result.

Theorem A. If $f(z)$ is a transcendental meromorphic function of finite logarithmic order $\rho_{\log }(f)$, with the logarithmic exponent of convergence of poles less than $\rho_{\text {log }}(f)-1$ and q, c are non-zero complex constants, then for $n \geq 2, f^{\prime \prime}(z) f$ $(q z+c)$ assumes every value $b \in \mathbb{C}$ infinitely often.

In 2014, X M Zheng and $\mathrm{H} \mathrm{Y} \mathrm{Xu}([24])$ investigated the zeros of differentialqshiftdifference polynomials of meromorphic functions of finite positive logarithmic order and obtained the following results.

Theorem B. If $f(z)$ is a transcendental meromorphic function of finite logarithmic order $\rho_{\log }(f)$, with the logarithmic exponent of convergence of poles less than $\rho_{\log }(f)-1$ and q, c are non-zero complex constants, then for $m \geq n+k+$ $1, f^{n}(z) P_{n}(f(q z+c)) \prod_{j=1}^{k} f^{(j)}(z)$ assume $\alpha(z)$ infinitely often.

Theorem C. If $f(z)$ is a transcendental meromorphic function of finite logarithmic order $\rho_{\log }(f)$, with the logarithmic exponent of convergence of poles less than $\rho_{\text {log }}(f)-1$, and q, c are non-zero complex constants, then for $m \geq n+k+1, P_{m}(f(z)) f^{n}(q z+c) \prod_{j=1}^{k} f^{(j)}(z)$ assumes $\alpha(z)$ infinitely often.

Theorem D. If $f(z)$ and $g(z)$ be transcendental entire functions of order zero and $m \geq n+2 t_{n}+5$. If $f^{n}(z) P_{n}(f(q z+c)) f^{\prime}(z)$ and $g^{m}(z) P_{n}(g(q z+c)) g^{\prime}(z)$ share a non-zero polynomial $p(z) \mathrm{CM}$, then

$$
f^{n}(z) P_{n}(f(q z+c)) f^{\prime}(z)=g^{m}(z) P_{n}(g(q z+c)) g^{\prime}(z) .
$$

Theorem E. If $f(z)$ and $g(z)$ be transcendental entire functions of order zero and $n \geq m+2 t_{m}+5$. If $P_{m}(f(z)) f^{n}(q z+c) f^{\prime}(z)$ and $P_{m}(g(z)) g^{n}(q z+c) g^{\prime}(z)$ share a non-zero polynomial $p(z) \mathrm{CM}$, then

$$
P_{m}(f(z)) f^{n}(q z+c) f^{\prime}(z)=P_{m}(g(z)) g^{n}(q z+c) g^{\prime}(z)
$$

In 2013, Y Liu, Y H Cao, X G Qi and H X Yi([16]) investigated the value sharing results for q-shifts difference polynomials and obtained the following results.

Theorem F. If $f(z)$ and $g(z)$ be two transcendental meromorphic functions with zero order. Suppose that qand c are nonzero complex constants and n is an integer. If $n \geq 14$ and $f^{n}(z) f(q z+c)$ and $g^{n}(z) g(q z+c)$ share 1 CM , then $f(z) \equiv \operatorname{tg}(z)$ or $f(z)$ $g(z)=t$, where $t^{n+1}=1$.

Theorem G. Under the conditions of Theorem F, if $n \geq \lambda+14 d+11$ and $f^{n}(z)$ $f(q z+c)$ and $g^{n}(z) g(q z+c)$ share 1 IM , then $f(z) \equiv \operatorname{tg}(z)$ or $f(z) g(z)=t$, where t^{n+1} $=1$.

In 2014, X L Wang, H Y Xu and T S Zhan ([17]) investigated the value distribution of q-shift difference-differential polynomials of meromorphic functions and obtain the following result.

Theorem H. Let $f(z)$ be a transcendental meromorphic (resp. entire) function of zero order and $F(z)=P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s j}$. If $k \in \mathbb{N}$ and $n>m(k+1)+2 d+1$ $+\lambda($ resp. $n>m(k+1)+d+\lambda)$. Then $(F(z))^{(k)}-\alpha(z)$ has infinitely many zeros, where $(F(z))^{(k)}=F(z)$, if $k=0$.

In this paper, we investigate the uniqueness of differential and q-shift-difference polynomials considered in Theorem B and Theorem C for entire functions of zero order, and we prove the uniqueness of q-shift-difference polynomials sharing a value $1 \mathrm{CM}(\mathrm{IM})$ considered in Theorem H for transcendental meromorphic functions of zero order which extends Theorem F and Theorem G as follows.

Theorem 1.1. Let $f(z)$ and $g(z)$ be transcendental entire functions of order zero. If $f^{m}(z) P_{n}(f(q z+c)) \prod_{j=1}^{k} f^{(j)}(z)$ and $g^{m}(z) P_{n}(g(q z+c)) \prod_{j=1}^{k} g^{(j)}(z)$ share a small function $\alpha(z) \mathrm{CM}$, then

$$
f^{m}(z) P_{n}(f(q z+c)) \prod_{j=1}^{k} f^{(j)}(z)=g^{m}(z) P_{n}(g(q z+c)) \prod_{j=1}^{k} g^{(j)}(z)
$$

Form $\geq n+2 k+2 t_{n}+3$, where t_{n} is the number of distinct zeros of $P_{n}(z)$.
Remark 1.1. If $k=1$, in Theorem 1.1 then Theorem 1.1 reduces to Theorem D.
Theorem 1.2. Let $f(z)$ and $g(z)$ be transcendental entire functions of order zero. If $P_{m}(f(z)) f^{h}(q z+c) \prod_{j=1}^{k} f^{(j)}(z)$ and $P_{m}(g(z)) g^{n}(q z+c) \prod_{j=1}^{k} g^{(j)}(z)$ share a small function $\alpha(z) \mathrm{CM}$, then

$$
P_{m}(f(z)) f^{n}(q z+c) \prod_{j=1}^{k} f^{(j)}(z)=P_{m}(g(z)) g^{n}(q z+c) \prod_{j=1}^{k} g^{(j)}(z)
$$

for $n \geq m+2 k+2 t_{m}+3$, where t_{m} is the number of distinct zeros of $P_{m}(z)$.
Remark 1.2. If $k=1$, in Theorem 1.2, then Theorem 1.2 reduces to Theorem E.
Theorem 1.3: Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions with zero order. Suppose that $q_{j}, c_{j}(j=1,2, \ldots, d)$ are nonzero complex constants. n, $d, s_{j}(j=1,2, \ldots, d)$ are positive integers, $\lambda=s_{1}+s_{2}+\ldots+s_{d}$. If $n \geq \lambda+8 d+5$ and $f^{n}(z) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}$ and $g^{n}(z) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}$ share 1 CM , then either $f(z)$ $\equiv \operatorname{tg}(z)$ or $f(z) g(z)=t$, where $t^{n+\lambda}=1$.

Remark 1.3. If $d=1$, in Theorem 1.3, then Theorem 1.3 reduces to Theorem F .
Theorem 1.4. Under the assumptions of Theorem 1.3, if $n \geq \lambda+14 d+11$ and $f^{n}(z) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}$ and $g^{n}(z) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}$ share 1 IM , then either $f(z) \equiv$ $\operatorname{tg}(z)$ or $f(z) g(z)=t$, where $t^{n+\lambda}=1$.

Remark 1.5. If $d=1$, in Theorem 1.4, then Theorem 1.4 reduces to Theorem G.

2. SOME PRELIMINARY RESULTS

To prove our theorems, we require following lemmas.
Lemma 2.1 ([23]). Let $f(z)$ be a non-constant meromorphic function, then

$$
T\left(r, P_{n}(f)\right)=n T(r, f)+S(r, f)
$$

Lemma 2.2 ([20]). Let $f(z)$ be a transcendental meromorphic function of finite logarithmic order and q, η be two non-zero complex constants. Then we have

$$
\begin{aligned}
& T(r, f(q z+\eta))=T(r, f)+S_{1}(r, f), \\
& N(r, f(q z+\eta))=N(r, f)+S_{1}(r, f), \\
& N\left(r, \frac{1}{f(q z+\eta)}\right)=N\left(r, \frac{1}{f}\right)+S_{1}(r, f) .
\end{aligned}
$$

Lemma 2.3([15]). Let $f(z)$ be a non-constant zero-order meromorphic function and q be a non-zero complex number. Then

$$
m\left(r, \frac{f(q z+\eta)}{f(z)}\right)=S_{1}(r, f)
$$

 complex plane and 1 be a positive integer. Then

$$
\begin{gathered}
T\left(r, f^{(l)}\right) \leq T(r, f)+l \bar{N}(r, f)+S(r, f) \\
N\left(r, f^{(l)}\right) \leq N(r, f)+l \bar{N}(r, f)
\end{gathered}
$$

Lemma $\mathbf{2 . 5 ([2 2]) . ~ L e t ~} F$ and G be two nonconstant meromorphic functions, and let F and G share 1 CM , then one of the following three cases holds:
(i). $\max \{T(r, F), T(r, G)\} \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G)+$ $S(r, F)+S(r, G)$,
(ii) $F=G$,
(iii) $F G \equiv 1$,

Where $N_{2}\left(r, \frac{1}{F}\right)$ denotes the counting function of zero of F, such that simple zero are counted once and multiple zeros are counted twice.

Lemma 2.6 ([18]). Let F and G be two nonconstant meromorphic functions, and let F and G share 1 IM. Let

$$
\begin{equation*}
H=\frac{F^{\prime \prime}}{F^{\prime}}-2 \frac{F^{\prime}}{F-1}-\frac{G^{\prime \prime}}{G^{\prime}}+2 \frac{G^{\prime}}{G-1} \tag{2.1}
\end{equation*}
$$

If $H \equiv 0$, then

$$
\begin{aligned}
\mathrm{T}(\mathrm{r}, \mathrm{~F})+\mathrm{T}(\mathrm{r}, \mathrm{G}) \leq & 2\left[N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G)\right] \\
& +3\left[\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, F)+\bar{N}(r, G)\right]+S(r, F)(2.2) \\
& +S(r, G)] .
\end{aligned}
$$

3. PROOF OF THEOREMS

Proof of Theorem 1.1.

Denote

$$
\begin{align*}
& F_{1}(z)=f^{m}(z) P_{n}(f(q z+c)) \prod_{j=1}^{k} f^{(j)}(z) \\
& \qquad G_{1}(z)=g^{m}(z) P_{n}(g(q z+c)) \prod_{j=1}^{k} g^{(j)}(z) \tag{3.1}
\end{align*}
$$

$\Rightarrow S_{1}\left(r, F_{1}\right)=S_{1}(r, f)$ and $S_{1}\left(r, G_{1}\right)=S_{1}(r, g)$
Since $f(z)$ is a transcendental entire function of zero order, By Lemma 2.1, Lemma 2.2, Lemma 2.3 and Lemma 2.4, we have

$$
\left.\begin{array}{rl}
T\left(r, F_{1}\right) \leq T\left(r, f^{m}(z)\right)+T\left(r, P_{n}(f(q z+c))\right)+T\left(r, \prod_{j=1}^{k} f^{(j)}(z)\right) \\
\leq & (m+n) T(r, f)+\sum_{j=1}^{k} T\left(r, f^{(j)}(z)\right)+S_{1}(r, f)
\end{array}\right\} \begin{gathered}
\leq(m+n) T(r, f)+T\left(r, f^{(1)}(z)\right)+T\left(r, f^{(2)}(z)\right)+\cdots+T\left(r, f^{(k)}(z)\right. \\
\quad+S_{1}(r, f) \\
\leq(m+n) T(r, f)+T(r, f)+\bar{N}(r, f)+T(r, f)+2 \bar{N}(r, f)+\cdots \\
\quad+T(r, f)+k \bar{N}(r, f)+S_{1}(r, f) \\
\therefore T\left(r, F_{1}\right) \leq(m+n+k) T(r, f)+S_{1}(r, f) \tag{3.2}
\end{gathered}
$$

On the other hand,

$$
\begin{gather*}
(m+k) T(r, f)=T\left(r, f^{m+k}(z)\right)+S_{1}(r, f) \\
=T\left(r, \frac{F_{1} \cdot f^{k}}{P_{n}(f(q z+c)) \prod_{j=1}^{k} f^{(j)}(z)}\right) \\
\leq T\left(r, F_{1}\right)+T\left(r, P_{n}(f(q z+c))\right)+T\left(r, \frac{f^{k}}{\prod_{j=1}^{k} f^{(j)}(z)}\right) \\
+S_{1}(r, f) \\
\leq T\left(r, F_{1}\right)+n T(r, f)+T\left(r, \frac{\prod_{j=1}^{k} f^{(j)}(z)}{f^{k}}\right)+S_{1}(r, f) \\
\leq T\left(r, F_{1}\right)+n T(r, f)+m\left(r, \frac{\prod_{j=1}^{k} f^{(j)}(z)}{f^{k}}\right) \\
\quad+N\left(r, \frac{\prod_{j=1}^{k} f^{(j)}(z)}{f^{k}}\right)+S_{1}(r, f) \\
\leq T\left(r, F_{1}\right)+n T(r, f)+\sum_{j=1}^{k} N\left(r, \frac{f^{(j)}(z)}{f}\right)+S_{1}(r, f) \\
\leq T\left(r, F_{1}\right)+n T(r, f)+\sum_{j=1}^{k}\left[N\left(r, f^{(j)}(z)\right)+N\left(r, \frac{1}{f}\right)\right]+S_{1}(r, f) \\
\quad \leq T\left(r, F_{1}\right)+(n+k) T(r, f)+S_{1}(r, f) \\
\therefore(m-n) T(r, f) \leq T\left(r, F_{1}\right)+S_{1}(r, f) \tag{3.3}
\end{gather*}
$$

From (3.2) and (3.3), we have

$$
\begin{equation*}
(m-n) T(r, f)+S_{1}(r, f) \leq T\left(r, F_{1}\right) \leq(m+n+k) T(r, f)+S_{1}(r, f) \tag{3.4}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
(m-n) T(r, g)+S_{1}(r, g) \leq T\left(r, G_{1}\right) \leq(m+n+k) T(r, g)+S_{1}(r, g) \tag{3.5}
\end{equation*}
$$

Since $f(z)$ and $g(z)$ are entire functions of order zero and F_{1} and G_{1} share $\alpha(z)$ CM, we have

$$
\frac{F_{1}(z)-\alpha(z)}{G_{1}(z)-\alpha(z)}=\eta
$$

where η is a non-zero constant.
If $\eta \neq 1$, then we have

$$
F_{1}(z)-\eta G_{1}(z)=\alpha(z)(1-\eta)
$$

Since $P_{n}(z)$ has t_{n} distinct zeros, by using the Second main theorem, Lemma 2.2 and Lemma 2.4, we have

$$
\begin{align*}
& T\left(r, F_{1}\right) \leq \bar{N}\left(r, F_{1}\right)+\bar{N}\left(r, \frac{1}{F_{1}}\right)+\bar{N}\left(\frac{1}{F_{1}-\alpha(z)(1-\eta)}\right)+S\left(r, F_{1}\right) \\
& \leq \bar{N}\left(r, \frac{1}{f^{m}(z) P_{n}(f(q z+c)) \prod_{j=1}^{k} f^{(j)}(z)}\right)+\bar{N}\left(r, \frac{1}{G_{1}}\right)+S_{1}(r, f) \\
& \quad \leq \sum_{j=1}^{t_{n}} \bar{N}\left(r, \frac{1}{\left(f(q z+c)-\gamma_{j}\right)}\right)+\bar{N}\left(r, \frac{1}{\prod_{j=1}^{k} f^{(j)}(z)}\right) \\
& \quad+\bar{N}\left(r, \frac{1}{f^{m}(z)}\right)+\bar{N}\left(r, \frac{1}{G_{1}}\right)+S_{1}(r, f) \\
& \leq\left(t_{n}+1+k\right) T(r, f)+\left(t_{n}+1+k\right) T(r, g)+S_{1}(r, f)+S_{1}(r, g) \tag{3.6}
\end{align*}
$$

Where $\gamma_{j}, \gamma_{j}, \ldots, \gamma_{t_{n}}$ are the distinct zeros of $P_{n}(z)$. Similarly, we have

$$
\begin{align*}
T\left(r, G_{1}\right) \leq & \left(t_{n}+1+k\right) T(r, g)+\left(t_{n}+1+k\right) T(r, f)+S_{1}(r, f) \\
& +S_{1}(r, g) \tag{3.7}
\end{align*}
$$

From (3.4), (3.5), (3.6) and (3.7), we have

$$
\begin{aligned}
& (m-n)(T(r, f)+T(r, g)) \\
& \quad \leq 2\left(t_{n}+1+k\right)(T(r, f)+T(r, g))+S_{1}(r, f)+S_{1}(r, g) \\
& \therefore\left(m-n-2 t_{n}-2 k-2\right)(T(r, f)+T(r, g)) \leq S_{1}(r, f)+S_{1}(r, g)
\end{aligned}
$$

which contradicts for $m \geq n+2 t_{n}+2 k+3$.
Therefore $\eta=1$, then we have $F_{1}(z)=G_{1}(z)$
That is,

$$
f^{m}(z) P_{n}(f(q z+c)) \prod_{j=1}^{k} f^{(j)}(z)=g^{m}(z) P_{n}(g(q z+c)) \prod_{j=1}^{k} g^{(j)}(z) .
$$

Proof of Theorem 1.2.

Denote

$$
F_{2}(z)=P_{m}(f(z)) f^{h}(q z+c) \prod_{j=1}^{k} f^{(j)}(z) \text { and }
$$

$$
\begin{equation*}
G_{2}(z)=P_{m}(g(z)) g^{n}(q z+c) \prod_{j=1} g^{(j)}(z) \tag{3.8}
\end{equation*}
$$

$\Rightarrow S_{1}\left(r, F_{2}\right)=S_{1}(r, f)$ and $S_{1}\left(r, G_{2}\right)=S_{1}(r, g)$

Since $f(z)$ is a transcendental entire function of zero order, By Lemma 2.1, Lemma 2.2, Lemma 2.3 and Lemma 2.4, we have

$$
\begin{align*}
T\left(r, F_{2}\right) & \leq T\left(r, P_{m}(f(z))\right)+T\left(r, f^{n}(q z+c)\right)+T\left(r, \prod_{j=1}^{k} f^{(j)}(z)\right) \\
& \leq(m+n) T(r, f)+\sum_{j=1}^{k} T\left(r, f^{(j)}(z)\right)+S_{1}(r, f) \\
T\left(r, F_{2}\right) & \leq(m+n+k) T(r, f)+S_{1}(r, f) \tag{3.9}
\end{align*}
$$

On the other hand,

$$
\begin{gather*}
(n+k) T(r, f)=T\left(r, f^{n+k}(z)\right) \leq T\left(r, f^{n}(q z+c) f^{k}\right)+S_{1}(r, f) \\
\leq T\left(r, \frac{F_{2} \cdot f^{k}}{P_{m}(f(z)) \prod_{j=1}^{k} f^{(j)}(z)}\right)+S_{1}(r, f) \\
\leq T\left(r, F_{2}\right)+T\left(r, P_{m}(f(z))\right)+T\left(r, \frac{f^{k}}{\prod_{j=1}^{k} f^{(j)}(z)}\right)+S_{1}(r, f) \\
\leq T\left(r, F_{2}\right)+m T(r, f)+T\left(r, \frac{\prod_{j=1}^{k} f^{(j)}(z)}{f^{k}}\right)+S_{1}(r, f) \\
\leq T\left(r, F_{2}\right)+m T(r, f)+\sum_{j=1}^{k} N\left(r, \frac{f^{(j)}(z)}{f^{k}}\right)+S_{1}(r, f) \\
\leq T\left(r, F_{2}\right)+m T(r, f)+\sum_{j=1}^{k}\left[N\left(r, f^{(j)}(z)\right)+N\left(r, \frac{1}{f}\right)\right]+S_{1}(r, f) \\
\leq T\left(r, F_{2}\right)+(m+k) T(r, f)+S_{1}(r, f) \\
\therefore(n-m) T(r, f) \leq T\left(r, F_{2}\right)+S_{1}(r, f) \tag{3.10}
\end{gather*}
$$

From (3.9) and (3.10), we have

$$
\begin{equation*}
(n-m) T(r, f)+S_{1}(r, f) \leq T\left(r, F_{2}\right) \leq(m+n+k) T(r, f)+S_{1}(r, f) \tag{3.11}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
(n-m) T(r, g)+S_{1}(r, g) \leq T\left(r, G_{2}\right) \leq(m+n+k) T(r, g)+S_{1}(r, g) \tag{3.12}
\end{equation*}
$$

Since $f(z)$ and $g(z)$ are entire functions of order zero and F_{2} and G_{2} share $\alpha(z)$ CM, we have

$$
\frac{F_{2}(z)-\alpha(z)}{G_{2}(z)-\alpha(z)}=\eta
$$

where η is a non-zero constant.
If $\eta \neq 1$, then we have

$$
F_{2}(z)-\eta G_{2}(z)=\alpha(z)(1-\eta)
$$

Since $P_{m}(z)$ has t_{m} distinct zeros, by using the Second main theorem, Lemma 2.2 and Lemma 2.4, we have

$$
\begin{align*}
& T\left(r, F_{2}\right) \leq \bar{N}\left(r, F_{2}\right)+\bar{N}\left(r, \frac{1}{F_{2}}\right)+\bar{N}\left(\frac{1}{F_{2}-\alpha(z)(1-\eta)}\right)+S\left(r, F_{2}\right) \\
& \leq \bar{N}\left(r, \frac{1}{P_{m}(f(z)) f^{n}(q z+c) \prod_{j=1}^{k} f^{(j)}(z)}\right)+\bar{N}\left(r, \frac{1}{G_{2}}\right)+S_{1}(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{P_{m}(f(z))}\right)+\bar{N}\left(r, \frac{1}{f^{n}(q z+c)}\right)+\bar{N}\left(r, \frac{1}{\prod_{j=1}^{k} f^{(j)}(z)}\right) \\
& +\bar{N}\left(r, \frac{1}{G_{2}}\right)+S_{1}(r, f) \\
& \leq \sum_{j=1}^{t_{m}} \bar{N}\left(r, \frac{1}{\left(f(z)-\gamma_{j}\right)}\right)+T(r, f)+T\left(r, \prod_{j=1}^{k} f^{(j)}(z)\right) \\
& +\bar{N}\left(r, \frac{1}{G_{2}}\right)+S_{1}(r, f)
\end{align*}
$$

Where $\gamma_{j}, \gamma_{j}, \ldots, \gamma t_{m}$ are the distinct zeros of $P_{m}(z)$. Similarly, we have

$$
\begin{align*}
T\left(r, G_{2}\right) \leq & \left(t_{m}+1+k\right) T(r, g)+\left(t_{m}+1+k\right) T(r, f)+S_{1}(r, f) \tag{3.14}\\
& +S_{1}(r, g)
\end{align*}
$$

From (3.11), (3.12), (3.13) and (3.14), we have

$$
\begin{aligned}
& (n-m)(T(r, f)+T(r, g)) \\
& \quad \leq 2\left(t_{m}+1+k\right)(T(r, f)+T(r, g))+S_{1}(r, f)+S_{1}(r, g) \\
& \therefore\left(n-m-2 t_{m}-2 k-2\right)(T(r, f)+T(r, g)) \leq S_{1}(r, f)+S_{1}(r, g)
\end{aligned}
$$

which contradicts for $n \geq m+2 t_{m}+2 k+3$.
Therefore $\eta=1$, then we have $F_{2}(z)=G_{2}(\mathrm{z})$
That is,

$$
P_{m}(f(z)) f^{n}(q z+c) \prod_{j=1}^{k} f^{(j)}(z)=P_{m}(g(z)) g^{n}(q z+c) \prod_{j=1}^{k} g^{(j)}(z)
$$

Proof of Theorem 1.3.

Denote

$$
F=f^{n}(z) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}} \text { and } G=g^{n}(z) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}
$$

Then

$$
\begin{aligned}
T(r, F)= & T\left(r, f^{n}(z) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right) \\
\leq & T\left(r, f^{n}(z)\right)+T\left(r, \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)+S_{1}(r, f) \\
& \leq(n+\lambda) T(r, f)+S_{1}(r, f)
\end{aligned}
$$

On the other hand,

$$
\begin{gather*}
n T(r, f)=T\left(r, f^{n}(z)\right)=T\left(r, \frac{F}{\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}}\right) \\
\leq T(r, F)+\lambda T(r, f)+S_{1}(r, f) \\
\Rightarrow(n-\lambda) T(r, f)+S_{1}(r, f) \leq T(r, F) \\
\therefore(n-\lambda) T(r, f)+S_{1}(r, f) \leq T(r, F) \leq(n+\lambda) T(r, f)+S_{1}(r, f) \tag{3.15}
\end{gather*}
$$

Similarly,

$$
\begin{equation*}
(n-\lambda) T(r, g)+S_{1}(r, g) \leq T(r, G) \leq(n+\lambda) T(r, g)+S_{1}(r, g) \tag{3.16}
\end{equation*}
$$

Now

$$
\begin{aligned}
N_{2}\left(r, \frac{1}{f^{n}(z)}\right)= & N_{1)}\left(r, \frac{1}{f^{n}(z)}\right)+2 \bar{N}_{(2}\left(r, \frac{1}{f^{n}(z)}\right)=2 \bar{N}_{(2}\left(r, \frac{1}{f^{n}(z)}\right)=N_{(2}\left(r, \frac{1}{f(z)}\right) \\
& \leq N\left(r, \frac{1}{f(z)}\right) \leq T\left(r, \frac{1}{f(z)}\right) \leq T(r, f)+S_{1}(r, f)
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& N_{2}\left(r, \frac{1}{F}\right)= N_{2}\left(r, \frac{1}{f^{n}(z)}\right)+N_{2}\left(r, \frac{1}{\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}}\right) \\
& \leq T(r, f)+\sum_{j=1}^{d} N_{2}\left(r, \frac{1}{\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}}\right)+S_{1}(r, f) \\
& \leq(1+2 d) T(r, f)+S_{1}(r, f) \tag{3.17}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& N_{2}\left(r, \frac{1}{G}\right) \leq(1+2 d) T(r, g)+S_{1}(r, g) \tag{3.18}\\
& N_{2}(r, F) \leq(1+2 d) T(r, f)+S_{1}(r, f) \tag{3.19}\\
& N_{2}(r, G) \leq(1+2 d) T(r, g)+S_{1}(r, g) \tag{3.20}
\end{align*}
$$

Since F and G share 1 CM , let us assume (i) of Lemma 2.5 holds and hence $T(r, F)+T(r, G)$

$$
\begin{aligned}
& \leq 2\left[N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G)\right]+S(r, F) \\
& +S(r, G)
\end{aligned}
$$

substituting (3.17)-(3.20), we get

$$
\begin{gather*}
T(r, F)+T(r, G) \leq 2[(1+2 d) T(r, f)+(1+2 d) T(r, g)+(1+2 d) T(r, f) \\
+(1+2 d) T(r, g)]+S_{1}(r, f)+S_{1}(\mathrm{r}, \mathrm{~g}) \\
\leq 2[2(1+2 d)(T(r, f)+T(r, g))]+S_{1}(r, f)+S_{1}(r, g) \tag{3.21}
\end{gather*}
$$

From (3.15), (3.16) and (3.21), we get

$$
\begin{align*}
& (n-\lambda)(T(r, f)+T(r, g)) \\
& \quad \leq 4(1+2 d)(T(r, f)+T(r, g))+S_{1}(r, f)+S_{1}(\mathrm{r}, \mathrm{~g}) \\
& \Rightarrow(n-\lambda-8 d-4)(T(r, f)+T(r, g)) \leq S_{1}(r, f)+S_{1}(r, g) \tag{3.22}
\end{align*}
$$

which contradicts for $n \geq \lambda+8 d+5$.
Thus by Lemma 2.5, we have
either $F \equiv G$ or $F . G \equiv 1$
If $F \equiv G$, that is,

$$
f^{n}(z) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}=g^{n}(z) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}
$$

Let $h(z)=\frac{f(z)}{g(z)}$. Suppose that $h(z)$ is not a constant. Then we have

$$
\begin{equation*}
h^{n}(z) \prod_{j=1}^{d} h\left(q_{j} z+c_{j}\right)^{s_{j}}=1 \tag{3.24}
\end{equation*}
$$

Lemma 2.2 and (3.24) imply that

$$
\begin{aligned}
& T(r, h(z))=T\left(r, h^{n}(z)\right)=T\left(r, \frac{1}{\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}}\right) \leq \lambda T(r, h)+S_{1}(r, h) \\
\Rightarrow & (n-\lambda) T(r, h) \leq S_{1}(r, h)
\end{aligned}
$$

Hence $h(z)$ must be a nonzero constant, since $n \geq \lambda+8 d+5$.
Set $h(z)=t$. By (3.24), we know $t^{n+\lambda}=1$.
Thus $f(z)=\operatorname{tg}(z)$, where $t^{n+\lambda}=1$.
Which is one of the conclusion of Theorem 1.3.
Again by (3.23), we have
$F . G \equiv 1$, that is,

$$
f^{n}(z) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}} \cdot g^{n}(z) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}=1
$$

Let $l(z)=f(z) g(z)$. Suppose that $l(z)$ is not a nonzero constant. Then we have obtain

$$
\begin{equation*}
l^{n}(z) \prod_{j=1}^{d} l\left(q_{j} z+c_{j}\right)^{s_{j}}=1 \tag{3.25}
\end{equation*}
$$

Lemma 2.2 and (3.25), imply that

$$
\begin{aligned}
& n T(r, l(z))=T\left(r, l^{n}(z)\right)=T\left(r, \frac{1}{\prod_{j=1}^{d} l\left(q_{j} z+c_{j}\right)^{s}}\right) \leq \lambda T(r, l)+S_{1}(r, l) \\
& \Rightarrow(n-\lambda) T(r, l) \leq S_{1}(r, l)
\end{aligned}
$$

Hence $l(z)$ must be a nonzero constant, since $n \geq \lambda+8 d+5$.
Set $l(z)=t$. By (3.25), we know $t^{n+\lambda}=1$.
Thus $f . g=\mathrm{t}$, where $t^{n+\lambda}=1$.

Proof of Theorem 1.4

Let

$$
F=f^{n}(z) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}} \operatorname{and} G=g^{n}(z) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}
$$

and let H be defined as in Lemma 2.6. Using the similar proof as in the Theorem 1.3 , (3.15)-(3.20) holds.
and by Lemma 2.2 , we obtain

$$
\bar{N}(r, F(z))=\bar{N}\left(r, f^{n}(z)\right)+\bar{N}\left(r, \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)
$$

$$
\begin{align*}
\leq T(r, f) & +\sum_{j=1}^{d} \bar{N}\left(r, f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)+S_{1}(r, f) \\
& \leq(d+1) T(r, f)+S_{1}(r, f) \tag{3.26}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& N(r, G(z)) \leq(d+1) T(r, g)+S_{1}(r, g) \tag{3.27}\\
& \bar{N}\left(r, \frac{1}{F(z)}\right) \leq(d+1) T(r, f)+S_{1}(r, f) \tag{3.28}\\
& \bar{N}\left(r, \frac{1}{G(z)}\right) \leq(d+1) T(r, g)+S_{1}(r, g) \tag{3.29}
\end{align*}
$$

If $H \not \equiv 0$ and since F and G share 1 IM , then by Lemma 2.6 , we have $T(r, F)+T(r, G)$

$$
\begin{align*}
& \quad \leq 2\left[N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G)\right] \\
& +3\left[\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, F)+\bar{N}(r, G)\right]+S(r, F) \tag{3.30}\\
& +S(r, G)]
\end{align*}
$$

Substituting (3.17)-(3.20) and (3.26)-(3.29), we get

$$
\begin{gather*}
T(r, F)+T(r, G) \leq 4(1+2 d)(T(r, f)+T(r, g)) \\
+3[2(d+1)(T(r, f)+T(r, g))]+S_{1}(r, f)+S_{1}(r, g) \\
\leq[4(1+2 d)+6(d+1)](T(r, f)+T(r, g)) \\
+S_{1}(r, f)+S_{1}(r, g) \tag{3.31}
\end{gather*}
$$

From (3.31), (3.15) and (3.16), we get

$$
\begin{align*}
& (n-\lambda)(T(r, f)+T(r, g)) \\
& \quad \leq(14 d+10)(T(r, f)+T(r, g))+S_{1}(r, f)+S_{1}(r, g) \tag{3.32}\\
& \Rightarrow(n-\lambda-14 d-10)(T(r, f)+T(r, g)) \leq S_{1}(r, f)+S_{1}(r, g)
\end{align*}
$$

which contradicts for $n \geq \lambda-14 d-11$.
Hence we have $H \equiv 0$.
Integrating (2.1) twice and using $H \equiv 0$, we have

$$
\begin{equation*}
\frac{1}{F-1}=\frac{a}{G-1}+b \tag{3.33}
\end{equation*}
$$

where $a \neq 0$ and b are constants. By (3.33), we have

$$
\begin{equation*}
F=\frac{(b+1) G+(a-b-1)}{b G+(a-b)} \text { and } G=\frac{(b-a) F+(a-b-1)}{b F-(b+1)} \tag{3.34}
\end{equation*}
$$

Next, we consider following cases.
Case (i). $b \neq 0,-1$ in (3.34) and for constants a and b.
If $a-b-1 \neq 0$, by (3.34), we obtain

$$
\bar{N}\left(r, \frac{1}{F}\right)=\bar{N}\left(r, \frac{1}{G+\frac{a-b-1}{b+1}}\right)
$$

Using Second fundamental theorem, Lemma 2.2 and (3.16), we obtain

$$
\begin{align*}
& (n-\lambda) T(r, g) \leq T(r, G)+S_{1}(r, g) \\
& \begin{aligned}
& \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G+\frac{a-b-1}{b+1}}\right)+S(r, G)+S_{1}(r, g) \\
& \leq \bar{N}\left(r, \frac{1}{g^{n}(z)}\right)+\bar{N}\left(r, \frac{1}{\prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}}\right)+\bar{N}\left(r, g^{n}(z)\right) \\
&+\bar{N}\left(r, \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}\right)+\bar{N}\left(r, \frac{1}{f^{n}(z)}\right) \\
&+\bar{N}\left(r, \frac{1}{\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}}\right)+S_{1}(r, f)+S_{1}(r, g) \\
& \leq(2+2 d) T(r, g)+(1+d) T(r, f)+S_{1}(r, f)+S_{1}(r, g) \\
& \therefore(n-\lambda-2-2 d) T(r, g) \leq(1+d) T(r, f)+S_{1}(r, f)+S_{1}(r, g)
\end{aligned}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
(n-\lambda-2-2 d) T(r, g) \leq(1+d) T(r, f)+S_{1}(r, f)+S_{1}(r, g) \tag{3.36}
\end{equation*}
$$

From (3.34) and (3.35), we get

$$
\begin{gathered}
(n-\lambda-2-2 d)(T(r, f)+T(r, g)) \leq 2(1+d)(T(r, f)+T(r, g)) \\
+S_{1}(r, f)+S_{1}(r, g) \\
\Rightarrow(n-\lambda-4 d-4)(T(r, f)+T(r, g)) \leq S_{1}(r, f)+S_{1}(r, g)
\end{gathered}
$$

which contradicts with $n \geq \lambda+14 d+11$.
Hence, we obtain $a-b-1=0$, so

$$
F=\frac{(b+1) G}{b G+(a-b)} \text { and } G=\frac{(b-a) F}{b F-(b+1)}
$$

Using the similar method as above, we obtain

$$
\begin{align*}
& (n-\lambda) T(r, g) \leq T(r, G)+S_{1}(r, g) \\
& \qquad \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G+\left(\frac{1}{b}\right)}\right)+S(r, G)+S_{1}(r, g) \\
& \quad \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+\bar{N}(r, F)+S_{1}(r, g)
\end{aligned} \begin{aligned}
& (n-\lambda) T(r, g) \leq(2+2 d) T(r, g)+(1+d) T(r, f)+S_{1}(r, g) \\
& \Rightarrow(n-\lambda-2-2 d) T(r, g) \leq(1+d) T(r, f)+S_{1}(r, f)+S_{1}(r, g)
\end{align*}
$$

Similarly,
$(n-\lambda-2-2 d) T(r, f) \leq(1+d) T(r, g)+S_{1}(r, f)+S_{1}(r, g)$
From (3.37) and (3.38), we get
$\Rightarrow(n-\lambda-4-4 d)(T(r, f)+T(r, g)) \leq S_{1}(r, f)+S_{1}(r, g)$
which contradicts withn $\geq \lambda+14 d+11$.
Case (ii). If $b=-1$ and $a=-1$ in (3.34), then $F G=1$ follows trivially.
Therefore, we may consider the case $b=-1$ and $a \neq-1$ in (3.34), we have

$$
F=\frac{a}{a+1-G} \text { and } G=\frac{(a+1) F-a}{F}
$$

As in Case (i), we get a contradiction.
Set $h(z)=\frac{f(z)}{g(z)}$. Suppose that $h(z)$ is not a constant. Then, we have

$$
\begin{equation*}
h^{n}(z) \prod_{j=1}^{d} h\left(q_{j} z+c_{j}\right)^{s_{j}}=1 \tag{3.39}
\end{equation*}
$$

Lemma 2.2 and (3.39) imply that

$$
\begin{gathered}
n T(r, h(z))=T\left(r, h^{n}(z)\right)=T\left(r, \frac{1}{\prod_{j=1}^{d} h\left(q_{j} z+c_{j}\right)^{s_{j}}}\right) \leq \lambda T(r, h)+S_{1}(r, h) \\
\Rightarrow(n-\lambda) T(r, h) \leq S_{1}(r, h)
\end{gathered}
$$

Hence $h(z)$ must be a nonzero constant, since $n \geq \lambda 14 d+11$.
Set $h(z)=t$. By (3.38), we know $t^{n+\lambda}=1$.

Thus $f(z)=\operatorname{tg}(z)$, where $t^{n+\lambda}=1$.
Which is one of the conclusion of Theorem 1.2.
Case (iii). If $b=0$ and $a=1$ in (3.34), then $F=G$ follows trivially.
Therefore, we may consider the case $\$ \mathrm{~b}=0 \$$ and $a \neq 1$ in (3.33), we have

$$
F=\frac{G+a-1}{a} \text { and } G=a F-(a-1)
$$

As in Case (i), we get a contradiction.
Let $l(z)=f(z) \cdot g(z)$. Suppose that $l(z)$ is not a nonzero constant. Then we have obtain

$$
\begin{equation*}
l^{n}(z) \prod_{j=1}^{d} l\left(q_{j} z+c_{j}\right)^{s_{j}}=1 \tag{3.40}
\end{equation*}
$$

Lemma 2.2 and (3.40), imply that

$$
\begin{aligned}
& \quad n T(r, l(z))=T\left(r, l^{n}(z)\right)=T\left(r, \frac{1}{\prod_{j=1}^{d} l\left(q_{j} z+c_{j}\right)^{s_{j}}}\right) \leq \lambda T(r, l)+S_{1}(r, l) \\
& \Rightarrow(n-\lambda) T(r, l) \leq S_{1}(r, l)
\end{aligned}
$$

Hence $l(z)$ must be a nonzero constant, since $n \geq \lambda+14 d+11$.
Set $l(z)=t$. By (3.39), we know $t^{n+\lambda}=1$.
Thus $f . g=t$, where $t^{n+\lambda}=1$.

Acknowledgments

The first author is supported by Ref. No. F. 510/3/DRS-III/2016(SAP-I) Dated: 29th Feb. 2016.

References

[1] Bhoosnurmath S. S. and Dyavanal R. S., Uniqueness of meromorphic functions sharing sets, Bull. Math. Anal. Appl. Vol. 3, 200-208, (2011).
[2] Chern P T Y, On meromorphic functions with finite logarithmic order, Trans. Am. Math. Soc. 358(2), 473-489(2006).
[3] Dyavanal R S, Desai R V, Uniqueness of Difference Polynomials of Entire Functions, Applied Math. Sci., Vol.8, 2014, no.69, 3419-3424.
[4] Dyavanal R. S., Desai R. V., Uniqueness of q- shift difference and differentialpolynomials of Entire functions, Far East Journal of Applied Mathematics, Vol. 91, no. 3 (2015), 189-202.
[5] R.S. Dyavanal, A.M. Hattikal, Weighted sharing of uniqueness of difference polynomials of meromorphic functions, Far East J. Math. Sci. 98(3) (2015), 293313.
[6] R.S. Dyavanal and A. M. Hattikal, Weighted sharing of difference-differential polynomials of entire functions, Mathematical Sciences International Research Journal, Vol. 4, No. 2, (2015), 276-280.
[7] R.S. Dyavanal, A.M. Hattikal, Unicity theorems on difference polynomials of meromorphic functions sharing one value, Int. J. Pure Appl. Math. Sci. 9(2) (2016), 89-97.
[8] R.S. Dyavanal, A.M. Hattikal, On the uniqueness of product of difference polynomials of meromorphic functions, Konuralp J. Math. 4(2) (2016), 42-55.
[9] R.S. Dyavanal and A.M. Hattikal, Uniqueness of q-shift Difference Polynomialsof Meromorphic Functions Sharing a Small Function, Journal of New trends in Mathematical Sciences (Accepted).
[10] Dyavanal R. S. and Mathai M. M., Uniqueness of Difference-Differential polynomials of meromorphic functions and its applications, Indian J. Math. Math. Sci. 12, No. 1, 11-30 (2016).
[11] Dyavanal R. S. and Mathai M. M., Uniqueness of Difference-Differential polynomials of meromorphic functions, Ukrainian Math. J. (Accepted).
[12] Halburd R. G., Korhonen R. J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), 477-487.
[13] Halburd R. G., Korhonen R. J., Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. 31(2006), 463-478.
[14] Hayman W. K., Meromorphic Functions., The Clarendon Press, Oxford (1964).
[15] Liu K., Qi X G., Meromorphic solutions of q-shift difference equations, Ann. Pol. Math. 101, 215-225 (2011).
[16] Liu Y, Cao Y H, Qi X G, Yi H X, Value sharing results for q-shifts difference polynomials, Discrete Dynamics in Nature and Society, Vol. 2013, Article ID 152069.
[17] Wang XL, Xu H Y, Zhan T S, Properties of q-shift difference-differential polynomials of meromorphic functions, Advances in Difference equations 2014, 2014: 249.
[18] Xu J, Yi H, Uniqueness of entire functions and differential polynomials, Bulletin of the Korean Mathematical Society, Vol. 44, no. 4, pp. 623-629, 2007.
[19] Xu J F, Zhang X B, The zeros of difference polynomials of meromorphic functions, Abstr. App. Anal 2012, Article ID 357203(2012).
[20] Xu J F, Zhang X B, The zeros of q-difference polynomials of meromorphic functions, Adv.Differ. Equ. 2012, Article ID 200 (2012).
[21] Yang L, Value Distribution Theory, Springer, Berlin (1993).
[22] Yang C C, Hua X, Uniqueness and value sharing of meromorphic functions, Annales Academiae Scientiarum Fennicae. Mathematica, Vol. 22, no. 2, pp. 395-406, 1997.
[23] Yi H X, Yang C C, Uniqueness Theory of Meromorphic Functions, Kluwer Academic, Dordrecht(2003) Chinese original, Science Press, Beijing, 1995.
[24] Zheng X M, Xu HY, On value distribution and uniqueness of meromorphic function with finite logarithmic order concerning its derivative and q-shift difference, Journal of inequalities and applications, 2014, 2014: 295.

[^0]: * Department of Mathematics, Karnatak University, Dharwad - 580003, India, E-mail: renukadyavanal@gmail.com and desairajlakshmi@gmail.com

