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Abstract: This paper deals with control of fractional order systems using a non-integer order Proportional Integral
controller (PIë). The controller parameters are computed in order to ensure desired closed loop temporal specifications
such as rise time and overshoot. The Characteristic Ratio Assignment (CRA) method is used to find the desired
closed loop characteristic equation. Some new results concerning the desired overshoot are also presented based on
sufficient stability conditions. Simulation results are given in order to illustrate the efficiency of the proposed controller.
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1. INTRODUCTION

Several applications of non-integer order models have been studied in different fields such as electrical transmission
lines and signal processing. Fractional differentiation is employed in various branches like viscoelasticity and
sound waves propagation. Moreover, it is used in biomedicine citing human respiratory system and genetic.
Also, fractional calculus is exploited in bioengineering, the multimedia streaming and the finance [1]. These
applications can be described by theoretical models quoting Cole-Cole, Cole-Davidson and recently the Havriliak–
Negami model which depends on the real values of the parameters � and � which characterize the distinctive
features of the response [2].

Many researches have been done to calculate fractional order systems [3-5]. Approximate methods have
been developed by the CRONE team to study these types of systems [6, 7]. Thanks to graphical interfaces, such
that FOMCON toolbox, temporal and frequency specifications can be easily elaborated [8].

During the study of fractional order systems, stability of this kind of systems took the attention of researchers.
Hurwitz or Routh Hurwitz criterion is employed in [9] to determine the necessary and sufficient condition of
stability.

Different types of fractional controller have been exploited in literature [10, 11]. Proportional Integral and
Proportional Integral Derivative controllers (PI� or PI�Dµ) were applied to control a first order time delay plant
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based on the generalized version of the Hermite-Biehler theorem [12, 13]. In [14] a tuning and auto-tuning of
fractional order PIëDì controllers is proposed in industrial applications to fulfil different specifications regarding
robustness to plant uncertainties, load disturbances and high frequency noise.

Pole placement is one of the methods making it possible to impose temporal specifications (rise time,
settling time and overshoot) for both integer and fractional order systems [15]. However, this method is limited
to the second order transfer function.

Besides, the Characteristic Ratio Assignments (CRA) method which is a pole placement method, allows us
to impose desired performances for higher order transfer function. In fact, by fixing the value of the generalized
time constant ô we can obtain the desired rise time and settling time. With the ratio values ái, the overshoot can
be adjusted [16]. The specified overshoot depends essentially on the value of commensurate order v if the system
transfer function contains zeros [17].

The CRA method is used in [18] to design a low order controller for integer order systems. In [19-20] this
method is employed in the synthesis of a robust controller. The CRA method is also used to design the RST
controller for fractional order systems [16].

This work deals with the design of a fractional PI controller for three types of commensurate non-integer
order systems, (first order, first order with zero and second order systems) by imposing temporal specifications.
In order to obtain these performances, the CRA method is used.

This paper is divided into 6 sections. Section 2 is reserved to define fractional calculus and to find the
interval in which the closed loop step response contain an overshoot. The CRA method is presented in section 3
and sufficient stability conditions for fractional order systems are proposed. Section 4 is reserved to design the
controller. Section 5 provides simulation results. Conclusions and perspectives are given in the last section.

2. FRACTIONAL CALCULUS

Many definitions are used to calculate non integer order equations. The most popular one is the Riemann Liouville
that is described in the continuous form as follows [3]:
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where a and t denote the limits of the operation, � denotes the fractional order and �(�) is Euler’s gamma
function.

The discrete form of this definition is defined as:
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2.1. Laplace Transform and System Representation

The general Laplace transform of the differential integral is given by [16]:
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where n is an integer such that n – 1 < v < n and F(s) = L(f(t))

If all the derivatives are zero the previous expression becomes:

v
0tL(D ( )) ( )vf t s F s� (4)

The generalized transfer function of the commensurate fractional order linear system can be expressed by:
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where N(s) and D(s) have no common zeros and v is the commensurate fractional order.

There are different approximate methods used in FOMCON Matlab toolbox to calculate this kind of systems.
The most used in literature is Oustaloup method [6].

The Oustaloup’s recursive filter in a frequency range [�b, �h] for 0 < v < 1 is defined by [6] as:
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where poles, zeros and gain of the filter can be determined as:
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Where �b and �h are respectively the low and the high frequency.

For v > 1, the approximation can be divided into a product of the integer portion with the fractional one by
the following:

2.2. Sufficient Condition for Existence of an Overshoot in the Step Response of Fractional Order
Systems

The transfer function G(s) defined by (5) is Bounded Input Bounded output (BIBO) stable if and only if the real
parts of the denominator zeros are negative [17]. The sufficient condition for the existence of an overshoot in the
step response of system (5) proved by [17] is that:

The strictly proper and BIBO stable transfer function G(s) with the steady state gain G(0) � 0 has always an
overshoot in its step response if:

0
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In the same reference [17], it was announced that the step response of each stable fractional order system
with commensurate order v where 1 < v < 2 has an overshoot.

2.3. Fractional-order PI Controller and Overshooting Step Responses

In this section, we will extend the previous conditions for the closed loop transfer function by using a fractional
order PI controller whose transfer function is given by:
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The closed loop transfer function of a system described by an all pole commensurate fractional order
transfer function is defined by:
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It is clear that 0
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The step response of the closed loop system shown in Figure 1 has always an overshoot if � = v > 1 and
G(s) is a transfer function having non zero steady state gain and C(s) is a fractional order controller [17].

Figure 1: Feedback control system structure

3. CHARACTERISTIC RATIO ASSIGNMENT

In this section, the characteristic ratio and the generalized time constant are defined for an all-pole commensurate
fractional order system. Then, the closed loop transfer function is considered as follows:
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where v is the commensurate order.

Definition 1. The characteristic ratios �i are defined by [16]:
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Where �n = 1.
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Corollary 1. Parameters �i of the system (12) are expressed in function of the characteristic ratios �i and
the generalized time constant � by [16]:
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It is also possible to make the previous relation into a recursive form:
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Knowing that the step response does not have overshoot if the magnitude of the system frequency response
is monotonically decreasing. In order to ensure a small amount of overshoot, the characteristic ratios of system
(12) must be defined by [16]:
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were � is function of v.

This function is found by [17] for system having a commensurate order 0.5 < v < 1 and a target transfer
function expressed by (12). For systems having zeros in their transfer functions and their commensurate order
1 < v < 1.5, we were proposed new expressions for such system. The following table allows us finding the values
of � by imposing as objective an overshoot less than (5%, 10%). � is selected so to limit the peak of overshoot.

Table 1
Values of  in function of v

v 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

 D(%)<5 (n=1) 3 4 4 5 8 10 16 40 80

D(%)<10 (n=1) 1.4 1.7 2.2 2.7 3.5 6.5 12 24 55

D(%)<10 (n=2) 40 50 80 110 200 350 750 2000 8000

From this table, we can deduce relation between � and v for n = 1 and n = 2:

 22.82
( 1, 5%) 0.01593. 3.71vn D� �� � � (17)

 23.89
( 1, 10%) 0.007391.v  1.931n D� �� � � (18)

 39.46
( 2, 10%)  0.003373 127.9.v  n D� �� � � (19)

Corollary 2. For two systems with identical characteristic ratio and different generalized time constants �i,
the following relations are proposed [16]:
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where tsi and tri are respectively the settling time and the rise time.

Algorithm

To determine the desired step response using the characteristic ratio method, the following algorithm is proposed.
This algorithm is divided in two steps:

Step 1

i) We fix �1 and �.

ii) We calculate the characteristic ratio for k = 1,…, n-1 using (16).

iii) We calculate the target polynomial coefficients �i, for i=1,…, n (�0 = 1) by using (15).

iv) We found the desired transfer function and its rising time tr1.

Step 2

i)  We set the desired rising time tr2 and we calculate the generalized time constant �2 by using (20).

ii) By using the new generalized time constant �2 we find the new coefficients �i by using (15).

iii)  Finally, we determine the new desired transfer function.

This algorithm will be applied in the following example.

Example

Consider two systems described by (12), where �0 = 1, v = 0.8 and n = 3. The characteristic ratios �i = [0.48
8.24] for both systems are obtained by applying (16). For an initial design, the generalized time constant is
chosen as �1 = 10s. Then, the coefficients �i are determined. Thus, the rise time tr1 = 27.6s is deduced. Let the
objective be the obtaining of a rise time tr2 = 13.8s, so by using relation (20), the second generalized time
constant is �2 = 5s. The relation (15) is used to compute the �i of the second transfer function. Then the presented
algorithm allows the computation of the coefficients 1, ..., �n with �0 = 1. Then, we will compute a transfer
function that its �n coefficient is set to one. So, it is enough to devise the coefficients of the transfer function by
�n.

Parameters �i for the second transfer function are given in Table 2. Figure 2 shows the unit step response
for the two systems.

Table 2
Coefficients of the characteristic polynomials for two systems

i �i �1 = 10s �i �2 = 5s

0 0.007 0.041

1 0.048 0.148

2 0.631 1.104

Figure 2 shows the step responses for the transfer function having the characteristic ratios given by table 2.
The desired rise time is then found.
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SUFFICIENT STABILITY CONDITIONS FOR FRACTIONAL ORDER SYSTEMS

System (12) is stable if and only if their characteristic ratios answer the following conditions proposed by
Lipatov and Sokolov:
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Proof: The sufficient condition for stability is that conditions in (21) are fulfilled for

0.5 < v < 1; 1 < v < 1.5 and � > 1
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Figure 2: Unit step response for �1 =10s and �2 = 5s
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Thus the system (12) with the characteristic ratios in (16) is stable.

The characteristic ratio method will be used in the following examples to find controller parameters.

4. SYNTHESIS OF THE CONTROLLER

In this section, the design of a fractional PI controller with time specification is developed for different forms of
the fractional order transfer function.

Model 1:

Let consider the following open loop transfer function:

0

1 0
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b
G s
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By using the PI� controller (��= v) which is given by (10), the closed loop transfer function is obtained:
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Then, the characteristic equation is expressed by:

2
1 0 0 0( )v v

c p iE a s a b k s b k� � � � (27)

This characteristic equation is identified to the characteristic polynomial ä(s) determined using the proposed
algorithm:

2
2 1 0( ) v vs s s� � � � � � � (28)

Using relations (13) and (14), we can fix the coefficient �0 as:
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Knowing that �2 = a1 = 1, so relation (29) becomes:
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The controller parameters can be determined using relations (27) and (28):
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Model 2: In this case, the open loop transfer function of the plant is now chosen as a first order function
with presence of one zero.
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The closed loop transfer function with the fractional order PI controller is given by:
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The characteristic equation is expressed by:

� � � �2
c 1 1 0 0 1 0E  = v v

p p i ia b k s a b k b k s b k� � � � � (34)

This equation is identified to the characteristic polynomial �(s):
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Hence, the controller parameters can be determined using relations (34) and (35):
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�0 is chosen so that � �2 1 1 1.pa b k� � � �

Model 3: The third model is chosen with one zero and two poles. The transfer function is given as follows:
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The closed loop transfer function of the system with the fractional order PI controller is:
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The controller parameters can be determined by using the following identification:
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It has been mentioned in [17] that the lower powers coefficients of s are the most related to the step
response. So, �0 and �1 have more influence on the step response than �2 That implies:
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By considering the characteristic ratios �i and the system parameters �i, the following relations are obtained:
22 2
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 ,   ,   , 
v

v � �� �
� � � � � � � � � �

� � � � � (41)

Using these equations, the system parameter �0 can be determined:
2
1 2

0 3v

� �
� �

�
(42)

5. SIMULATION RESULTS

In order to shed light the effectiveness of the proposed controller, two intervals of v are considered.

5.1. Case 0.5 < v < 1

As it is mentioned in section 2.2, the closed loop responses do not have overshoot in their transfer functions with
these values of the commensurate order. So � will be fixed by simulations in order to illuminate undershoots.
Two examples will be chosen to find the appropriate controller insuring the desired temporal specifications.

Example 1: Let consider the following transfer function:

1 0.7

0.4
( )

0.2
G s

s
�

�
(43)

The unit step open loop system is shown in figure 3. The aim is to design a fractional PI that will be able to
guarantee the following closed loop specifications: a rise time equals to 15s with no overshoot.

Figure 3: Open loop step response (system described by (43))
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From figure 3, we note that the system rise time is 65.7s. By choosing �1 = 5s and ��= 0.6, the characteristic
ratio is �1 = 0.7053. Then the system parameters are [�2 �1 �0] = [1 0.2286 0.0741] .

The obtained fractional PI controller can be written as:

1 0.7

0.1853
( ) 0.0716C s

s
� � (44)

The rise time in initial closed loop system is 21.3s. To increase the plant speed we will use corollary 2. The

new system parameters are 2 1 0[ ] [10.2922 0.1211].� � � �  The controller parameters are kp = 0.2306 and
ki = 0.303. Applying these parameters to the plant, we found the final rise time as tr2 = 12.2s which is less than
15s. To have the rise time equal to 15s, we set the generalized time constant �2 = 4.032s. So that the final system

parameters are 2 1 0[ ] [10.226582 0.1002]� � � �  and then the final controller is founded:

2 0.7

0.2504
( ) 0.1645C s

s
� � (45)

The unit closed loop step response by applying the controllers C1(s) and C2(s) are plotted in Figure 4a.
Figure 4b shows the control signals obtained with these controllers. It is noted from Figure 4a, that the controller
C2(s) meets the desired time specifications.

Figure 4: (a) Closed loop responses with controller
C1(s) and C2(s)

Figure 4: (b) Control signals

Example 2: Let the system transfer function be:
0.7

2 0.7

0.5 0.3
( )

0.8 0.2
s

G s
s

�
�

�
(46)

From the unit open loop step response (Figure 5), we can deduce the rise time tr = 48.9. The objective now
is the design of fractional PI to obtain a rise time equals to 25s with no overshoot. To have no overshoot, � is
chosen as ��= 0.99.



International Journal of Control Theory and Applications 162

Emna Ouhibi, Maher Ben Hariz and Faouzi Bouani

Figure 5: Open loop step response (system described by (46))

For an initial choice �1 = 10s, � = 0.99 and �0 = 0.06, the characteristic ratio is �1 = 1.164 and then the system
parameters are [�2 �1 �0] = [1 0.232 0.0463]. Using these values we found a first fractional order PI controller:

Applying this controller to the system (46), the rise time is tr1 = 34.6s. In order to obtain the desired rise
time, relation (20) is used to compute the new generalized time constant �2 = 7.512s. Then, the new system
parameters are [�2 �1 �0] = [1 0.2839 0.0692]. So, the desired fractional order PI controller is then found:

The closed loop system shown in Figure 6a presents a rise time tr2 = 25s with no overshoot.

The control signals obtained by the considered controllers C1(s) et C2(s) are depicted in Figure 6b.

Figure 6: (a) Closed loop responses with controller C1(s)
and C2(s)

Figure 6: (b) Control signals
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5.2. Case 1 < v < 1.5

In this case, we will use the expressions of � defined in section 2 in order to find the desired overshoot.

Example 1: The open loop transfer function is defined by:

3 1.16

0.02
( )

0.01
G s

s
�

�
(49)

The rise time of the open loop system is tr1 = 85.7s. The aim is to design a fractional order PI controller that
will be able to guarantee the following closed loop specifications: a rise time equals to 24s and an overshoot less
than 5%. The open loop step response of this system is shown in Figure 7.

Figure 7: Open loop step response (system described by 49)

Based on CRA method, the characteristic ratios is determined by �1 = 7.33. As initial design the generalized
time constant is chosen as �1 = 100s and � is calculated with relation (17). The fractional PI controller can be
deduced:

The rise time is then tr1 = 48s. To obtain the desired rise time, relation (20) is used. The generalized time
constant becomes �1 = 67.5s and then the rise time tr2 = 23.8s is found and the overshoot is D(%) = 4.22. The
final controller is given by:

Figure 8a and Figure 8b show respectively the closed loop responses with controllers C1(s) and C2(s) and
the control signals.

Example 2: Let consider the following system transfer function:

1.44

2.884 1.44

0.1 0.02
( )  

1.8 0.01

s
G s

s s

�
�

� �
(52)
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Figure 8: (a) Closed loop responses with controller
C1(s) and C2(s)

The unit step response of the open loop system is shown in Figure 9. The rise time is tr = 46.9s. We would
like to increase the speed of the step response and to have a rise time tr2 = 25s and an overshoot less than 10%.

Figure 8: (b) Control signals

Figure 9: Open loop step response (system described by (52))

For initial design �1 = 70s, the controller parameters are calculated (kp, ki) = (1.0001, 0.0028). So, the rise
time tr1 = 36.8s is determined and the overshoot is D1 (%) = 7.35. Considering the relation (20), the new generalized
time constant is defined by �2 = 69.45s. Thus, we find the controller parameters (kp2, kt2) = (1.7489, 0.0051).
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Figure 9a shows the final step response with the new controller parameters and it indicates that the rise time

is 2 24.9rt s�  and the overshoot is D2(%) = 9.67 which is less than 10%. Control signals are shown in Figure

10b.

Figure 10: (a) Closed loop responses with controller
C1(s) and C2(s)

Figure 10: (b) Control signals

From the previous examples, we can deduce that the overshoot is assured for the systems having zeros in
their transfer function only if 1 < v < 1.5.

6. CONCLUSION

In this work, the CRA method is used to design a fractional order PI controller for first and second fractional
order systems. The CRA method allows us to obtain the characteristic equation that ensures the desired temporal
specifications. A demonstration is done to find the commensurate order interval to have overshoot in closed
loop step response respecting the sufficient conditions of stability. Simulation results show the effectiveness of
the proposed method. Our next topic is to extend the developed approach in the case of uncertain parameters
systems.
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