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Abstract. In this paper we study the distribution of the number of elements
in the image of a closed interval under the action of the Arratia flow. We

present two possible approaches to finding this distribution. The first is
based on the well-known Karlin–McGregor formula and the second on the
Pfaffian formulae for systems of coalescing and annihilating Brownian motions

recently obtained in [15]. We also show that the corresponding mean value
can be found using the notion of the total free time of particles in the Arratia
flow introduced in [3].

1. Introduction

The Arratia flow is a one-dimensional stochastic flow of Brownian particles in
which any two particles move independently until they meet and after that coalesce
and move together. It was introduced in [1] and later studied by many authors
(see, e. g., [2, 3, 4, 5, 7] etc.). For the reader’s convenience, here we recall the
formal definition of the Arratia flow.

Definition 1.1. The Arratia flow is a random field {x(u, t), u ∈ R, t ⩾ 0}
satisfying the following conditions:

1) for any u ∈ R the stochastic process {x(u, t), t ⩾ 0} is a Brownian motion
with respect to the common filtration

Ft := σ{x(u, s), u ∈ R, 0 ⩽ s ⩽ t}, t ⩾ 0,

starting from the point u ∈ R;
2) for any u, v ∈ R

if u ⩽ v, then x(u, t) ⩽ x(v, t) for all t ⩾ 0;

3) for any u, v ∈ R the joint quadratic variation of {x(u, t), t ⩾ 0} and
{x(v, t), t ⩾ 0} is given by

⟨x(u, ·), x(v, ·)⟩t =
t∫

0

1I {x(u, s) = x(v, s)} ds, t ⩾ 0,

where 1I {} stands for the indicator function of the corresponding set.
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In 1984 T. E. Harris [7] proved that the image of every compact set K ⊂ R
under the action of the Arratia flow consists of finitely many elements almost
surely for every positive time. In particular, it means that

∀ t > 0 ∀u > 0 : P {νt([0;u]) < +∞} = 1,

where νt([0;u]) is the number of elements of the set x([0;u], t), i. e.

νt([0;u]) := |x([0;u], t)| .

Thus, there arises the natural problem of finding the distribution of νt([0;u]).
However, to the best of our knowledge, this problem has not been solved yet.
Among the results related to it we should mention the following.

In paper [12] the asymptotic behaviour of the uniform distance on the unit
interval between the mappings generated by the Arratia flow (more generally, an
arbitrary Harris flow satisfying some non-restrictive conditions) and the identity
mapping was studied. In particular, it was proved that

lim
t→0+

 1√
t ln 1

t

sup
0⩽u⩽1

|x(u, t)− u|

 = 1 a. s. (1.1)

From this relation we can easily obtain that

lim
t→0+

(
2

√
t ln

1

t
· νt([0; 1])

)
⩾ 1 a. s. (1.2)

Indeed, if νt([0; 1]) = k, then at least two of the k + 1 Brownian motions

x (0, ·) , x
(
1

k
, ·
)
, x

(
2

k
, ·
)
, . . . , x

(
k − 1

k
, ·
)
, x (1, ·)

coalesce by time t (otherwise we would have νt([0; 1]) ⩾ k + 1). Therefore, for
some i0 ∈ {0, 1, 2, . . . , k − 1}

x

(
i0
k
, t

)
= x

(
i0 + 1

k
, t

)
,

and so

max

{∣∣∣∣x( i0
k
, t

)
− i0

k

∣∣∣∣ , ∣∣∣∣x( i0 + 1

k
, t

)
− i0 + 1

k

∣∣∣∣} ⩾ 1

2k
.

Thus, we have

sup
0⩽u⩽1

|x(u, t)− u| ⩾ 1

2νt([0; 1])
, (1.3)

and (1.2) follows from (1.1) and (1.3).
In paper [6] a representation (in the form of a sum over binary forests) for the

action of the semigroup of the n-point motions of the Arratia flow on the functions
from the core of its generator was found. Although this allows to obtain a formula

for the probabilities P
(
A

(n)
i1i2...ik−1

)
in formula (1.4) below, its complexity makes

it hardly possible to find their asymptotic behaviour as n → ∞, which is necessary
for finding the limit in (1.4).
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In paper [15]1 a remarkable connection between linearly ordered systems of
coalescing (or annihilating) particles and Pfaffians was discovered. In particular,
the authors prove that the clusters of the Arratia flow (there called the system
of coalescing Brownian motions under the maximal entrance law) form a Pfaffian
point process and find its kernel (for details see [15]; cf. [14]). However, the
possibility to find the distribution of the number of surviving particles using (1.4)
seems to be left unnoticed.

In this paper we present two possible approaches to finding the distribution
of νt([0;u]). Both of them are based on the equality

P {νt([0;u]) = k} = lim
n→∞

∑
P
(
A

(n)
i1i2...ik−1

)
, (1.4)

where

A
(n)
i1i2...ik−1

:=

{
x(0, t) = x

(
i1u

2n
, t

)
̸= x

(
(i1 + 1)u

2n
, t

)
= x

(
i2u

2n
, t

)
̸=

̸= x

(
(i2 + 1)u

2n
, t

)
= . . . = x

(
ik−1u

2n
, t

)
̸= x

(
(ik−1 + 1)u

2n
, t

)
= x(u, t)

}
,

and the sum is taken over all indices i1, i2, . . . , ik−1 such that

1 ⩽ i1 < i1 + 1 < i2 < i2 + 1 < . . . < ik−1 < ik−1 + 1 ⩽ 2n − 1. (1.5)

To prove it one should notice that equality (1.4) with the sum taken over all
indices i1, i2, . . . , ik−1 satisfying

0 ⩽ i1 < i2 < . . . < ik−1 ⩽ 2n − 1

instead of (1.5) follows immediately from the (easily verified) corresponding equal-
ity with indicators of the events instead of their probabilities and that the difference
between the two sums can be estimated by

2n−2∑
i=0

P

{
x

(
iu

2n
, t

)
̸= x

(
(i+ 1)u

2n
, t

)
̸= x

(
(i+ 2)u

2n
, t

)}
. (1.6)

Using the Karlin–McGregor formula (see Theorem 2.1 below), one can easily show
that (1.6) tends to zero as n → ∞.

The first approach, which is described in Section 2, consists in representing each

probability P
(
A

(n)
i1i2...ik−1

)
on the right-hand side of (1.4) as an algebraic sum of

the probabilities of the events{
x

(
j1u

2n
, t

)
̸= x

(
j2u

2n
, t

)
̸= . . . ̸= x

(
jlu

2n
, t

)}
, j1 < j2 < . . . < jl,

and then computing these probabilities using the Karlin–McGregor formula. Al-
though it is easy to show that this can be done for all k ⩾ 2, this representation
is, generally speaking, not unique and because of its quickly growing complexity
(for instance, in the case when k = 4 one of the possible representations for the

probability P
(
A

(n)
i1i2...ik−1

)
consists of sixteen terms which have the form of inte-

grals of determinants of varying order from 4 × 4 to 8 × 8), it seems difficult to

1The author is grateful to Prof. G. V. Riabov for drawing his attention to this paper.
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find a usable form of writing it allowing to find the limit in (1.4) in the general
case. Therefore, here we consider only the case when k = 2.

The second approach, which is described in Section 3, consists in representing

each probability P
(
A

(n)
i1i2...ik−1

)
as a Pfaffian of some antisymmetric matrix. The

corresponding representation was obtained in paper [15] mentioned above.
In Section 4 we compute the mean value of νt([0;u]). This can be easily done

by integrating the one-point density of the Pfaffian point process formed by the
clusters of the Arratia flow (see Remark 4.4). However, this mean value can also
be computed using the total free time of particles of the Arratia flow. This notion
was first introduced in [3] as a part of the construction of the stochastic integral
with respect to the Arratia flow and its elementary properties in a more general
setting were studied in [9]. Although our result presented in this section (see
Corollary 4.3 below) follows immediately from the formula for the mean value of
the total free time of particles contained in [3], for the reader’s convenience here
we recall the corresponding definition and repeat the proof of this formula.

Remark 1.2. Unless explicitly stated otherwise, we will always assume u and t to
be some fixed strictly positive real numbers.

2. The Distribution of νt([0;u]) and the Karlin–McGregor Formula

We begin this section by recalling the Karlin–McGregor formula giving the de-
terminantal representation for the probability density function of non-intersecting
Brownian motions. (For two non-empty sets A,B ⊂ R the inequality A < B
means that z1 < z2 for all z1 ∈ A, z2 ∈ B.)

Theorem 2.1. [8] Let w1, . . . , wn be independent Brownian motions starting from
some points u1 < . . . < un. Then the probability Pt(u1, . . . , un;A1, . . . , An) that at
time t > 0 these Brownian motions are found in some non-empty Borel sets A1 <
. . . < An without any two of them having ever been coincident in the intervening
time is given by

Pt(u1, . . . , un;A1, . . . , An)

=

∫
∆n

∣∣∣∣∣∣∣
pt(v1 − u1) · · · pt(v1 − un)

...
. . .

...
pt(vn − u1) · · · pt(vn − un)

∣∣∣∣∣∣∣ 1I {v1 ∈ A1, . . . , vn ∈ An} dv1 . . . dvn,

where
∆n := {(v1, . . . , vn) ∈ R | v1 ⩽ . . . ⩽ vn}

and

pt(v) :=
1√
2πt

e−
v2

2t , v ∈ R.

We will also use the following well-known result.

Lemma 2.2. For any u1, u2 ∈ R, u1 < u2,

P {x(u1, t) ̸= x(u2, t)} =

(u2−u1)/
√
2∫

−(u2−u1)/
√
2

pt(v) dv.
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Proof. One can derive this equality directly from the Karlin–McGregor formula or
by noting that

P {x(u1, t) ̸= x(u2, t)} = P

{
τw

(
−u2 − u1√

2

)
> t

}
,

where τw(c) is the first time when the standard Brownian motion w starting from
zero reaches some level c ∈ R. □

Theorem 2.3. We have

P {νt([0;u]) = 2} =
u√
πt

−
u∫

0

∫
∆3

∣∣∣∣∣∣
pt(v1) p′t(v1 − r) pt(v1 − r)
pt(v2) p′t(v2 − r) pt(v2 − r)
pt(v3) p′t(v3 − r) pt(v3 − r)

∣∣∣∣∣∣
dv1
dv2
dv3

dr

−
u∫

0

∫
∆3

∣∣∣∣∣∣
p′t(v1 − r) pt(v1 − r) pt(v1 − u)
p′t(v2 − r) pt(v2 − r) pt(v2 − u)
p′t(v3 − r) pt(v3 − r) pt(v3 − u)

∣∣∣∣∣∣
dv1
dv2
dv3

dr

+

u∫
0

∫
∆4

∣∣∣∣∣∣∣∣
pt(v1) p′t(v1 − r) pt(v1 − r) pt(v1 − u)
pt(v2) p′t(v2 − r) pt(v2 − r) pt(v2 − u)
pt(v3) p′t(v3 − r) pt(v3 − r) pt(v3 − u)
pt(v4) p′t(v4 − r) pt(v4 − r) pt(v4 − u)

∣∣∣∣∣∣∣∣
dv1
dv2
dv3
dv4

dr.

Proof. Equality (1.4) now has the form

P {νt([0;u]) = 2}

= lim
n→∞

2n−2∑
i=1

P

{
x(0, t) = x

(
iu

2n
, t

)
̸= x

(
(i+ 1)u

2n
, t

)
= x(u, t)

}
.

Let us note that

P

{
x(0, t) = x

(
iu

2n
, t

)
̸= x

(
(i+ 1)u

2n
, t

)
= x(u, t)

}
= P

{
x

(
iu

2n
, t

)
̸= x

(
(i+ 1)u

2n
, t

)}
−P

{
x(0, t) ̸= x

(
iu

2n
, t

)
̸= x

(
(i+ 1)u

2n
, t

)}
−P

{
x

(
iu

2n
, t

)
̸= x

(
(i+ 1)u

2n
, t

)
̸= x(u, t)

}
+P

{
x(0, t) ̸= x

(
iu

2n
, t

)
̸= x

(
(i+ 1)u

2n
, t

)
̸= x(u, t)

}
.

Therefore,

P {νt([0;u]) = 2} = I1 − I2 − I3 + I4,
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where

I1 := lim
n→∞

2n−2∑
i=1

P

{
x

(
iu

2n
, t

)
̸= x

(
(i+ 1)u

2n
, t

)}
,

I2 := lim
n→∞

2n−2∑
i=1

P

{
x(0, t) ̸= x

(
iu

2n
, t

)
̸= x

(
(i+ 1)u

2n
, t

)}
,

I3 := lim
n→∞

2n−2∑
i=1

P

{
x

(
iu

2n
, t

)
̸= x

(
(i+ 1)u

2n
, t

)
̸= x(u, t)

}
,

I4 := lim
n→∞

2n−2∑
i=1

P

{
x(0, t) ̸= x

(
iu

2n
, t

)
̸= x

(
(i+ 1)u

2n
, t

)
̸= x(u, t)

}
.

For the first term by Lemma 2.2 we obtain

I1 = lim
n→∞

2n−2∑
i=1

u/(2n
√
2)∫

−u/(2n
√
2)

pt(v) dv = u
√
2 · lim

n→∞

 2n

u
√
2

u/(2n
√
2)∫

−u/(2n
√
2)

pt(v) dv

 =
u√
πt

.

To compute the second term we note that by the Karlin–McGregor formula

P

{
x(0, t) ̸= x

(
iu

2n
, t

)
̸= x

(
(i+ 1)u

2n
, t

)}

=

∫
∆3

∣∣∣∣∣∣∣∣∣
pt(v1) pt

(
v1 − iu

2n

)
pt

(
v1 − (i+1)u

2n

)
pt(v2) pt

(
v2 − iu

2n

)
pt

(
v2 − (i+1)u

2n

)
pt(v3) pt

(
v3 − iu

2n

)
pt

(
v3 − (i+1)u

2n

)
∣∣∣∣∣∣∣∣∣
dv1
dv2
dv3

=
u

2n

∫
∆3

∣∣∣∣∣∣∣∣
pt(v1)

2n

u ·∆pt
(
v1 − iu

2n

)
pt
(
v1 − iu

2n

)
pt(v2)

2n

u ·∆pt
(
v2 − iu

2n

)
pt
(
v2 − iu

2n

)
pt(v3)

2n

u ·∆pt
(
v3 − iu

2n

)
pt
(
v3 − iu

2n

)
∣∣∣∣∣∣∣∣
dv1
dv2
dv3

=
u

2n

∫
∆3

∣∣∣∣∣∣∣∣
pt(v1)

2n

u ·∆pt
(
v1 − iu

2n

)
− p′t

(
v1 − iu

2n

)
pt
(
v1 − iu

2n

)
pt(v2)

2n

u ·∆pt
(
v2 − iu

2n

)
− p′t

(
v2 − iu

2n

)
pt
(
v2 − iu

2n

)
pt(v3)

2n

u ·∆pt
(
v3 − iu

2n

)
− p′t

(
v3 − iu

2n

)
pt
(
v3 − iu

2n

)
∣∣∣∣∣∣∣∣
dv1
dv2
dv3

+
u

2n

∫
∆3

∣∣∣∣∣∣
pt(v1) p′t

(
v1 − iu

2n

)
pt
(
v1 − iu

2n

)
pt(v2) p′t

(
v2 − iu

2n

)
pt
(
v2 − iu

2n

)
pt(v3) p′t

(
v3 − iu

2n

)
pt
(
v3 − iu

2n

)
∣∣∣∣∣∣
dv1
dv2
dv3

,

where we set

∆pt

(
vj −

iu

2n

)
:= pt

(
vj −

iu

2n

)
− pt

(
vj −

(i+ 1)u

2n

)
, j = 1, 2, 3.
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However, using the Taylor expansion one can easily show that

lim
n→∞

2n−2∑
i=1

u

2n

∫
∆3

∣∣∣∣∣∣∣∣
pt(v1)

2n

u ·∆pt
(
v1 − iu

2n

)
− p′t

(
v1 − iu

2n

)
pt
(
v1 − iu

2n

)
pt(v2)

2n

u ·∆pt
(
v2 − iu

2n

)
− p′t

(
v2 − iu

2n

)
pt
(
v2 − iu

2n

)
pt(v3)

2n

u ·∆pt
(
v3 − iu

2n

)
− p′t

(
v3 − iu

2n

)
pt
(
v3 − iu

2n

)
∣∣∣∣∣∣∣∣
dv1
dv2
dv3

= 0.

Thus, we obtain that

I2 = lim
n→∞

2n−2∑
i=1

u

2n

∫
∆3

∣∣∣∣∣∣
pt(v1) p′t

(
v1 − iu

2n

)
pt
(
v1 − iu

2n

)
pt(v2) p′t

(
v2 − iu

2n

)
pt
(
v2 − iu

2n

)
pt(v3) p′t

(
v3 − iu

2n

)
pt
(
v3 − iu

2n

)
∣∣∣∣∣∣
dv1
dv2
dv3

=

u∫
0

∫
∆3

∣∣∣∣∣∣
pt(v1) p′t(v1 − r) pt(v1 − r)
pt(v2) p′t(v2 − r) pt(v2 − r)
pt(v3) p′t(v3 − r) pt(v3 − r)

∣∣∣∣∣∣
dv1
dv2
dv3

dr.

The remaining terms I3 and I4 can be computed in a similar way. The theorem
is proved. □

On the set {νt([0;u]) = 2} we can define θ to be the unique point of discontinuity
of the mapping x(·, t) : R → R on the interval [0;u] and ξ1 and ξ2 to be the lower
and the upper clusters in the image x([0;u], t) respectively.

Theorem 2.4. For all Borel sets A ⊂ [0;u] and B1, B2 ⊂ R with B1 < B2 we
have

P {νt([0;u]) = 2, θ ∈ A, ξ1 ∈ B1, ξ2 ∈ B2}

=

∫
A

∫
∆2

∣∣∣∣p′t(v1 − r) pt(v1 − r)
p′t(v2 − r) pt(v2 − r)

∣∣∣∣ 1I{ v1 ∈ B1,

v2 ∈ B2

}
dv1
dv2

dr

−
∫
A

∫
∆3

∣∣∣∣∣∣
pt(v1) p′t(v1 − r) pt(v1 − r)
pt(v2) p′t(v2 − r) pt(v2 − r)
pt(v3) p′t(v3 − r) pt(v3 − r)

∣∣∣∣∣∣ 1I
{
v2 ∈ B1,

v3 ∈ B2

} dv1
dv2
dv3

dr

−
∫
A

∫
∆3

∣∣∣∣∣∣
p′t(v1 − r) pt(v1 − r) pt(v1 − u)
p′t(v2 − r) pt(v2 − r) pt(v2 − u)
p′t(v3 − r) pt(v3 − r) pt(v3 − u)

∣∣∣∣∣∣ 1I
{
v1 ∈ B1,

v2 ∈ B2

} dv1
dv2
dv3

dr

+

∫
A

∫
∆4

∣∣∣∣∣∣∣∣
pt(v1) p′t(v1 − r) pt(v1 − r) pt(v1 − u)
pt(v2) p′t(v2 − r) pt(v2 − r) pt(v2 − u)
pt(v3) p′t(v3 − r) pt(v3 − r) pt(v3 − u)
pt(v4) p′t(v4 − r) pt(v4 − r) pt(v4 − u)

∣∣∣∣∣∣∣∣ 1I
{
v2 ∈ B1,

v3 ∈ B2

} dv1
dv2
dv3
dv4

dr.

Proof. Obviously, it is enough to consider the case when A is an interval. In this
case we have

P {νt([0;u]) = 2, θ ∈ A, ξ1 ∈ B1, ξ2 ∈ B2}

= lim
n→∞

∑
P

x(0, t) = x
(
iu
2n , t

)
̸= x

(
(i+1)u

2n , t
)
= x(u, t),

x
(
iu
2n , t

)
∈ B1, x

(
(i+1)u

2n , t
)
∈ B2

 ,
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where the sum is taken over all indices i ∈ {1, . . . , 2n − 2} such that[
iu

2n
;
(i+ 1)u

2n

]
⊂ A.

It remains to note that

P

x(0, t) = x
(
iu
2n , t

)
̸= x

(
(i+1)u

2n , t
)
= x(u, t),

x
(
iu
2n , t

)
∈ B1, x

(
(i+1)u

2n , t
)
∈ B2


= P

 x
(
iu
2n , t

)
̸= x

(
(i+1)u

2n , t
)
,

x
(
iu
2n , t

)
∈ B1, x

(
(i+1)u

2n , t
)
∈ B2


−P

x(0, t) ̸= x
(
iu
2n , t

)
̸= x

(
(i+1)u

2n , t
)
,

x
(
iu
2n , t

)
∈ B1, x

(
(i+1)u

2n , t
)
∈ B2


−P

x
(
iu
2n , t

)
̸= x

(
(i+1)u

2n , t
)
̸= x(u, t),

x
(
iu
2n , t

)
∈ B1, x

(
(i+1)u

2n , t
)
∈ B2


+P

x(0, t) ̸= x
(
iu
2n , t

)
̸= x

(
(i+1)u

2n , t
)
̸= x(u, t),

x
(
iu
2n , t

)
∈ B1, x

(
(i+1)u

2n , t
)
∈ B2

 ,

and to proceed further as in the proof of Theorem 2.3 (using the Karlin–McGregor
formula for the first term as well, instead of Lemma 2.2). □

Remark 2.5. In the case when k ⩾ 3 this approach allows to find only the distribu-
tion of the k−1 points of discontinuity (without the k points of the set x([0;u], t)).

3. The Distribution of νt([0;u]) and Pfaffians

We begin this section by recalling the definition of the Pfaffian and its simple
properties that we are going to use (for more information on Pfaffians see [13],
[10]).

Definition 3.1. The Pfaffian Pf (A) of an antisymmetric matrix A = (aij)
2n
i,j=1

of order 2n is defined as

Pf (A) =
∑
σ

sign (σ) · ai1j1ai2j2 . . . ainjn , (3.1)

where the sum is taken over all permutations

σ =

(
1 2 3 4 · · · 2n− 1 2n
i1 j1 i2 j2 · · · in jn

)
such that i1 < i2 < . . . < in and ik < jk for all k ∈ {1, 2, . . . , n}.

According to the above definition we have

Pf

(
0 a
−a 0

)
= a,
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Pf


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 = af − be+ cd.

Remark 3.2. In the sequel we will omit the entries of antisymmetric matrices below
the diagonal.

The fact that the Pfaffian is defined for antisymmetric matrices of only even
order is justified by the first assertion of Theorem 3.3 below and the fact that
the determinant of an antisymmetric matrix of odd order is equal to zero. The
second assertion of Theorem 3.3 will be used in the proof of Theorem 3.5 (and
Theorem 3.6) below. For the proof of Theorem 3.3 see, e. g., [13].

Theorem 3.3. (i) If A is an antisymmetric matrix of even order, then

detA = (Pf (A))2.

(ii) If A is an antisymmetric matrix of even order and B is a square matrix of the
same order, then the matrix BTAB is antisymmetric and

Pf
(
BTAB

)
= detB · Pf (A) . (3.2)

Now let us define several auxiliary matrices. First of all, let O2n, Î2n, and
I2n(λ) with λ ∈ R be matrices of order 2n with the entries given by

(O2n)ij :=


+1, if i = 2, 4, . . . , 2n− 2 and j = i+ 1,

−1, if i = 3, 5, . . . , 2n− 1 and j = i− 1,

0, otherwise;

(̂I2n)ij :=


+1, if i = j,

−1, if i = 2, 4, . . . , 2n− 2 and j = i+ 1,

0, otherwise;

(I2n(λ))ij :=


1, if i = j and i ̸= 3, 5, . . . , 2n− 1,

λ, if i = j and i = 3, 5, . . . , 2n− 1,

0, otherwise.

Note that

det(̂I2n) = 1, (3.3)

det(I2n(λ)) = λn−1. (3.4)

Also for u1 ⩽ . . . ⩽ u2n let Ft ≡ Ft(u1, . . . , u2n) be an antisymmetric matrix
of order 2n with the entries above the diagonal given by

(Ft)ij := Ft(uj − ui), 1 ⩽ i < j ⩽ 2n,

where

Ft(z) := 2

+∞∫
z/

√
2

pt(v) dv, z ∈ R.
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Finally, for r0 ⩽ r1 ⩽ . . . ⩽ rk ⩽ rk+1 let F̂t ≡ F̂t(r0, r1, . . . , rk, rk+1) be an
antisymmetric matrix of order 2k+2 with the entries above the diagonal given by

(F̂t)ij :=


Ft(r[j/2] − r[i/2]), if i is even or i = 1, and j is even,

F ′
t (r[j/2] − r[i/2]), if i is even or i = 1, and j is odd,

−F ′
t (r[j/2] − r[i/2]), if i is odd, i ̸= 1, and j is even,

−F ′′
t (r[j/2] − r[i/2]), if i is odd, i ̸= 1, and j is odd.

Lemma 3.4. [15] Let Nt([a; b]) denote the number of particles of the Arratia
flow which are found in the interval [a; b] at time t. Then for all n ⩾ 1 and
u1 < . . . < u2n we have

P

{
Nt([ui;ui+1]) = 0 for all i = 1, 3, . . . , 2n− 1,

Nt([ui;ui+1]) > 0 for all i = 2, 4, . . . , 2n− 2

}
= Pf (Ft(u1, . . . , u2n)−O2n) .

Now we are ready to prove the main results of this section.

Theorem 3.5. For all k ⩾ 1 we have

P {νt([0;u]) = k + 1} =

∫
· · ·
∫

∆k(u)

Pf
(
F̂t(0, r1, . . . , rk, u)

)
dr1 . . . drk,

where
∆k(u) := {(r1, . . . , rk) ∈ Rk | 0 ⩽ r1 ⩽ . . . ⩽ rk ⩽ u}.

Proof. The duality formulae (see Section 2.2 in [15] and the references therein)

imply that the probability of the event A
(n)
i1i2...ik

coincides with that of the event
Nt

([
(il + 1)u

2n
;
il+1u

2n

])
= 0 for all l = 0, 1, 2, . . . , k,

Nt

([
ilu

2n
;
(il + 1)u

2n

])
> 0 for all l = 1, 2, . . . , k

 ,

where we set for convenience i0 := −1 and ik+1 := 2n. Computing the latter with
the help of Lemma 3.4, we obtain that

P(A
(n)
i1i2...ik

) = Pf (Ft −O2k+2) ,

where

Ft = Ft

(
0,

i1u

2n
,
(i1 + 1)u

2n
,
i2u

2n
,
(i2 + 1)u

2n
, . . . ,

iku

2n
,
(ik + 1)u

2n
, u

)
.

Therefore, equalities (3.2), (3.3) and (3.4) imply that

P {νt([0;u]) = k + 1} = lim
n→∞

∑
Pf (Ft −O2k+2)

= lim
n→∞

∑( u

2n

)k
Pf
(
IT2k+2(2

n/u) · ÎT2k+2 · [Ft −O2k+2] · Î2k+2 · I2k+2(2
n/u)

)
.

Finally, we note that the matrix

IT2k+2(2
n/u) · ÎT2k+2 · [Ft −O2k+2] · Î2k+2 · I2k+2(2

n/u)
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has the first and second differences of the function Ft in the same places as the

matrix F̂t has the first and second derivatives (and with the same signs). Thus,
expanding the Pfaffians using (3.1), noting that the limit of each sum is an integral,
and rewriting the result as an integral of a Pfaffian, we arrive at the required
formula. □

Thus, for instance, we have

P {νt([0;u]) = 2} =

u∫
0

Pf


0 Ft(r) F ′

t (r) Ft(u)
0 F ′

t(0) Ft(u− r)
0 −F ′

t (u− r)
0

 dr

and

P {νt([0;u]) = 3}

=

∫∫
∆2(u)

Pf


0 Ft(r1) F ′

t (r1) Ft(r2) F ′
t (r2) Ft(u)

0 F ′
t(0) Ft(r2 − r1) F ′

t (r2 − r1) Ft(u− r1)
0 −F ′

t (r2 − r1) −F ′′
t (r2 − r1) −F ′

t (u− r1)
0 F ′

t (0) Ft(u− r2)
0 −F ′

t (u− r2)
0


dr1
dr2

.

Now on the set {νt([0;u]) = k+1} let us define θ1, . . . , θk ∈ [0;u], θ1 < . . . < θk,
as the points of discontinuity of the mapping x(·, t) : R → R on the interval [0;u].

Theorem 3.6. For all k ⩾ 1 and non-empty Borel sets A1, . . . , Ak ⊂ [0;u] with
A1 < . . . < Ak we have

P {νt([0;u]) = k + 1, θ1 ∈ A1, . . . , θk ∈ Ak}

=

∫
· · ·
∫

A1×...×Ak

Pf
(
F̂t(0, r1, . . . , rk, u)

)
dr1 . . . drk.

Proof. Obviously, it is enough to consider the case when the sets A1, . . . , Ak are
(disjoint) intervals. In this case we note that the probability of the event

{νt([0;u]) = k + 1, θ1 ∈ A1, . . . , θk ∈ Ak}

is equal to the limit on the right-hand side of (1.4) (with k + 1 instead of k) with
the sum taken over all indices i1, i2, . . . , ik satisfying (1.5) and such that[

ilu

2n
;
(il + 1)u

2n

]
⊂ Al for all l = 1, 2, . . . , k.

Proceeding further as in the proof of Theorem 3.5 we obtain the desired result. □
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4. The Total Free Time of Particles and the Mean Value

For n ⩾ 2 distinct, but not necessarily ordered, points u1, u2, . . . , un ∈ [0;u] let
us set

τ1 := t,

τk := t ∧ inf

s ⩾ 0

∣∣∣∣∣∣
k−1∏
j=1

(x(uk, s)− x(uj , s)) = 0

 , 2 ⩽ k ⩽ n,
(4.1)

where the infimum of an empty set is taken to be equal to +∞. Each τk is equal
to the time that the particle with index k spends up to time t before coalescing
with one of the particles with a smaller index. Therefore, it is natural to call the
sum

St({u1, u2, . . . , un}) :=
n∑

k=1

τk

the total free time of the particles starting from u1, u2, . . . , un (up to time t).
It can be checked that St({u1, u2, . . . , un}) does not depend on the order of the

initial points (which justifies the use of the set rather than the ordered n-tuple in
the notation) and so

St({u1, u2, . . . , un}) =
n∑

k=1

σk,

where σk, 1 ⩽ k ⩽ n, are defined as in (4.1), but for the ordering u(1) < u(2) <
. . . < u(n) of the points u1, u2, . . . , un.

Moreover,

St({u1, u2, . . . , un}) =
t∫

0

νs({u1, u2, . . . , un}) ds, (4.2)

where
νs({u1, u2, . . . , un}) := |x({u1, u2, . . . , un}, s)|, 0 < s ⩽ t.

Theorem 4.1. [3] For any dense countable subset U = {u1, u2, . . . , un, . . .} ⊂
[0;u] there exists a. s. the limit

lim
n→∞

St({u1, u2, . . . , un}). (4.3)

Moreover, this limit does not depend on the choice of the subset U .

The random variable St([0;u]) defined by the limit (4.3) is called the total free
time of the particles of the interval [0;u] up to time t.

Using the monotone convergence theorem, from equality (4.2) we obtain that

St([0;u]) =

t∫
0

νs([0;u]) ds. (4.4)

Theorem 4.2. [3] The mean value of St([0;u]) is given by

ESt([0;u]) = t+
2u

√
t√

π
.
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Proof. Let {u1, u2, . . . , un, . . .} be an arbitrary dense countable subset of the in-
terval [0;u]. Then

ESt([0;u]) = lim
n→∞

ESt({u1, u2, . . . , un}) = t+ lim
n→∞

n∑
k=2

Eσk.

Now for v1 < v2 let us set

τ := inf{s ⩾ 0 | x(v1, s) = x(v2, s)}.

Then by Lemma 2.2

P {τ ⩾ s} = P {τ > s} = P {x(v1, s) ̸= x(v2, s)} =

(v2−v1)/
√
2∫

−(v2−v1)/
√
2

ps(v) dv,

and so

E(τ ∧ t) =

+∞∫
0

P {τ ∧ t ⩾ s} ds =

t∫
0

P {τ ⩾ s} ds =

t∫
0

(v2−v1)/
√
2∫

−(v2−v1)/
√
2

ps(v) dv ds.

Therefore, setting

∆̃u(k) :=
u(k) − u(k−1)√

2
,

we obtain that

lim
n→∞

n∑
k=2

Eσk = lim
n→∞

n∑
k=2

t∫
0

∆̃u(k)∫
−∆̃u(k)

ps(v) dv ds

= lim
n→∞

n∑
k=2

t∫
0

2∆̃u(k)

 1

2∆̃u(k)

∆̃u(k)∫
−∆̃u(k)

ps(v) dv

 ds =

t∫
0

√
2u√
2πs

ds =
2u

√
t√

π
.

The theorem is proved. □

Corollary 4.3. We have

Eνt([0;u]) = 1 +
u√
πt

.

Proof. Since νt([0;u]) (and so Eνt([0;u])) is non-increasing with respect to t, the
required equality follows immediately from (4.4) and Theorem 4.2. □

Remark 4.4. Note that the mean value of νt([0;u]) can be computed easily using
the one-point density of the Pfaffian point process formed by the clusters of the
Arratia flow. Indeed, it was proved in [15] that the kernel of this Pfaffian point
process has the form

Kt(v1, v2) :=
1√
t
K

(
v1√
t
,
v2√
t

)
,
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where

K(v1, v2) :=

(
−F ′′(v2 − v1) −F ′(v2 − v1)
F ′(v2 − v1) sign (v2 − v1) · F (|v2 − v1|)

)
with the function F given by

F (z) :=
1√
π

+∞∫
z

e−r2/4 dr (≡ F1(z)) , z ∈ R

(for the corresponding definitions see [15] and references therein; for the proof of
the existence of the n-point density see [11]). In particular, this implies that

Eνt([0;u]) = 1 +ENt([0;u]) = 1 +
1√
t

u∫
0

Pf

(
K

(
v√
t
,
v√
t

))
dv = 1 +

u√
πt

.
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