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Abstract. A stochastic process Xt is called a near-martingale with respect
to a filtration {Ft} if E[Xt|Fs] = E[Xs|Fs] for all s ≤ t. It is called a near-

submartingale with respect to {Ft} if E[Xt|Fs] ≥ E[Xs|Fs] for all s ≤ t.
Near-martingale property is the analogue of martingale property when the
Itô integral is extended to non-adapted integrands. We prove that Xt is a

near-martingale (near-submartingale) if and only if E[Xt|Ft] is a martingale
(near-submartingale, respectively). Doob–Meyer decomposition theorem is
extended to near-submartingale. We study stochastic differential equations
with anticipating initial conditions and obtain a relationship between such

equations and the associated stochastic differential equations of the Itô type.

1. Introduction

Let B(t) be a fixed Brownian motion starting at 0 and {Ft; a ≤ t ≤ b} a
filtration, a ≥ 0, such that

(a) B(t) is {Ft}-adapted, namely, B(t) is Ft-measurable for each t ∈ [a, b];
(b) B(t)−B(s) and Fs are independent for any s ≤ t in [a, b].

For example, we can take Ft = σ{B(s); a ≤ s ≤ t} for t ∈ [a, b].
Consider two continuous stochastic processes f(t) and φ(t) with f(t) being

{Ft}-adapted and φ(t) instantly independent of {Ft}, namely, φ(t) and Ft are
independent for each t ∈ [a, b]. In [1, 2] Ayed and Kuo introduced a stochastic
integral defined by∫ b

a

f(t)φ(t) dB(t) = lim
∥∆n∥→0

n∑
i=1

f(ti−1)φ(ti)
(
B(ti)−B(ti−1)

)
, (1.1)

provided that the limit in probability exists. Note that the evaluation points for
φ(t) are the right endpoints of subintervals. It is easy to check that the stochastic
integral in Equation (1.1) is well-defined.

Next, consider a stochastic process Φ(t) of the form

Φ(t) =

m∑
i=1

fi(t)φi(t), a ≤ t ≤ b, (1.2)
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where for each i, the stochastic integral
∫ b

a
fi(t)φi(t) dB(t) exists as defined by

Equation (1.1). Then we define the stochastic integral of Φ(t) by∫ b

a

Φ(t) dB(t) =

m∑
i=1

∫ b

a

fi(t)φi(t) dB(t). (1.3)

By Lemma 2.1 in [4], the stochastic integral
∫ b

a
Φ(t) dB(t) is well-defined.

Now, let Φ(t), a ≤ t ≤ b, be a stochastic process such that there exists a sequence
{Φn(t)}∞n=1 of stochastic processes of the form in Equation (1.2) satisfying the
following conditions:

(a)
∫ b

a
|Φ(t)− Φn(t)|2 dt −→ 0 almost surely as n → ∞,

(b)
∫ b

a
Φn(t) dB(t) converges in probability as n → ∞,

where for each n ≥ 1, the stochastic integral
∫ b

a
Φn(t) dB(t) is defined by Equation

(1.3). Then we define the stochastic integral of Φ(t) by∫ b

a

Φ(t) dB(t) = lim
n→∞

∫ b

a

Φn(t) dB(t), in probability. (1.4)

Obviously, this stochastic integral
∫ b

a
Φ(t) dB(t) is well-defined.

It can be easily checked that the stochastic integral
∫ b

a
Φ(t) dB(t) in Equation

(1.4) reduces to an Itô integral when Φ(t) = f(t) is an adapted stochastic process

such that
∫ b

a
|f(t)|2 dt < ∞ almost surely. On the other hand, recall that in the

Itô theory of stochastic integration, there are two fundamental properties, namely,
the martingale property and the Markov property. Hence it is natural to ask the
following question:

“In our extension of the Itô theory, what are the analogues of the martingale
property and the Markov property?”

In this article we will address the analogue of the martingale property for our
extension of the Itô integral. In Section 2 we will give a simple example to show how
we discover this analogue and prove some theorems to relate it to the martingale
property. In the sequel sections we will prove some theorems regarding to this
analogue of martingale property and linear stochastic differential equations.

2. Near-martingale, Near-submartingale, and Near-supermartingale

We first consider a simple stochastic integral
∫ t

0
B(1) dB(s) for 0 ≤ t ≤ 1. By

Equation (1.6) in [1] we have∫ t

0

B(1) dB(s) = B(1)B(t)− t, 0 ≤ t ≤ 1.

This equality can also be derived by using Equations (1.1) and (1.3), see Example
2.4 in [4]. Let Xt be the stochastic process

Xt =

∫ t

0

B(1) dB(s) = B(1)B(t)− t, 0 ≤ t ≤ 1. (2.1)
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Note that Xt is not Ft-measurable. Hence Xt, 0 ≤ t ≤ 1, is not a martingale
with respect to the filtration {Ft}. However, for s ≤ t, we can easily check the
conditional expectation

E[Xt|Fs] = B(s)2 − s. (2.2)

On the other hand, if we put t = s in Equation (2.2), then we have

E[Xs|Fs] = B(s)2 − s. (2.3)

Now observe that it follows from Equations (2.2) and (2.3) that the stochastic

process Xt =
∫ t

0
B(1) dB(s) satisfies the following equality:

E[Xt|Fs] = E[Xs|Fs], ∀ 0 ≤ s ≤ t ≤ 1. (2.4)

The equality in Equation (2.4) is satisfied by many other stochastic processes.
For example, from Example 2.3 in [1] we have

Yt =

∫ t

0

B(1)2 dB(s) = B(1)2B(t)− 2B(1)t, 0 ≤ t ≤ 1. (2.5)

It is easy to check the following conditional expectation for s ≤ t,

E[Yt|Fs] = B(s)3 − 3sB(s) +B(s),

which shows that the stochastic process Yt, 0 ≤ t ≤ 1 satisfies the equality

E[Yt|Fs] = E[Ys|Fs], ∀ 0 ≤ s ≤ t ≤ 1,

namely, it satisfies Equation (2.4).
The above discussion leading to Equation (2.4) is the motivation for the concept

of near-martingale first introduced in [9].

Definition 2.1. A stochastic process Xt, a ≤ t ≤ b, with E|Xt| < ∞ for all t
is called a near-martingale with respect to a filtration {Ft; a ≤ t ≤ b} if for any
a ≤ s ≤ t ≤ b we have the equality

E[Xt|Fs] = E[Xs|Fs], almost surely,

or equivalently

E[Xt −Xs|Fs] = 0, almost surely. (2.6)

Remark 2.2. We have learned from Professor A. A. Dorogovtsev that he considered
the condition in Equation (2.6) from a different motivation in [3].

Obviously, if a near-martingale Xt is {Ft}-adapted, then it is a martingale. We
state two theorems from [9].

Theorem 2.3. (Theorem 3.5 [9]) Let f(x) and φ(x) be continuous functions such
that the stochastic integral

Xt =

∫ t

a

f(B(s))φ(B(b)−B(s)) dB(s), a ≤ t ≤ b,

exists and E|Xt| < ∞ for each t ∈ [a, b]. Then Xt, a ≤ t ≤ b, is a near-martingale
with respect to {Ft}.
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Theorem 2.4. (Theorem 3.6 [9]) Let f(x) and φ(x) be continuous functions such
that the stochastic integral

Y (t) =

∫ b

t

f(B(s))φ(B(b)−B(s)) dB(s), a ≤ t ≤ b,

exists and E|Y (t)| < ∞ for each t ∈ [a, b]. Then Y (t), a ≤ t ≤ b, is a near-
martingale with respect to {Ft}.

In view of Theorems 2.3 and 2.4 we see that the concept of near-martingale is
the analogue of martingale in the Itô theory for our extension of the Itô integral.
In fact, The next theorem gives an intrinsic relationship between the martingale
property in the Itô theory and the near-martingale property in our extension of
the Itô theory.

Theorem 2.5. Let Xt, a ≤ t ≤ b, be a stochastic process with E|Xt| < ∞ for
each t ∈ [a, b] and let Yt = E[Xt|Ft]. Then Xt is a near-martingale if and only if
Yt is a martingale.

Proof. First assume that Xt is a near-martingale. Then for any s ≤ t we have

E[Yt|Fs] = E
{
E[Xt|Ft]

∣∣Fs

}
= E[Xt|Fs]

= E[Xs|Fs]

= Ys.

Hence Yt is a martingale. Conversely, assume that Yt is a martingale. Then for
any s ≤ t we have

E[Xt|Fs] = E
{
E[Xt|Ft]

∣∣Fs

}
= E[Yt|Fs]

= Ys

= E[Xs|Fs].

Thus Xt is a near-martingale. □

We give some examples to illustrate Theorem 2.5.

Example 2.6. Consider the stochastic process Xt = B(1)B(t) − t, 0 ≤ t ≤ 1,
from Equation (2.1). We have

Yt = [Xt|Ft] = E[B(1)B(t)− t|Ft] = B(t)E[B(1)|Ft]− t = B(t)2 − t,

which is a well-known martingale. Hence by Theorem 2.5 the stochastic process
Xt = B(1)B(t)− t, 0 ≤ t ≤ 1, is a near-martingale.

Example 2.7. Let Xt = B(1)2B(t) − 2B(1)t, 0 ≤ t ≤ 1, the stochastic process
given by Equation (2.5). By direct computation we can derive the conditional
expectation Yt = E[Xt|Ft] as given by

Yt = B(t)3 − 3tB(t) +B(t), 0 ≤ t ≤ 1.
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Note that B(t)3 − 3tB(t) and B(t) are martingales in the Itô theory. Hence Yt

is a martingale. Then by Theorem 2.5 Xt = B(1)2B(t) − 2B(1)t, 0 ≤ t ≤ 1, is a
near-martingale.

Example 2.8. Consider the following stochastic differential equation with an
anticipating initial condition:{

dXt = Xt dB(t), 0 ≤ t ≤ 1,

X0 = B(1).
(2.7)

The solution of this stochastic differential equation is given by

Xt = (B(1)− t)eB(t)− 1
2 t, 0 ≤ t ≤ 1.

(See Theorem 5.2 in [2] or Equation (3.6) in [6].) Obviously, the conditional
expectation Yt = E[Xt|Ft] is given by

Yt = (B(t)− t)eB(t)− 1
2 t, 0 ≤ t ≤ 1.

Apply the Itô formula to the function θ(t, x) = (x− t)ex−
1
2 t to get the stochastic

differential of Yt,

dYt =
(
Yt + eB(t)− 1

2 t
)
dB(t).

Hence Yt is the solution of the following stochastic differential equation:{
dYt =

(
Yt + eB(t)− 1

2 t
)
dB(t), 0 ≤ t ≤ 1,

Y0 = 0.
(2.8)

Note that Yt is a martingale and Xt is a near-martingale. In general, it is an
interesting problem to find a relationship between two equations such as Equations
(2.7) and (2.8) satisfied by Xt and Yt, respectively. We will address this problem
in Section 4.

Next, we consider the analogues of submartingale and supermartingale for our
extension of the Itô theory. Obviously, we just modify the equality in Definition
2.1 for a martingale.

Definition 2.9. A stochastic process Xt, a ≤ t ≤ b, with E|Xt| < ∞ for all t is
called a near-submartingale with respect to a filtration {Ft; a ≤ t ≤ b} if for any
a ≤ s ≤ t ≤ b we have the inequality

E[Xt|Fs] ≥ E[Xs|Fs], almost surely,

or equivalently

E[Xt −Xs|Fs] ≥ 0, almost surely. (2.9)

Definition 2.10. A stochastic process Xt, a ≤ t ≤ b, with E|Xt| < ∞ for all t is
called a near-supermartingale with respect to a filtration {Ft; a ≤ t ≤ b} if for any
a ≤ s ≤ t ≤ b we have the inequality

E[Xt|Fs] ≤ E[Xs|Fs], almost surely,

or equivalently

E[Xt −Xs|Fs] ≤ 0, almost surely. (2.10)
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By similar arguments as those in the proof of Theorem 2.5 we can easily prove
the following theorem.

Theorem 2.11. Let Xt, a ≤ t ≤ b, be a stochastic process with E|Xt| < ∞
for each t ∈ [a, b] and let Yt = E[Xt|Ft]. Then Xt is a near-submartingale
(near-supermartingale) if and only if Yt is a submartingale (supermartingale,
respectively).

Recall a well-known fact: If Xt, a ≤ t ≤ b, is a martingale with E(|Xt|2) < ∞,
then X2

t is a submartingale. For the case of near-martingale, this fact does not
hold in general. Below is a simple example.

Example 2.12. Let Xt = B(t)(B(1) − B(t)), 0 ≤ t ≤ 1. Then we have the
conditional expectation

Yt = E[Xt|Ft] = E[B(t)(B(1)−B(t))|Ft] = B(t)E[B(1)−B(t)|Ft] = 0.

Obviously, Yt is a martingale. Hence by Theorem 2.5 Xt is a near-martingale. On
the other hand, consider the stochastic process X2

t

X2
t = B(t)2(B(1)−B(t))2, 0 ≤ t ≤ 1.

We can check the conditional expectation

E[X2
t |Ft] = E[B(t)2(B(1)−B(t))2|Ft] = B(t)2(1− t),

which yields the following expectation

E
{
E[X2

t |Ft]
}
= t(1− t), 0 ≤ t ≤ 1.

But the function t(1 − t) is not an increasing function on 0 ≤ t ≤ 1. Hence the
stochastic process E[X2

t |Ft] is not a submartingale. Thus by Theorem 2.11 X2
t is

not a near-submartingale.

3. Doob–Meyer’s Decomposition for Near-submartingales

In [10] we obtained Doob’s decomposition theorem for a near-submartingale
sequence Xn, n ≥ 1, with respect to a filtration {Fn; n ≥ 1} (for the case of
random sequences, just modify Definitions 2.1 and 2.9 in an obvious way). Here
we will prove Doob–Meyer’s decomposition for near-submartingales.

Theorem 3.1. Let Xt, a ≤ t ≤ b, be a continuous near-submartingale with respect
to a continuous filtration {Ft; a ≤ t ≤ b}. Then Xt has a unique decomposition

Xt = Mt +At, a ≤ t ≤ b, (3.1)

where Mt is a continuous near-martingale with respect to {Ft; a ≤ t ≤ b}, and At

is a continuous stochastic process satisfying the conditions:

(1) Aa = 0;
(2) At is increasing in t almost surely;
(3) At is adapted to the filtration {Ft; a ≤ t ≤ b}.

Proof. We first prove the uniqueness of a decomposition. Suppose Xt has two
decompositions as follows:

Xt = Mt +At = Kt + Ct, (3.2)
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where Mt and Kt are continuous near-martingales, and At and Ct are continuous
stochastic processes satisfying conditions (1)–(3) in the theorem. Note that At

and Ct are Ft-measurable for each t. Hence by taking conditional expectation
with respect to Ft, we have

E[Xt|Ft] = E[Mt|Ft] +At = E[Kt|Ft] + Ct.

By Theorem 2.5 the stochastic processes E[Mt|Ft] and E[Kt|Ft] are martingales.
Thus by Doob–Meyer’s decomposition for submartingales we see that At = Ct.
Then it follows from Equation (3.2) that Mt = Kt. This shows the uniqueness of
the decomposition of Xt.

Next, we prove the existence of the decomposition. Let Xt be a continuous
near-submartingale with respect to a continuous filtration {Ft; a ≤ t ≤ b}. Let

Yt = E[Xt|Ft], a ≤ t ≤ b. (3.3)

By Theorem 2.11 the stochastic process Yt is a submartingale. Then we apply
Doob–Meyer’s decomposition to the submartingale Yt to get

Yt = Nt +Dt, a ≤ t ≤ b, (3.4)

where Nt is a continuous martingale with respect to {Ft} and Dt is a continuous
stochastic process satisfying the conditions (1)–(3) in the theorem. Use Nt and
Dt in Equation (3.4) to define two stochastic processes Mt and At as follows:

Mt = Xt − E[Xt|Ft] +Nt, (3.5)

At = Dt. (3.6)

Then by Equations (3.3), (3.4), (3.5), and (3.6), we get

Xt = Mt + E[Xt|Ft]−Nt

= Mt + Yt −Nt

= Mt +Dt

= Mt +At.

Hence we have the equality in Equation (3.1). Since At = Dt, At is a continuous
stochastic process satisfying conditions (1)–(3) in the theorem. To complete the
proof of the theorem we only need to show that the stochastic process Mt defined
by Equation (3.5) is a near-martingale. Note that

E[Mt|Ft] = E
{
Xt − E[Xt|Ft] +Nt

∣∣∣Ft

}
= Nt.

But Nt is a martingale. Hence E[Mt|Ft] is a martingale. Then by Theorem 2.5
the stochastic process Mt is a near-martingale. □
Example 3.2. Let Qt, a ≤ t ≤ b, be a continuous submartingale with respect
to a filtration {Ft; a ≤ t ≤ b}. Suppose a continuous stochastic process φ(t) is
instantly independent of {Ft} and assume that E[φ(t)] = c for all t ∈ [a, b] with
c ≥ 0 being a constant. Consider the stochastic process Xt defined by

Xt = Qt φ(t), a ≤ t ≤ b. (3.7)

Take the conditional expectation of Xt to get

E[Xt|Ft] = E[Qt φ(t)|Ft] = QtE[φ(t)|Ft] = QtE[φ(t)] = cQt,
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which shows that E[Xt|Ft] is a submartingale. We want to compare Doob–Meyer’s
decompositions of the submartingale Qt and the near-submartingale Xt = Qt φ(t).
Suppose Qt has the following decomposition

Qt = Nt +Dt, a ≤ t ≤ b, (3.8)

where Nt is a martingale and Dt satisfies the conditions (1)–(3). Note that

E[Xt|Ft] = cQt = cNt + cDt,

which can be used together with Equations (3.5) and (3.6) to derive

Xt =
{(

Xt − cNt − cDt

)
+ cNt

}
+ cDt = (Qtφ(t)− cDt) + cDt, (3.9)

which is Doob–Meyer’s decomposition of the near-submartingale Xt = Qt φ(t).

Example 3.3. Take a special case in Example 3.2 with Qt and φ(t) given by

Qt = B(t)2, φ(t) = eB(1)−B(t)− 1
2 (1−t), 0 ≤ t ≤ 1.

It is well known that B(t)2 has the Boob–Meyer decomposition

Qt = B(t)2 =
(
B(t)2 − t

)
+ t,

where the first term B(t)2 − t is a martingale. On the other hand, by Equation
(3.9) we have the decomposition of Xt = Qtφ(t),

Xt = Qtφ(t) =
(
B(t)2φ(t)− ct

)
+ ct,

where the first term
(
B(t)2φ(t)− ct

)
is a near-martingale.

4. Linear Stochastic Differential Equations

In this section we will address the problem concerning a relationship betweenXt

such as the one in Equation (2.7) and the corresponding Yt in Equation (2.8). First
we quote a theorem from [6] regarding to linear stochastic differential equations
with an anticipating initial condition.

Theorem 4.1. (Theorem 4.1 [6]) Let α(t) be a deterministic function in L2([a, b])

and β(t) an adapted stochastic process such that E
∫ b

a
|β(t)|2 dt < ∞. Suppose P (x)

is a polynomial. Then the solution of the stochastic differential equation{
dXt = α(t)Xt dB(t) + β(t)Xt dt, a ≤ t ≤ b,

Xa = P (B(b)−B(a)),
(4.1)

is given by

Xt = P
(
B(b)−B(a)−

∫ t

a

α(s) ds
)
exp

[ ∫ t

a

α(s) dB(s)+

∫ t

a

(
β(s)− 1

2
α(s)2

)
ds
]
.

(4.2)

Remark 4.2. It is quite easy to show the uniqueness of a solution of the stochastic
differential equation in Equation (4.1).
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Example 4.3. We continue the same idea as given in Example 2.8 to discuss the
stochastic differential equation:{

dXt = Xt dB(t), 0 ≤ t ≤ 1,

X0 = B(1)2.
(4.3)

By Theorem 4.1 the solution is given by

Xt = (B(1)− t)2 eB(t)− 1
2 t, 0 ≤ t ≤ 1.

Writing the first factor (B(1)− t)2 as a sum of three terms

(B(1)− t)2 =
(
B(1)2 − 1

)
− 2tB(1) + (1 + t2) (4.4)

and using the fact that B(t)2 − t and B(t) are martingales, we can easily derive
the conditional expectation Yt = E[Xt|Ft] as follows:

Yt =
(
(B(t)− t)2 + 1− t

)
eB(t)− 1

2 t, 0 ≤ t ≤ 1.

Then we apply the Itô formula to the function θ(t, x) =
(
(x− t)2 +1− t

)
ex−

1
2 t to

derive the stochastic differential of Yt

dYt =
(
Yt + 2

(
B(t)− t

)
eB(t)− 1

2 t
)
dB(t).

Hence Yt is the solution of the following stochastic differential equation:{
dYt =

(
Yt + 2

(
B(t)− t

)
eB(t)− 1

2 t
)
dB(t), 0 ≤ t ≤ 1,

Y0 = 1.
(4.5)

More general than Examples 2.8 and 4.3, we can consider the same stochastic
differential equations with the initial condition B(1)n for an integer n ≥ 3. But in
view of Equation (4.4) for the case when n = 2, we need to express (B(1)− t)n in
terms of Hermite polynomials.

Recall that the Hermite polynomial of degree n with parameter ρ is given by

Hn(x; ρ) = (−ρ)nex
2/2ρ Dn

x e−x2/2ρ.

(See, e.g., page 157 [8].) We list three equalities which will be needed below:

DxHn(x; ρ) = nHn−1(x; ρ), (4.6)

∂

∂ρ
Hn(x; ρ) = −1

2

∂2

∂x2
Hn(x; ρ), (4.7)

Hn(x+ y; ρ) =
n∑

k=0

(
n

k

)
Hn−k(x; ρ) y

k. (4.8)

(See e.g., page 355 [7] and page 159 [8].)
Now, let n be a fixed natural number and consider the following stochastic

differential equation: {
dXt = Xt dB(t), 0 ≤ t ≤ 1,

X0 = Hn(B(1); 1).
(4.9)
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By Theorem 4.1 the solution of Equation (4.9) is given by

Xt = Hn(B(1)− t; 1) eB(t)− 1
2 t. (4.10)

We need to compute the conditional expectation Yt = E[Xt|Ft]. First note that
we have

Yt = E
[
Hn(B(1)− t; 1) eB(t)− 1

2 t |Ft

]
= eB(t)− 1

2 t E[Hn(B(1)− t; 1) |Ft]. (4.11)

Use Equation (4.8) with x = B(1), y = −t, and ρ = 1 to get

Hn(B(1)− t; 1) =
n∑

k=0

(
n

k

)
Hn−k(B(1); 1) (−t)k. (4.12)

Then put Equation (4.12) into Equation (4.11) and use the fact that Hm(B(t); t)
is a martingale for any natural number m (see page 59 or 114 [8]) to show that

Yt = eB(t)− 1
2 t

n∑
k=0

(
n

k

)
(−t)k E[Hn−k(B(1); 1) |Ft]

= eB(t)− 1
2 t

n∑
k=0

(
n

k

)
Hn−k(B(t); t)(−t)k. (4.13)

Observe that the summation in Equation (4.13) is exactly the summation in the
right-hand side of Equation (4.8) with x = B(t), y = −t, and ρ = t. Thus
Equations (4.8) and (4.13) yield the equality

Yt = Hn(B(t)− t; t) eB(t)− 1
2 t, 0 ≤ t ≤ 1. (4.14)

In order to find the stochastic differential dYt, we apply the Itô formula to the
function θ(t, x) = Hn(x− t; t) ex−

1
2 t to get

dYt = dθ(t, B(t)) = θt dt+ θx dB(t) +
1

2
θxx dt. (4.15)

By Equations (4.6) and (4.7) we have

θt =
{
− ∂

∂x
Hn +

∂

∂ρ
Hn

}
eB(t)− 1

2 t − 1

2
Hn e

B(t)− 1
2 t

=
{
− nHn−1 −

1

2

∂2

∂x2
Hn − 1

2
Hn

}
eB(t)− 1

2 t

=
{
− nHn−1 −

1

2
n(n− 1)Hn−2 −

1

2
Hn

}
eB(t)− 1

2 t,

θx =
(
nHn−1 +Hn

)
eB(t)− 1

2 t,

θxx =
(
n(n− 1)Hn−2 + 2nHn−1 +Hn

)
eB(t)− 1

2 t.

Put the above values of θt, θx, and θxx into Equation (4.15) to show that

dYt =
(
Hn + nHn−1

)
eB(t)− 1

2 t dB(t),

which, in view of Equation (4.14), can be rewritten as

dYt =
(
Yt + nHn−1(B(t)− t; t) eB(t)− 1

2 t
)
dB(t).
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Finally, observe that nHn−1 = DxHn by Equation (4.6). Therefore,

dYt =
(
Yt + (DxHn)(B(t)− t; t) eB(t)− 1

2 t
)
dB(t).

Thus we have proved the next theorem.

Theorem 4.4. Let n be a fixed natural number and let Xt be the solution of the
stochastic differential equation{

dXt = Xt dB(t), 0 ≤ t ≤ 1,

X0 = Hn(B(1); 1),

where Hn(x; ρ) is the Hermite polynomial of degree n with parameter ρ. Then the
conditional expectation Yt = E[Xt|Ft] is given by

Yt = Hn(B(t)− t; t) eB(t)− 1
2 t, 0 ≤ t ≤ 1.

and satisfies the stochastic differential equation{
dYt =

(
Yt + (DxHn)(B(t)− t; t) eB(t)− 1

2 t
)
dB(t), 0 ≤ t ≤ 1,

Y0 = 0.

Theorem 4.5. Let n,m be natural numbers and c a constant. Suppose Xt is the
solution of the stochastic differential equation{

dXt = Xt dB(t), 0 ≤ t ≤ 1,

X0 = cHn(B(1); 1) +Hm(B(1); 1).
(4.16)

Then Yt = E[Xt|Ft] satisfies the stochastic differential equation
dYt =

{
Yt +

(
c(DxHn)(B(t)− t; t) + (DxHm)(B(t)− t; t)

)
eB(t)− 1

2 t
}
dB(t),

0 ≤ t ≤ 1,

Y0 = 0.

(4.17)

Proof. We can carry out the same computation as in the above derivation for the

case of Theorem 4.4. Alternatively, we can argue as follows. Let X
(1)
t be the

solution of the stochastic differential equation{
dX

(1)
t = X

(1)
t dB(t), 0 ≤ t ≤ 1,

X
(1)
0 = cHn(B(1); 1),

and let X
(2)
t be the solution of the stochastic differential equation{

dX
(2)
t = X

(2)
t dB(t), 0 ≤ t ≤ 1,

X
(2)
0 = Hm(B(1); 1).

Then the solution Xt of Equation (4.16) is given by Xt = X
(1)
t + X

(2)
t . Let

Y
(i)
t = E[X

(i)
t |Ft], i = 1, 2. Obviously, we have Yt = E[Xt|Ft] = Y

(1)
t + Y

(2)
t .

Then apply Theorem 4.4 to X
(i)
t , i = 1, 2, (the constant c causes no problem for

the case i = 1) to conclude that Yt satisfies Equation (4.17). □
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Next, notice that any polynomial can be expressed as a linear combination
of Hermite polynomials. Hence we can apply Theorems 4.4 and 4.5 to find the
stochastic differential equation satisfied by Yt = E[Xt|Ft] for the case when the
initial condition for X0 is a polynomial in B(1).

Example 4.6. Consider the stochastic differential equation{
dXt = Xt dB(t), 0 ≤ t ≤ 1,

X0 = B(1)3.
(4.18)

By Theorem 4.1 the solution Xt is given by

Xt = (B(1)− t)3 eB(t)− 1
2 t, 0 ≤ t ≤ 1.

To find Yt = E[Xt|Ft], rewrite (B(1)− t)3 as

(B(1)− t)3 =
[
B(1)3 − 3B(1)

]
− 3t

[
B(1)2 − 1

]
+ 3(1 + t2)B(1)− (t3 + 3t).

Since B(t)3 − 3tB(t), B(t)2 − t, and B(t) are martingales, we see that

E[(B(1)− t)3|Ft]

=
[
B(t)3 − 3tB(t)

]
− 3t

[
B(t)2 − t

]
+ 3(1 + t2)B(t)− (t3 + 3t)

=
(
B(t)− t

)3
+ 3(1− t)

(
B(t)− t

)
.

Therefore,

Yt =
{(

B(t)− t
)3

+ 3(1− t)
(
B(t)− t

)}
eB(t)− 1

2 t.

To find the stochastic differential equation satisfied by Yt, we express the initial
condition B(1)3 in terms of the Hermite polynomials in B(1) as follows:

B(1)3 =
(
B(1)3 − 3B(1)

)
+ 3B(1) = H3(B(1); 1) + 3H1(B(1); 1).

Then we can apply Theorem 4.5 with c = 3, n = 1, and m = 3 to assert that Yt

satisfies the stochastic differential equation{
dYt =

{
Yt + 3

[
(B(t)− t)2 + 1− t

]
eB(t)− 1

2 t
}
dB(t), 0 ≤ t ≤ 1,

Y0 = 0.

In the above discussion we have studied special cases with the time interval
[0, 1], just to keep the ideas simple. We now give a theorem for the general linear
stochastic differential equation in Theorem 4.1.

Theorem 4.7. Let α(t) be a deterministic function in L2([a, b]) and β(t) an

adapted stochastic process such that E
∫ b

a
|β(t)|2 dt < ∞. Suppose n is a fixed

natural number. Let Xt be the solution of the stochastic differential equation{
dXt = α(t)Xt dB(t) + β(t)Xt dt, a ≤ t ≤ b,

Xa = Hn

(
B(b)−B(a); b− a

)
,

(4.19)

where Hn(x; ρ) is the Hermite polynomial of degree n with parameter ρ. Then the
conditional expectation Yt = E[Xt|Ft] is given by

Yt = Hn

(
B(t)−B(a)−

∫ t

a
α(s) ds ; t− a

)
Eα,β(t), a ≤ t ≤ b, (4.20)
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where Eα,β(t) stands for the exponential process

Eα,β(t) = exp
[ ∫ t

a

α(s) dB(s) +

∫ t

a

(
β(s)− 1

2
α(s)2

)
ds
]
, a ≤ t ≤ b.

Moreover, Yt satisfies the stochastic differential equation


dYt =

[
α(t)Yt + (DxHn)

(
B(t)−B(a)−

∫ t

a
α(s) ds ; t− a

)
Eα,β(t)

]
dB(t)

+β(t)Yt dt, a ≤ t ≤ b,

Ya = 0.

(4.21)

Remark 4.8. It is easy to check the uniqueness of a solution for Equations (4.19)
and (4.21). Moreover, the case when Xa = P (B(b) − B(a)) with P (·) being a
polynomial can be handled by the same arguments as those in Example 4.6.

Proof. For brevity, we will write Eα,β(t) as Et in the proof. We first derive Equation
(4.20). By Theorem 4.1 we have

Xt = Hn

(
(B(b)−B(a)−

∫ t

a
α(s) ds; b− a

)
Et.

For convenience, let c(t) =
∫ t

a
α(s) ds. Then

Xt = Hn

(
(B(b)−B(a)− c(t); b− a

)
Et, a ≤ t ≤ b. (4.22)

Note that Et is adapted with respect to the filtration {Ft}. Hence

Yt = E[Xt|Ft] = EtE
[
Hn

(
(B(b)−B(a)− c(t); b− a

) ∣∣∣Ft

]
. (4.23)

Apply Equation (4.8) with x = B(b)−B(a), y = −c(t), and ρ = b− a to get

Hn(B(b)−B(a)− c(t); b− a)

=

n∑
k=0

(
n

k

)
Hn−k(B(b)−B(a); b− a) (−c(t))k.

Then we use the fact that Hm(B(t)−B(a); t− a) is a martingale to see that

E
[
Hn

(
(B(b)−B(a)− c(t); b− a

) ∣∣∣Ft

]
=

n∑
k=0

(
n

k

)
Hn−k(B(t)−B(a); t− a) (−c(t))k,

which is exactly the summation in the right-hand side of Equation (4.8) with
x = B(t)−B(a), y = −c(t), and ρ = t− a. Hence by Equation (4.8),

E
[
Hn

(
(B(b)−B(a)− c(t); b− a

) ∣∣∣Ft

]
= Hn

(
(B(t)−B(a)− c(t); t− a

)
. (4.24)

Upon putting Equation (4.24) into Equation (4.23) we get

Yt = Et Hn

(
(B(t)−B(a)− c(t); t− a

)
,

which proves the assertion in Equation (4.20).
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To find the stochastic differential of Yt, we apply the Itô product rule,

dYt = Hn dEt + Et dHn + (dEt) (dHn). (4.25)

Using the Itô formula, we can easily derive the following stochastic differentials:

dHn = nHn−1 dB(t)− nα(t)Hn−1 dt, (4.26)

dEt = α(t)Et dB(t) + β(t)Et dt. (4.27)

Then we put Equations (4.26) and (4.27) into Equation (4.25) to derive

dYt =
(
α(t)Yt + nHn−1 E(t)

)
dB(t) + β(t)Yt dt,

which is Equation (4.21) since DxHn = nHn−1 by Equation (4.6). □
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