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Analysis of an One Equilibrium Novel 
Hyperchaotic System and its Circuit 
Validation
J. P. Singh* and B. K. Roy 

Abstract: The obective of the paper is to develop a new hyperchaotic system with a single equilibrium point. The 
system is more hyperchaotic, larger bandwidth and complex than many other reported hyperchaotic systems. The 
proposed hyperchaotic system has non-uniform contraction and expansion of volume in phase space. Different 
theoretical and numerical techniques are used to analyse the proposed hyperchaotic system. Hyperchaotic attractor, 
Poincare map, frequency spectrum, and Lyapunov spectrum are the tools used to analyse the system. The system 
depicts hyperchaotic, chaotic, periodic and quasi-periodic behaviour for certain set of parameters over a large range 
of parameters. Circuit design of the proposed system is also presented to show the applicability of the proposed 
hyperchaotic system in real life. 

Keywords: Hyperchaotic system; Lyapunov spectrum; circuit design; one equilibrium.

1.	 INTRODUCTION 
Hyperchaotic systems have more complex and dense structure than chaotic system. Because of many 
inherent advantages, hyperchaotic systems have been extensively used in many fields like information 
science, electronics, mathematics, physics, communication, etc. as given in [1]. Any hyperchaotic 
system must be of minimum 4-D, and have two positive Lyapunov exponents [2]. Construction of new 
hyperchaotic system and its study are useful to explore the nature of hyperchaos. It is very interesting to 
construct a new hyperchaotic system with more complex dynamics and hyperchaotic nature.

Rossler reported the first hyperchaotic system in 1979 [3]. In the last three decades, many hyperchaotic 
systems have been reported [4-10]. Many methods are available for construction of new hyperchaotic 
system like (a) use of anti-control on a chaotic system [11], (b) addition one state variable with the existing 
chaotic system [12], (c) designing a new system so as to satisfy the conditions for hyperchaos [13]. 
Equilibrium point plays an important role in characterization of a hyperchaotic system. Thus, developing 
a new hyperchaotic system with different characteristics and behaviour is the novel problem which is 
considered here. 

In this paper a novel 4-D, fourteen terms hyperchaotic system with only one real equilibrium point is 
presented. The system is constructed to be hyperchaotic. The proposed system is more hyperchaotic and 
complex than many other hyperchaotic systems. Parameter range for hyperchaos of the proposed system 
is very large. Detailed theoretical and numerical analyses of the system are presented using hyperchaotic 
attractor, Poincare map, frequency spectrum, Lyapunov. Circuit design of the system is also presented 
to highlight the real life applications. Novelty of the proposed hyperchaotic system is claimed by the 
following points:
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1.	 The proposed hyperchaotic system has only one real equilibrium point, but many available systems 
like [4, 6, 7, 10, 11, 15, 16] have more than one.

2.	 The proposed system is comparatively more hyperchaotic than many earlier reported hyperchaotic 
systems as in [3-11, 13, 15, 16].

3.	 The proposed system has non-uniform contraction and expansion of volume in phase space, but 
available systems [6-11, 13, 15, 16] have uniform contraction and expansion of volume.

4.	 The proposed system has larger parameter range for hyperchaos compared to the systems in [3-11, 
13, 15, 16].

5.	  The proposed system has relatively larger bandwidth compared to the systems in [3-6, 9-11].

Section 2 presents the dynamics of the proposed system. Theoretical analysis of the proposed 
hyperchaotic system are highlighted in Section 3. Section 4 describes the numerical analysis and discussion 
of the novel hyperchaotic system. Conclusions are given in Section 5.

2.	 DYNAMICS OF THE NOVEL HYPERCHAOTIC SYSTEM
The proposed hyperchaotic system is discussed as: 
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2. DYNAMICS OF THE NOVEL HYPERCHAOTIC SYSTEM 
The proposed hyperchaotic system is discussed as:  

x� � � ��x� � �� � ��x� � x� � x�
x� � � x������x�� � �x� � x�                                                  (1) 

x� � � x����x� � x� � �� � �x�
x� � � �x� � �x�

where����� ��� ��� �� are the states variable and �� �� �� ����are the positive parameters of the system (1) 
and �� � �.  The system (1) is constructed to satisfy the properties of hyperchaotic system. The system 
(1) is more hyperchaotic and has wide range of parameters of hyperchaos. For maximum hyperchaos 
[17], Lyapunov exponents of the system (1) are �� � ����� ����������������������� with � � ���
� � ����� � � ��� � � �� � � ��� � � ��� Maximum Lyapunov dimension (Kaplan Yorke dimension) 
is �� � ������with Lyapunov exponents �� � ������ ������� ����������������for�� � ��� � � �����
� � ��� � � �� � � ��� � � ��. The next section presents the theoretical properties of the system (1). 

3.  THEORETICAL ANALYSES OF THE PROPOSED SYSTEM 
In this section we present some basic properties of the system (1) like equilibrium point, 
dissipativity. 

3.1  EQUILIBRIUM POINT  
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3.  THEORETICAL ANALYSES OF THE PROPOSED SYSTEM 
In this section we present some basic properties of the system (1) like equilibrium point, 
dissipativity. 

3.1  Equilibrium Point  

The equilibrium point of the proposed system for � � ��� � � ����� � � ��� � � �� � � ��� � � �� is 
calculated by equating each variable of the system (1) to zero. We can find that the origin is the only 
real equilibrium point of the proposed system.  

Eigenvalues of the equilibrium point are �� � 	���� ���� �� � 	��� ���� 	�� � 	0� ��0�� �� �	��� ���� for	� � ��� � � ����� � � ��� � � �� � � ��� � � ��. It is apparent that the system has 
unstable equilibria with saddle node behaviour.   

3.3  Dissipativity

To validate the hyperchaotic nature of system (1), dissipative condition is satisfied by calculating the 
divergence of the vector field ���� on �� as: 

�� � ����
��� �

����
��� �

����
��� � � ����

��� � �� � ��� � � � ��                 (2) 

When ����� � 0	and ��� � � � �� � 0� then �� � 0� Thus the system (1) is dissipative and volume 
of trajectories converges to zero exponentially with		���� � ��0������������ for any initial 
volume	��0�. For	���t� � 0, ��� � � � �� � 0� and	�t� � ��� � � � �� the system has non-uniform 
shrinking and expansion of volume in phase space with ��0������������������and thus increases the 
complex nature of the system. Such nature of hyperchaotic system are rare in literature. 

4.  NUMERICAL ANALYSES OF THE PROPOSED SYSTEM 

The section represent the numerical analyses and discussion of the proposed new 
hyperchaotic system. 

4.1  HYPERCHAOTIC ATTRACTOR   

Hyperchaotic attractors of the proposed system are given in Fig. 1 (a-d). Following 
conclusions can be derived from the attractor plots: 
1) The system is not symmetric. 
2) The system has double scrolls, butterfly shape attractor. 
3) Attractors of the system are complex and dense. 

4.2  POINCARE MAPS AND TIME-SERIES PLOT   

Poincare map and time series plot are also important tools to validate 
hyperchaotic/chaotic nature of a system. Fig. 2 (a, b) represent the Poincare map of the 
proposed system (1) in two different planes. Time series are plotted in Fig. 2 (c). From 
both plots it appears that the system has complex and dense structure.  

4.3  FREQUENCY SPECTRUM  
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4.	 NUMERICAL ANALYSES OF THE PROPOSED SYSTEM
The section represent the numerical analyses and discussion of the proposed new hyperchaotic system.

4.1	 Hyperchaotic Attractor 
Hyperchaotic attractors of the proposed system are given in Fig. 1 (a-d). Following conclusions can be 
derived from the attractor plots:

1.	 The system is not symmetric.

2.	 The system has double scrolls, butterfly shape attractor.

3.	 Attractors of the system are complex and dense.

4.2	 Poincare Maps and Time-Series Plot 
Poincare map and time series plot are also important tools to validate hyperchaotic/chaotic nature of a 
system. Fig. 2 (a, b) represent the Poincare map of the proposed system (1) in two different planes. Time 
series are plotted in Fig. 2 (c). From both plots it appears that the system has complex and dense structure. 

4.3	 Frequency Spectrum 
Normalized frequency spectrum of x2 (t) signal of the proposed system (1) is shown in Fig. 3. It is seen 
from Fig. 3 that the system has [0-12] Hz bandwidth considering 0.1 spectral normalized value as cut-off. 
It may be noted that frequency spectrum of the novel system is more than many other hyperchaotic systems 
like in [3-6, 9-11].
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Figure 1: Attractors of the system (1) with parameter 	� � ��� � � ��. �� � � ��� � � �� � � ��� � � ��	(a) on 
�� � ��	plane, (b) on �� � ��	plane, (c) on �� � ��	plane, (d) on �� � �� � ��	space.

Figure 2: (a) Poincare map in �� � �� plane for 	�� � � (b) Poincare map in �� �	��	plane for	�� � �� and (c) 
waveform of the system (1), with	� � ��� � � ��. �� � � ��� � � �� � � ��� ���	� � ��.

Figure 3: Normalized frequency spectrum of the system (1) for	� � ��� � � ��. �� � � ��� � � �� � � ��� � � ��.

Figure 4: Lyapunov spectrum of the system (1) with	� � ��� � � ��. �� � � �� � � �� for	� � ���� ��� (a) Lyapunov 
exponents ��� ��� �� (b) Lyapunov exponents	��.

Figure 5: Lyapunov spectrum of the system (1) with	� � ��� � � ��� � � ��� � � ��� � � �� for	� �
���� ���� (a) Lyapunov exponents ��� ��	(b) Lyapunov exponents	��.

Figure 6: Lyapunov spectrum of the system (1) with	� � ��� � � ��. �� � � �� � � ��� � � �� for	� �
��� ���; (a) Lyapunov exponents ��� ��� �� and (b) Lyapunov exponent	��.

Figure 7: Lyapunov spectrum of the system (1) with	� � ��� � � ��. �� � � ��� � � ��� � � �� for	� �
��� ���; (a) Lyapunov exponents ��� ��� �� and (b) Lyapunov exponent	��.

Figure 8: Lyapunov Spectrum of the system (1) with	� � ��� � � ��. �� � � �� � � �� for	� � ��� ���; (a) Lyapunov 
exponents ��� ��� �� (b) Lyapunov exponent	��.

Figure 9 Attractor plot form circuit simulation of system (1) (a) across �� � �� plane, (b) across �� � �� plane, (c) 
across �� � �� plane (d) Circuit design. 
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4.4	 Lyapunov Spectrum Analysis 
The Lyapunov spectrum of the proposed system is obtained from time series [14] The simulation is carried 
out for 300 sec with time steps of for each set of parameters. Five parameters of the system (1) are kept 
constant and only one is varied within a range to find the influence of the varied varied parameter on the 
occurrence of hyperchaos. 

4.4.1	 Fix Parameters r = 46.6, a = 12, b = 6, c = 11, p = –4 and Vary d
Fig. 4 (a, b) shows the LS of the proposed system with variation of parameter. It is observed from Fig. 4 
that the system produces different behaviours. Table 1 (a) summarizes the dynamical performance of the 
proposed system with varying parameter.
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Table 1 (a)  
Dynamical performance of the system (1) with variation of parameter d

Range of parameter Behaviour Range of parameter Behaviour
d ≤ 14.5 Chaotic 21.5 ≤ d ≤ 22.5 Hyperchaotic
14.6 ≤ d ≤ 18 Hyperchaotic 22.6 ≤ d ≤ 22.9 Chaotic
18.1 ≤ d ≤ 20.6 Chaotic 23.0 ≤ d ≤ 64.3 Hyperchaotic 
20.7 ≤ d ≤ 21.2 Hyperchaotic 64.4 ≤ d ≤ 70 Periodic; except few values of 
d = 21.3, 21.4 Chaotic d = 67.2, 67.6, 67.7, 68.3, 68.7 Quasi-periodic

4.4.2	 Fix Parameters d = 33, a = 12, b = 6, c = 11, p = –4 and Vary r
Fig. 5 (a, b) shows the LS of the novel system with variation of parameter. Fig. 5 depicts that the system 
produces hyperchaotic orbits for the wide parameter range, chaotic orbits and periodic orbits for some 
values of. Table 1 (b) summarizes of dynamical behaviour of the system (1) with varying parameter.

Table 2 (b) 
Different dynamics of the system (1) with variation of parameter r

Range of parameter Behaviour Range of parameter Behaviour
r ≤ 0.8 Periodic 3.5 ≤ r ≤ 7.7 Periodic
0.9 ≤ r ≤ 1.4 Chaotic 7.8 ≤ r ≤ 200 Hyperchaotic
1.5 ≤ r ≤ 3.4 Hyperchaotic

4.4.3	 Fix Parameters r = 46.6, D =33, b = 6, c = 11, p = – 4 4 and Vary Parameter a 
Fig. 6 (a, b) shows the LS of the system (1) with variation of parameter. It is observed from Fig. 6 that the 
system produces different dynamic behaviours. Table 1 (c) shows the summary of dynamical behaviour of 
the system (1) with variation of parameter.

Table 2 (c) 
Dynamical performance of the proposed system (1) with variation of parameter a

Range of parameter Behaviour Range of parameter Behaviour
0 ≤ a ≤ 23.4 Hyperchaotic a = 23.5, 23.7 Periodic
23.8 ≤ a ≤ 24.8 Hyperchaotic 24.9 ≤ a ≤ 30 Chaotic

4.4.4	 Fix Parameters  r = 45.6, d = 33, a = 4, c = 11, p = –4 and Vary Parameter b
LS of (1) with a variation of parameter is plotted in Fig. 7 (a, b). It is observed from Fig. 7 that the system 
produces hyperchaotic, periodic, and chaotic orbits. Table 1 (d) shows the summary of dynamical behaviour 
of the system (1) with variation of parameter.

Table 2 (d) 
Dynamical performance of the system (1) with variation of parameter b

Range of parameter Behaviour Range of parameter Behaviour
b ≤ 0.3 Periodic 14.9 ≤ b ≤ 16.7 Chaotic
0.3 ≤ b ≤ 0.6 Chaotic 16.7 ≤ b ≤ 17 Periodic
0.6 ≤ b ≤ 0.8 Periodic 17.1 ≤ b ≤ 18.5 Chaotic
0.9 ≤ b ≤ 13.9 Hyperchaotic 18.6 ≤ b ≤ 24 Many periodic; but may produce chaos
14 ≤ b ≤ 14.8 Periodic

Analysis of an One Equilibrium Novel Hyperchaotic System and its Circuit Validation
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4.4.5	 Fix Parameters r = 46.6, d = 33, a = 12, b = 6, p = –4 and Vary Parameter c
Fig. 8 (a, b) shows the LS of the system (1) with variation of parameter. It is apparent from Fig. 8 that the 
system many dynamic behaviour. Table 1 (e) shows the summary of dynamical behaviour of the system 
(1) with variation of parameter.

Table 2 (e)  
Dynamical performance of the system (1) with variation of parameter c

Range of parameter Behaviour Range of parameter Behaviour
0 < c ≤ 0.2 Chaotic 18.2 ≤ c ≤ 19.2 Hyperchaotic
0.3 ≤ c ≤ 17.5 Hyperchaotic 19.3 ≤ c ≤ 19.7 Chaotic
c = 0.4, 0.6 Chaotic 19.8 ≤ c ≤ 20.7 Hyperchaotic
17.6 ≤ c ≤ 18.1 Chaotic 20.8 ≤ c ≤ 30 Chaotic

20 30 40 50 60

0

1

2

3

parameter    d       (a)

L 1,
  L

2,
  L

3

 

 
L1

L2

L3

 
20 30 40 50 60

-60

-50

-40

-30

-20

-10

parameter    d        (b)

 L
4

 

 
L4

2 

 

Figure 1: Attractors of the system (1) with parameter 	� � ��� � � ��. �� � � ��� � � �� � � ��� � � ��	(a) on 
�� � ��	plane, (b) on �� � ��	plane, (c) on �� � ��	plane, (d) on �� � �� � ��	space.

Figure 2: (a) Poincare map in �� � �� plane for 	�� � � (b) Poincare map in �� �	��	plane for	�� � �� and (c) 
waveform of the system (1), with	� � ��� � � ��. �� � � ��� � � �� � � ��� ���	� � ��.

Figure 3: Normalized frequency spectrum of the system (1) for	� � ��� � � ��. �� � � ��� � � �� � � ��� � � ��.

Figure 4: Lyapunov spectrum of the system (1) with	� � ��� � � ��. �� � � �� � � �� for	� � ���� ��� (a) Lyapunov 
exponents ��� ��� �� (b) Lyapunov exponents	��.

Figure 5: Lyapunov spectrum of the system (1) with	� � ��� � � ��� � � ��� � � ��� � � �� for	� �
���� ���� (a) Lyapunov exponents ��� ��	(b) Lyapunov exponents	��.

Figure 6: Lyapunov spectrum of the system (1) with	� � ��� � � ��. �� � � �� � � ��� � � �� for	� �
��� ���; (a) Lyapunov exponents ��� ��� �� and (b) Lyapunov exponent	��.

Figure 7: Lyapunov spectrum of the system (1) with	� � ��� � � ��. �� � � ��� � � ��� � � �� for	� �
��� ���; (a) Lyapunov exponents ��� ��� �� and (b) Lyapunov exponent	��.

Figure 8: Lyapunov Spectrum of the system (1) with	� � ��� � � ��. �� � � �� � � �� for	� � ��� ���; (a) Lyapunov 
exponents ��� ��� �� (b) Lyapunov exponent	��.

Figure 9 Attractor plot form circuit simulation of system (1) (a) across �� � �� plane, (b) across �� � �� plane, (c) 
across �� � �� plane (d) Circuit design. 
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5.	 CIRCUIT VALIDATION OF THE PROPOSED SYSTEM 
Circuit design for implementation of the system (1) is shown in Fig. 9 (a-d). Three multipliers, many 
resistors, capacitors, seven amplifiers are used to design the circuit. Resistors, capacitors values are shown 
in the circuit itself. Attractor plot obtained from circuit simulation is shown in Fig. 9 (a-c) and matches 
with the MATALB simulation results. 

6.	 CONCLUSIONS
A novel hyperchaotic system is reported in this paper. The system has only one real equilibrium point. 
Results of different analyses confirm that the new hyperchaotic system is more complex and more 
hyperchaotic than many other reported hyperchaotic systems. Further, it has more bandwidth. The proposed 
new system may be more suitable for secure communication. Hardware of the ircuit for implementation 
is kept reserved as future work.
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Figure 1: Attractors of the system (1) with parameter 	� � ��� � � ��. �� � � ��� � � �� � � ��� � � ��	(a) on 
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Figure 2: (a) Poincare map in �� � �� plane for 	�� � � (b) Poincare map in �� �	��	plane for	�� � �� and (c) 
waveform of the system (1), with	� � ��� � � ��. �� � � ��� � � �� � � ��� ���	� � ��.

Figure 3: Normalized frequency spectrum of the system (1) for	� � ��� � � ��. �� � � ��� � � �� � � ��� � � ��.

Figure 4: Lyapunov spectrum of the system (1) with	� � ��� � � ��. �� � � �� � � �� for	� � ���� ��� (a) Lyapunov 
exponents ��� ��� �� (b) Lyapunov exponents	��.
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���� ���� (a) Lyapunov exponents ��� ��	(b) Lyapunov exponents	��.
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Figure 9 Attractor plot form circuit simulation of system (1) (a) across �� � �� plane, (b) across �� � �� plane, (c) 
across �� � �� plane (d) Circuit design. 
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