
I J C T A, 9(16), 2016, pp. 8275-8285
© International Science Press

Solving security issues in Docker
using Stackelberg Games
Nimisha Sharath*, Vishal Kumar* and K. Chandrasekaran*

ABSTRACT

Container technology has taken the world by storm and is replacing virtual machines rapidly. Docker is an open
source tool that has implemented containers based on the linux ecosystem. Being lightweight and scalable, Docker
has made data scaling very simple. Despite the obvious success of Dockerized applications, certain faults hold it
back when it comes to usage in organizations that work with distributed teams. From a security standpoint, it is
essential to be aware of scenarios that could cause the downfall of a company’s entire network ecosystem with a
single command. The study begins with a deep dive into Docker’s code base and stress tests that have unearthed
some more security issues. Taking into account one such issue related to networking in a multi-container environment
gives rise to play on the trade off between efficiency of resource usage in a container, to its security. Using the
backward induction technique of a stackelberg competition model, the efficiency of the distributed system can be
made a function of its security and functionality. Solutions for both the scenarios where the attacker’s type is known
and unknown have been proposed using game theoretic approaches. A comparison on Machine Learning and Linear
Programming based approaches give rise to the most optimal method for adopting a defense strategy in case of
attacks in such distributed systems.

1. INTRODUCTION

Docker is a new and upcoming technology that is becoming a rage in the technology world. Based on the
Linux container technology, this is poised to revolutionize the way applications are developed. It makes
use of the new containers technology to create isolated workspaces, similar to what a VM does, but without
the need of a guest operating system. Your only need is Linux kernel and Docker engine.

When you are using a Virtual Machine, you have a Physical Machine and a hypervisor, which is
similar to Docker, a physical machine and a Host Linux OS. Changes can be seen above these layers.
VM based environment has a very heavy guest OS for every instance that VM is running. This gives a
very large memory overhead compared to a Docker based environment in which you have a common
Docker engine which hosts many different containers which use the same kernel of the host. Over the
past few years, data storage in huge organizations has undergone changes right from moving data to
the cloud, to virtualization and now to containers. With the advantage that containers have over VMs,
they are rapidly replacing VMs throughout. Docker, an organization that has built this container
technology using Go language has become the most container technology till date. Being open source,
with the number of contributors to its code base increasing day by day, Docker is a constantly improving
software.

Despite its successes in the field of data storage, it’s usage conditions in industry could create scenarios
that undermine the security of the data being stored within the containers. In this paper, we have deep dived
into one such scenario, that involves multiple containers on a network. In earlier articles and papers about
Docker, some issues that had been brought up were:

* National Institute of Technology Karnataka Surathkal, with Bachelor of Technology from Department of Computer Science and
Engineering

8276 Nimisha Sharath, Vishal Kumar and K. Chandrasekaran

Large attack surface of the docker daemon,

Unprivileged access to devices connected on host systems, via containers,

Using SSH to enter into containers, etc.

The issue demonstrated in this study is a result of dabbling of certain network settings inside a
container. The solution to improving security in a software is to usually find the attack vector, attack
target and increase level of security correspondingly. The issue with increasing security levels in this
scenario would be, losing a certain amount of functionality that Docker intends on providing. This is
obviously a situation that requires a trade off between functionality and security of the software..Using
this concept of game theory, the study uses linear programming to provide an optimal solution to the
de-fender, in terms of which containers(targets) to secure fully and which containers to allow full
functionality. This combination will ensure the highest payoff/utility for the defender, given a certain
attack scenario. This section also deals with providing solutions when the nature of the attacker is
unknown and has to be determined without wasting any stages of the game. Section V provides details
of the simulation of the proposed approach and the results. To validate this solution, we have compared
how our approach using linear programming will provide a more efficient solution when compared to
machine learning methods.

Section II gives a basic preview of networking in Docker and Section III explains networking in Docker.
Section IV explains the practical issue about how the attack works in detail. Section V mathematically
models this scenario to be a stackelberg game, with 2 players This has been explained in section VI. The
last few sections of the paper are the conclusions drawn from this study and references used for the formulation
of the paper.

2. RELATED WORKS

Docker containers are basically LXC containers[9], and they have the same security features. Extra layer of
security is possible by enabling Apparmour or SELinux. To expand Docker security and adaptability, Enrico
Bacis et al[1] pro-posed an expansion to the Dockerfile format. Image maintain-ers will be able to ship a
particular SELinux policy for the procedures that keep running in a Docker image, upgrading the security
of containers.

Docker’s systems are at present configured to give the “best effort” to all the traffic; and parameters, for
example, transfer speed, dependability, and packets every second for a particular application can’t be ensured.
Consequently a single bandwidth-intensive application results in poor or unsatisfactory execution for some
other application sharing the Docker system. This problem was solved by A. Dusia, Yang Yang and M.
Taufer [2], they introduced quality of service (QoS) mechanisms that provide preferential treatment to
traffic and applications.

The Docker group has recently put genuine efforts into enhancing its security. This incorporates
investigating how mandatory access control can be implemented using Apparmor policies and SELinux,
system call filters such as seccomp [4] for contained applications [5]. These endeavors ensure a fundamental
platform (and running different containers on it) if, for example, a containerized application is traded off by
exploiting an obscure vulnerability. Likewise, a more com-pelled environment has been presented for a
few operations, for example, docker pull [6]. Image signing and verification has been recently incorporated
in Docker which ensures that image comes from the right maintainer and is has not altered with anything[7].
These functionality minimizes the external threats.

M.Zhang, D.Marino made a framework (Harbormaster)[10] which implements fine grained policies on
container man-agement and protects container hosts. It makes proxy for all commands which are destined
for the Docker daemon and then evaluates them according to the policies before passing it along.

Solving security issues in Docker using Stackelberg Games 8277

Avrim Blum, Nika Haghtalab, Ariel D. Procaccia [11], in their paper have spoken of playing stackelberg
games which model attacks in terms of security purposes. The above references have dealt with security
issues in Docker and have provided solutions for the same.

In our study,we have not only unearthed an issue that has not been discussed earlier, but also provided
an efficient game theoretic solution to adopt a security strategy to provide optimal protection to the data
stored in the containers.

3. BACKGROUND TO NETWORKING IN DOCKER

This section explains the basics of networking in docker, following which the attack scenario will be
discussed.When Docker is installed, it creates 3 default networks: bridge, none and host. The bridge network
represents the docker0 network present in all Docker installations. The none network adds a container to a
container-specific network stack. That container lacks a network interface. The host network adds a container
on the hosts network stack. Youll find the network configuration inside the container is identical to the
host. The easiest network to create is a bridge network. The containers you launch into this network must
reside on the same Docker host. Each container in the network can immediately communicate with other
containers in the network. Though, the network itself isolates the containers from external networks.

Iptables are present in most linux distributions as default firewall. It is a front-end solution to modifying
the network stack of the linux system. The working of the iptable is ac-cording to matching of the packets
moving across the network, according to the rules specified in the iptable directory.

Since Docker is a container technology based on linux host systems, all containers have access to
iptables.

The rules present in these iptables will match the protocol type of the packet, the port’s source or
destination address, inter packet relation, etc.

Figure 1: Docker Network[8]

8278 Nimisha Sharath, Vishal Kumar and K. Chandrasekaran

Going with figure 1, within a user-defined bridge network, it can be seen how connections can be made.
You can expose and publish container ports on containers in this network. This is useful if you want to
make a portion of the bridge network available to an outside network.

Because another machine on the local network of the host can now forward packets through this machine
to the outside world and also to the containers. There are no iptable rules in place to stop this.

4. A PRACTICAL MULTI-CONTAINER ISSUE

One of the issues one faces while dabbling with the network settings in Docker is that, it is possible to
create a situation where a container can be exposed to the world as a medium to connect to other containers
without even root access. In such situations, this container can result in allowing malicious users accessing
other containers and using or modifying the data present there. Using Docker Swarm on a Dell Inspiron 15
hardware platform, 20 containers with a few text files with read write activated rights were created. One of
the containers were made ’transparent’, or through which other containers could be accessed. All the other
19 containers connected were accessible and text files could be modified. We figured that one way to work
around this would be to modify IPtable rules on the ’transparent’ container in order to put restrictions on its
behaviour. As predicted, this results in issues with usage of a number of features. All the published ports in
the container do not work and additional connections cannot be made which defeats the purpose of creating
such an environment in order to scale and share data effectively.

5. MATHEMATICAL MODELLING OF ATTACK SCENARIO

5.1. Game Theory and Stackelberg Games

The scenario described above can be considered a conflict between keeping containers secure and achieving
full function-ality in terms of networking with other containers. On careful observation, it can be modelled
into a game with rational players. The players of the game would be the defender, or the person designing
the operations for a company who wants to keep the environment safe while the attacker will be the malicious
user who wants to feed on the data via the transparent container. The defender has to decide on whether to

Figure 2: Multi-container attack scenario

Solving security issues in Docker using Stackelberg Games 8279

‘defend’ a particular container or allow full access and retain full functionality. By ‘defend’, it is implied
that the published ports are inaccessible.

Before the optimal solution to this scenario is derived, it is essential to understand this class of games,
that deal with security, or commonly called ‘Stackelberg Games’.

In a Stackelberg Game, player one commits to a strategy, upon which player two will selfishly optimize
to get his/her reward. Practically, malicious users who attack organizations for their data carefully plan
their actions to bypass the security measures taken by the organization. This puts the stackelberg system
into perspective in our scenario.

Assuming that the defender is the leader with respect to adopting a security strategy first, the attacker
will be the fol-lower in terms of bypassing the measures taken by the leader. Thus, the game that will be
played is not a simultaneous, but a sequential one where the follower has complete information of the
leader’s initial strategy. It would appear that this puts the follower(attacker) at an advantage, since he/she
will react to the leader’s(defender’s) actions, but it is not so. Stackelberg games ensure that the first player
has an advantage. The entire study of the paper can be seen in stages in figure 3.

This can be explained with the ‘backward induction’. Using backward induction, the follower’s best
response is taken as a function of the leader’s strategy.Thus, given the follower’s best response, the leader
chooses his/her strategy. The equilibrium that is obtained now, is called the Stackelberg-Nash Equilibrium.
Thus, working backwards, the defender is at an advantage. The following section illustrates the above with
a simple example.

5.2. Analysis of Backward Induction

The game being considered has 2 players, both decide how much to produce. The product of the number
of units each player produces and price of the unit will determine overall cost. The number of units
produced decides the outcome. Too many in production will increase costs while too little will cause no
profit at all.

At each stage, the table is checked and the leader has to pick an amount to produce. Following this, the
next player will select the amount he/she has to produce. The profits of both the players is shown in the
table.

Table 1
Example of a 2 firm Stackelberg Game

Follower Ouput = 7 Follower Ouput = 10

Leader Output = 6 66,67 48,80

Leader Output = 9 72,56 45,50

Some notations for calculation of payoff:

qL: Quantity that leader will produce.

qF: Quantity that follower will produce.

P= 24- qF- qL: The unit price.

P
L
: Leader’s profit.

P
L
: Follower’s profit.

Subgame Perfect Equilibrium: The leader will play with 9. If he goes with 6, then follower will go with
10. If leader goes with 9, follower will go with 7.

8280 Nimisha Sharath, Vishal Kumar and K. Chandrasekaran

If all that the players want to do is maximize the amount of money they have, then they would analyze
the situation as follows. Examining the game tree given as one of the figures, the output choice of 6 units
would leave the Leader with 48 points whereas a choice of 9 units would result in Leader’s own payoff of
72 points. Liking 72 points more than 48 points Leader chooses to produce 9 units. This is the idea behind
backward induction reasoning.

5.3. Multi-Container Stackelberg Game

The above game explained the concept of best response to a game as well as backward induction. Now, let
us consider a scenario where there are 2 containers, which are likely to get attacked. As explained in
previous sections, the defender can choose to make the container secure or choose to leave it as it is. By
doing the former, the container is secure but functionality is reduced and by doing the latter the functionality
remains unchanged, but container can get attacked. For the sake of simplicity in this example, the functionality
hasn’t been taken into consideration while computing payoffs. For diversity, we consider 2 types of attackers.
ô

1
 and ô

2.

Table 2
An example of a security game with one resource and two targets,

with two possible utilities for the attacker.

i u
d
(.) u

u
(.) u

a
(.) ô

1
u

a
(.) ô

1
u

a
c(.) ô

2
u

a
c(.) ô

2

1 0 -1 0 1 0 1

2 0 -1 0 1 0 0

As described in [10]: u
c
d(i): Defender’s payoff when attacker hits covered target i

u
c
u(i): Defender’s payoff when attacker hits uncovered target i

u
a
c(i): Attacker’s payoff when attacker hits covered target i

u
a
u(i): Attacker’s payoff when attacker hits uncovered target i

U
d
(i, p) = u

c
d(i)p

i
 + u

d
u(i) (1-p

i
) (1)

The above uses coverage probability as p and gives expected utility for the defender

U
a
(i, p) = u

a
c(i)p

i
 + u

a
u(i) (1-p

i
) (2)

The above uses coverage probability as p and gives expected utility for the attacker. Note that U(i, p) is
a linear function in p

i
 . Since U(i, p) only depends on Using U(i, p

i
) during the remaining parts of the paper,

Figure 3: Step by step approach to computing Defender’s optimal strategy

Solving security issues in Docker using Stackelberg Games 8281

as U is a linear function in p. Every strategy s, adopted by the defender will be adopted with a probability p.
The attacker hence chooses a target b(s) such that, b(s) belongs to argmax

i € N
 Ua(i,p). This approach used

by the attacker doesn’t depend on the mixed strategy adopted and hence doesn’t depend on the probability
p either.

When the attacker’s utility or rather, attacker’s type is not known, finding the optimal strategy for the
leader is not possible with zero error. Say there is a situation with 2 players such that the defender’s
payoff for having been attacked at either of the unprotected targets is -1. If protected, then 0. Consider
two possible utilities for the attacker. In the first case (type 1), the attacker values both targets equally,
with payoff of 1 for attacking a target that is not protected and 0 for attacking a target that is protected. In
the second case (type 2), the attackers utility for target 1 is the same as in case 1, however, there is 0
payoff for attacking target 2 whether or not it is protected (See Figure 1). The attackers’ type is not
known beforehand.

Say the security strategy is averaged over 3 rounds and the probability vector for having covered targets
1 and 2 are (2/3,1/3).

An attacker of type 1 would respond to this by attacking target 2, whereas an attacker of type 2 would
respond to p by attacking target 1. So, by observing the attackers response to p, we can detect the type of the
attacker in play and use the optimal strategy for that attacker type.

5.4. Search based solution to finding Stackelberg Equilibrium in cases
where attacker’s strategy is known

In the above formulation, we chose to maximize the utility of the defender by manually calculating the
probability vector of attacks and used backward induction. In cases where the number of targets and attackers
can cause the multitude of combinations for picking the optimal strategy, we choose to model the game as
a linear program with a cost function to be maximized under certain constraints. This Linear Program, as
shown in the below equation, finds the optimal defender mixed strategy among all strategies that cause an
attack on target i. The best strategy among all the solutions, the one giving highest payoff with be adopted
by the defender.

Figure 4: Game Tree to pick optimal solution

8282 Nimisha Sharath, Vishal Kumar and K. Chandrasekaran

 maximize U
d
(i, �

j : M i j = 1
S

j
)

such that. for i’ , U
a
 (i’ , �

j

:

M

i’

j

=

1
 S

j
) <= U

d
 (i, �

j

:

M

i

j

=

1
 S

j
)

for all j, S
j
 > = 0 and (�

j=1
 to m S

j
)

= 1 (3)

Again, when the type of attacker is unknown, the missing Linear Programs can be constructed by
testing with the kind of response each attacker gives for each and every combination of targets left protected
or unprotected. This can cause exponential complexity in terms of computation.

5.5. Defender’s best strategy using knowledge of attacker’s type

The previous section covered a linear programming based approach for the leader to adopt the best strategy
in cases where the follower adopts attacks that are unpredictable. Most of the times, the patterns are not
predicted as a result of a violent DDos attack or stochastic network attacks.

In this game, includes only two attacker types, and the attackers identity can be determined in a single
round by playing (3/5; 2/5): if target 1 is attacked then the attacker is of type 1 , and if target 2 is attacked
then he is of type 2 . The optimal policy of the defender is to always protect target 1, 2 out of 3 times. Else,
if attacker is of type 1, defender will lose out a lot, since defender has calculated equal probability of attack
to either target. Indeed, in that case the attacker would attack target 1, causing the defender to incur a huge
expected loss (at least L/3). In other words, an optimal policy would essentially instruct the defender to
play it safe by assuming the attacker is of type 1, instead of using a single best response query to learn the
attackers type and play optimally thereafter.

The entire procedure can be followed step by step according to the diagram shown.

6. EXPERIMENTAL RESULTS AND ANALYSIS

Using Docker Swarm[8] on a Dell Inspiron 15 hardware platform, 20 containers with a few text files with
read write activated rights were created. One of the containers were made ’transparent’, or through which
other containers could be accessed. All the other 19 containers connected were accessible and text files
could be modified. Starting off with 2 types of attackers and having a maximum of 10 types, an attack on an
uncovered container causes a loss of 10 points whereas an attack on a covered one causes 0 damage. Since
the damage also depends on whether the functionality of the container is compromised, we assume that the
functionality f is related to the security of the container s in the following way. If efficiency, another measure
of payoff is E, then

E = �f + �s (4)

6.1. Validation of Results

A common norm is to utilize machine learning techniques to observe the behaviour of the attacker,
classify them into types and then use knowledge of the classification to adopt a strategy. But machine
learning methods fail here, as backwards induction cannot work if the leader is not ready with a
strategy at the beginning of the game. If the leader waits to learn the strategy of the follower at any
stage of the game, the game seizes to be a stackelberg model and ends up giving a negative payoff
for that stage to the defender. We ran 2 simulations, calculating the defender’s efficiency along the
way. First, using the LP based approach, using backward induction. Next, using a curve fitting
technique in python scikit to predict the attacker type and then adopt a best response based approach
using rationality. The below graphs give us a clear indication of how the LP based approach works
in comparison with the Machine Learning based approach in providing the optimal covering spots
for the defender to achieve maximum efficiency whilst ensuring both security and functionality of
the distributed system.

Solving security issues in Docker using Stackelberg Games 8283

6.2. Few more issues with Docker

In the previous section, we simulated a scenario which is relevant to modern day organizations in
terms of ensuring security and functionality of their data storage methods using containers. In the
following section, we dive into Docker’s code and perform stress tests that unearth a number of security
issues.

1) Setup: This study was performed using a fuzzy software tester called Trinity. This tool simulates
randomized calls to the kernel to make an excess of system calls that puts the host under test. We
ran Trinity in an unprivileged container. To do this we wrote the Dockerfile script with all the
dependency required for running trinity. To run trinity simultaneously in multiple containers we
worked on small bash script.

2) Issues noticed in Docker: Running simultaneously 20 unprivileged trinity containers consumes
most of the CPU resources and causes other deployed application containers to starve. Also, running
more than 20 containers does not increase the CPU usage and it can be noticed that 20 running
trinity containers can hung up a 4GB machine.

Figure 5: Kernel before using Trinity

Figure 6: Memory before using Trinity

8284 Nimisha Sharath, Vishal Kumar and K. Chandrasekaran

Figure 8: Memory after using Trinity

Figure 7: Kernel after using Trinity

3) Inference from plots: The trinity program performs various initializations, opening the file descriptors
and creating memory mappings. Then it start off a number of child pro-cesses that perform the
system call tests. High usage of Kernel can be seen in Fig.7 which is a cadvisor[3] plot after running
a trinity container over a docker engine. The Red line shows the kernel panicking when given
totally random system calls. Blue line shows the user usage of kernel. Trinity containers almost use
up the memory causes other process to starve which may cause system crash. The excess memory
usage of kernel is shown in Fig. 8. Red line(hot) shows that the extra memory is being consumed by
the kernel.

7. CONCLUSION

Docker is a tool that has revolutionized data storage. The obvious benefits of using Docker have certainly
made up for the small issues that have surfaced in this study. Apart from unearthing issues related to
Docker’s security, we also provided a solution to one of the most important and commonly faced issues
related to Docker’s networking.

On simulating an environment resembling a distributed data storage environment of an organization,
we formulated an attack based on the transparency of a container. This gave rise to a situation where there
could be multiple types attackers who have targets on various publicly exposed containers. First, we found
a mathematical relation between efficiency, functionality and security of a container. Using this, we
formulated a stackelberg game with 2 players. Using the backward induction model, the defender(security
maintainer) could adopt a strategy that can cause least damage whilst maintaining the functional-ity of the
distributed system. In cases where the type of attacker or his pattern is unknown, a search based approach

Solving security issues in Docker using Stackelberg Games 8285

for the same has been proposed. A common methodology to classify attackers would be using machine
learning. The futility of such an approach has also been proposed by comparing our method to a curve
fitting based approach. In conclusion, the methods proposed in this study have ensured a high payoff to the
defender. In further study, we must dive into exhaustive search based methods in cases where attacker’s
type is unknown. Perhaps utilizing a monte carlo based model would be the way to go.

REFERENCES
[1] Bacis, E., Mutti, S., Capelli, S., & Paraboschi, S. (2015). DockerPolicy-Modules: mandatory access control for docker

containers. IEEE CNS.

[2] A. Dusia, Yang Yang and M. Taufer, “Network Quality of Service in Docker Containers,” Cluster Computing (CLUSTER),
2015 IEEE International Conference on, Chicago, IL, 2015, pp. 527-528. doi: 10.1109/CLUSTER.2015.96

[3] Google, Kubernetes. http://kubernetes.io/.

[4] W. Drewry, dynamic seccomp policies (using bpf filters), https://lwn. net/Articles/475019/.

[5] Docker, Docker security: Linux kernel capabilities, http://bit.ly/ 1d3gWQV

[6] Advancing docker security: Docker 1.4.0 and 1.3.3 releases, Novem-ber 2014, https://blog.docker.com/2014/12/ advancing-
docker-security-docker-1-4-0-and-1-3-3-releases.

[7] Introducing docker content trust, August 2015, https://blog. docker.com/2015/08/content-trust-docker-1-8/.

[8] Docker swarm, https://docs.docker.com/swarm/

[9] D. Bernstein, Containers and cloud: From lxc to docker to kubernetes, Cloud Computing, IEEE, vol. 1, no. 3, pp. 8184,
Sept 2014

[10] M. Zhang, D. Marino and P. Efstathopoulos, “Harbormaster: Policy Enforcement for Containers,” 2015 IEEE 7th
International Conference on Cloud Computing Technology and Science (CloudCom), Vancouver, BC, 2015, pp.
355-362.

[11] Avrim Blum, Nika Haghtalab, Ariel D. Procaccia, “Learning to Play Stackelberg Security Games” Carnegie Mellon
University, vol. 1, 2015.

[12] Namespaces(7) - Linux manual page. (n.d.). Retrieved March 3, 2016, from http://man7.org/linux/man-pages/man7/
namespaces.7.html

