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Abstract : Evm‘y regular measure jrona
measure space gives integration, In fact, the integration process in
linear but a linear functional is not necessarily an integral, Indeed, the
relationships among the linear functional, integrals and measure much
deeper hut our objective is not to discuss that but only to explore the
jdea of integration on topologieal groups, specially on locally compact
Hausdroff topological groups and obtained various results,
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Locally Compacet Topological Group.
Introduction : The relationships among the linear functional,
integrals and measure. Here we explore the idea of integration
on topological groups and obtained some new results on
locally compact topological group and locally compact
HausdrofT topological group,
1 TRANSLATES AND INVARIANT FUNCTIONS
1.1 Definition
Let E be any non-empty set ant G be any algebraic group, Let f: G
-+ E be any function. let a € G be a fixed point. Then the function
L G—E
defined by
Lia(x) = f(ax) for all x € G
[ called the left translate of f by a. Similarly, the function
Riu: G = E
defined on G is called the right translate of by a (f
Ria(%) = f(xa) for all x € G.
Let f* be a function defined on G such that [*(x) = f(x!) for all x €
G. Then * is called inverse function,
1.2 Definition
Let F be a family of functions defined on any algebraic group G. suppose
that fc Fand a € G imply L € F. Letp be any function on F such that
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n (6 = n(Le)

for all f € F and a € G. then the function 7 is said to be a left invariant.
This is also called invariant under left translations. Similarly, if
1 (0 = n(Re)
forall f € Fand a € G where f € Fand a € G imply Ra € F then 7 is said
to be a right invariant or invariant under right translations.
A function n defined on F is said to be two-sided invariant if.it is
both left and right invariant.
Suppose that f€ F = f* € F. If n (f) = n (£)* for all f € F, then n is
said to be inversion invariant or invariant under inversion.
Any constant function f € F is not only two sided invariant but
inversion invariant also. Such a trivial function does not helps much.
1.3 Definition
Let G be a group (not necessarily topological). Let A be a non-
empty family of subset of G and E be any non-empty set. Let A: A — E be
any function.
Suppose that A € Aand g € G simply gA € A.
If A(gA) = A(A)
for all g € G and A € A, then A is called left invariant. Similarly, if A € A
andge G= Ag€Aand
A(Ag) = A(A)
for all g € G and A € A, then A is said to be right invariant. A function A :
A - E is said to be inversion invariant if
AeA=>A"€e A
and

A(A1)=A(A) for all A € A.
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Now we mention a useful Lemma available in the literature.
1.4 Lemma
Let f € &0 (G) where G is a IcH space (G is not necessarily a group). Let
F={x€G:f(x)#0}. Then F is compact.
Proof _
Since f € &,,"(G), hence there exists a compact set E in G such
that f(E') = {0}. Obvidusly F c E. Since E is a compact subset of a
Hausdroff space G, hence E is closed. Therefore, E = E and accordingly F
c E = E which shows that F is a closed subset of a compact set E. Hence
F is compact.
2 INVARIANT FUNCTIONALS ON f € ¢ " (G)
2.1 Proposition
Let G be a locally compact topological group. Let f, ¢ € &oo*(G)
where { #0. Then there exists real numbers a; = 0 and elements xi € G (i

=9,2, aue , n) such that

f <YL alyx;,
That is

f(x) < XLy olyxi(x) = Xy aP(x; %)
forallx € G.
Proof

Since ¢ #0, hence there exists g € G such that Y(g) #0. Let p =
i P(g). Since Y € ¢y,*(G), hence B > 0. Since ¢ is continuous on G,
hence there exists an open nhood V of the identity e € G such that s (x)

> P for all x € gV. Since f € &,,"(G), hence there is a compact subset F of
G such that f(F’) = {0} that is, f(t) = O for all t € F'. Since F is compact



140 Birendra Kumar and Bijay Kumar Singh

hence it can be covered by finite number of opensets alV (i=1, 2, ...... ,
n) where ai € F. thus F c UjL,(a;V).if x € aiV, then
(ga!) x € (gart) aV = gV

and hence Y (gai''x) > B. Suppose gail= xi. then x; € G and P (xix) >
where  (xix)= 1y (x). Since the set {f(t) : t € F}is the image of a
compact set F in the set of real numbers by a continuous function f,
hence f is bounded for all t € F. But f(t) = 0 for all t € F". Hence f is
bounded for all t € G. thus there exists a non-negative real M = |If

Il.. Hence f(x) < M for all x € G. Thus
f(x) < Ms By 30 (x)
for all x € F as x € a;V for some a. Since f(t) = 0 for t € F’ hence
f(x) < Sy 5w () = Sy i (xx), (o =

=2t % 1y xiy (%)
for allx € G. Thus f< i, o Ly,

»|=Z

2 0)

This completes the proof.
2.2 Definition
Let fand Y be real valued functions on a group G such that 0. If
a; are non-negative real numbersandx; € G (i=1, 2, ...... , n)
Such that f(x) < YL, o; ¥ (xix)
for all x € G, then we define

(f [IJ) ={inf2?=1 aif < Z{Ll o8] llllxi'
' o0 if no such q; and x; exist.
2.3 Remarks
If G is a locally compact topological group and f, ¢ € ¢47(G),

where %0, then the previous proposition shows that (f : ) exists and
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Iflly
B

(F:9) <T@ =Xk, gon=

since f(x) < Xt a; ¥ (xix)

=0 f e 2ol g lly

.n=§u £l

(N
=>—% < Yy «o; forall such o
I il

hmwﬁ%gmmhmmmamwmm

=(f:¢)s§n fll,
Thus
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141

- (D)

- (2)

Let f #0. Then || f [, > 0. Since Y#0, hence || ¢ |l > 0. Applying the

process of precious proposition it can be easily seen, as we have done

for f, that  is bounded on g. Hence || |l < 0. Thus
Il fll, >0and0<|l Y [[y<

Using (3) in (2), we see that

IHflly -

if £20, then (£: ) 2

Leta € G, Then since f(x) < 3L; o ¥ (x;x) forallx € G
Hence I (x) = f(ax) < XjL; o Y (x;ax) forall axeG,

=Y, 0 Yt x)forall x€alG=G,

.(3)

(4)

Where t; = x;, a € G. accordingly, for any f € ¢q,*(G) and for any a

€ G we have
(Lea: ) = (F: @)
Since f(x) < X, o U (x;x) foralla€ G
=Y o y(a@tx)x) foranya €G

=y P(atx)ti=alx€eq
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=Y 0 Ly, (4x) forallx € G

Where a; = 0 and t; = a'lx; € G.

Hence (f:y)=(I:1ly,) «.(6)
Itis quite obvious that

(af: Y)=a(f:P)foralla=0 s %)
as

(af : ) =inf YL, ao; = a (inf XL, o) = o(f: ).

Let f1, f2 € &4o*(G) where G is the Ibcally compact topological
group. Then there exists some reals o; 2 0and ;20 (I=1,2, .., n;j =1,
2, .., m) and some x; tj € G such that

f(x) <Xt ¥ (xi%)
and

f2(x) < Xj=1 By W (&%)
for all x € G. Hence we have

(1 + £2) () = Fu(0) + £2(x) < Ty o U (x%) + TPy By W (5%)

Taking infima successively on {a;} and {B;} we have

(i + ) < (o) + (f2: ) (8)
Forallf;, fo, § € &oo* (G) where y#0.

Again let f, 0, Y € &40 " (G) where 6 0, Y#0. If a topological group
G is locally compact, then there exist some real members ay, > 0 and B 2
0 and elementsxn, tk €G(h=1, 2, .., p; k=1,2,..,q)

Such that

f(x) < P _, o, 8 (xpx) and 6(x) < Tp_, By W (t;x) forallx € G.

Obviously oy, By is a non-negative real and tx, xn, € G for each value

of k and h. Also,
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f(x)<Yh_,an 6 (xpx) < Xh_, an(Cho; Br ¥ (tk(xnx)))
= Yho1 Tiem1 %nBr W ((tixn)X)
For all x € G. hence by definition of (f: ), we have
(f: W) < 2p_; Tiey anBi = (Thoy an) (X, Bi)

For all such possible oy, and B. Taking infima successively, we have

(f: )< (f:0):(6:¢) -(9)
It is quite obvious that
Iffi <fathen (fi: ¢) < (f2: ¢) skl |

Thus we have the following:
2.4 Proposition
Let G be a locally compact topological group. Let f, f;, £,6, €

%00 (G) where 8 and s are non — zero functions. Then

() (f: ¢) exists;

e oy I .
(i) (F: ) = - > O for all £20;

(ili) (f: @) = (In: ) = (f: ly,) foralla€G;
(iv) (af: ) = a(f: ) ifa 2 0;
W (fi+f2: ) < (fi: ) +(f2:4);
(Vi) (f: ) < (F:08) < (68:);
il) (fi:Y) < (f2: ) iffi<h
2.5 Definition
Let G be a locally compact topological group and f, 6, Y € ¢4, (G),

where 6 and { are non-zero functions. Then we define

(f: ¢)
©:1)

This is well definedas (8 : ) > 0.
Iff=0,then f(x) = 0 forallx € Gand (f: ) = 0, hence ng(0) = 0.

ney(f) =
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2.6 Proposition
Let G be a locally compact topological group. Let a € G and f, fy,
£,,0, U € &0 "(G) where 6 and Y are non — zero functions. Then
(1) ney(Le) =ngy ()
(ii) noy(af) = angy(f) foralla = 0;
(iii) noy (f1 + f2) < Mgy, (f1) + Moy (F2);
(iv) noy (1) Sney (R2) iffi < fz;

(v) (£:0) 2oy () zze—l:ﬁiff;to.

Proof:

(i), (ii) and (iii) are the immediate consequences of (iii), (iv) and
(v) of the previous proposition, (iv) is obvious.

Using (vi) of the previous proposition we see that if f #0, then

EW) _ E0O: W) _ o
ew= w00

oy (f) =
and

(f: ) (F: 1) 1
= > =
N == Torw @0

Thus (v) follows. This completes the proof.
2.7 Proposition

Let fj be non-zero functions in &,,"(G) where G is a locally
compact To topological group. Let a be any positive number and 8, s are
non-zero functions in ¢q," (G). Then for any € > 0, there exits an open
nhood of U of e such that

Zie1 % Ney (F) - Mey Ejz105f) <€

If(U)={0}and 0< o5 S «
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Proof
Since fj € ¢4, *(G), hence there exists a compact subset F of G such
that fi(F’) = {0 } forj=1, 2, .., n. Since G is locally compact hence there
exists an open nhhod V of e such that V is compact.
Since F and V are compact hence f (F V) is a compact in G. Since G
is Tohenceit is Ta.
Thus G is IcH topological group. Therefore by Urysohn’s lemma,
there exists a function f such that
fe¢y*(G), f(FV)={1}andf(G) [0, 1].
Suppose that
m =max { Il f; Il Il f; llu} (1)
And M = Mam. if fjand f are left uniformly continuous. Therefore, there
is a symmetric open nhood U of e in G such that U € V and
tixe U= |[fi(t) - fi(x)| < €1 -(2)
and
If(t) - f(x)] < € -(3)
For every €1> 0,£2> 0. Let § > 0 such that § < M.
Let Y € #4*(G) and ¢ # 0 such that y (U’) = {0}.
Letoy20forj =1,2,..,nsuchthata; < o Let

¢ Zj"=1ai f.+pBf -(4)
aifi (%) .

and ¢ (< WE. - ifxeF, (5
0ifxeF,

Obviously ¢ & &g *(G), and ¢ = f; forallj=1,2, .., n
Also,
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Yinifix)ifx € F,
ifx € F,

It ¢i(x) = {‘T’(")
0

d(x)
0 ifx € F,

Where B > 0, $(x) > 0 and f(x} 2 0, hence

{——(¢(x)~ Bf(x)) ifx € F,

(@00~ BF()) =1-By<1forallxe F

Thus YL, ¢j(x) < 1forallx € G.
From (2), (3) and (4) we see thatif t1 x € U, then )
1d (1) - & ()] = 1 2z o (GO - £i(x)) + B - £(x)) |
< 3P oy | 160 - 50 |+ IB] 16D - () |
< XL10E + P &
=€; Xju1 95+ B €, where gj <«
<SnE a+f €, ..(6)
Ifx¢ FVandtlx € U,thent ¢F. For,ift € F then x = (tt')x = t{t
1x)€FU  FV c FV, a contradiction. Similarly, if t € F Vand t’x
€ U,thent ¢F. ‘
For, if x € F and t! x € U,then t = x(x'1t) = x = t(t'x) € FU1 + ['U
(as U is symmetric) € FV c FV, a contradiction.
Obviously, Il & Iy < Xilq a5 1 6 Uy + 11 E 1l
<YlL,am+B.l=noam+B=M+p
<2M .. (7)
Let t1x € U such thatx, t € FV also, then x t € F and hence fj(x) = 0
= fi(t). Also f(t) = 1 = f(x). Hence from (4), ¢$(t) = B $(x), and from (1),
(6), (7) and (2) we have
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ofi (x)  ofj (%)
() - i) |= L= - AL

o; (6 (D)~ (ff (1))
& (O X)
o (f; (DX )= fj (DO + (O (L) f; () (1)
¢ (P (X)
- (£ (P (x)— i D)+ (Y- £; ) (1) l
J & (D (0
If5lly & GO () I Ny fj (D (%)
= aj 6B

<%{m_(n €, a+PEY+2M.E} el B)

g’ _ B
4Mno and €, = aM

(9)

We can take €, =

3

Thenn€; a+f €, = f—M, and hence

24 o 83 83
E{m(nela+ﬁez)+2M_el} :.B_Z mz—M+R)

< m.ﬁ_.*._ﬁi)_ﬁ_

- EE 2mna 2na” n
Therefore from (6) and (8) we see thatift€ U

Such that x, t € FV, then

b O (] <2 .(10)

and

Iy (D5 (Ol < (1)

Since i, d € T4o"(G), where ¢ # 0 hence by proposition 6.2.1,
there exists some positive real numbers cyand elements tx € G (k=1,2,
..., p) such that

d(x) < 5h_, ok (fx) forallx € G ..(12)

Since Ys(U") = {0}, hence Y(txx) = O if tix € U’
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Therefore if tykx € U’, then Y(tkx) contribute nothing in summation
of (12). Hence for a fixed x we take only those txx which belongs to U,
that is where x € tlU = tU (here t = t«!). Hence we restrict the
summation of (12) only to those k for which  ti? € U, where t = L.
From (11} and (12), we have

o5f; () = by (%) < TP, o (H00+E) wlo), £= 12

=R @i D e .(13)

For all x € G. this shows that 7
CHRESENCA DR (14)
« TaCagfy £ U) < TPy Bl dy(te)+ E1) -(15)

Since, ¥iL, ¢; (x) <1forallx € Ghence ¥ ¢;(t;) < 1.
Accordingly,
Tyt W) < TP e+ = p o .(16)
From (12), (¢ : ¢) = inf (Zﬁzl ¢y ), hence taking infimum on (16),
we have
(e s ) < (1+B) (4 ) -(17)
Dividing (1&) by (8 : ), we have

CUR G
Zj=1 (6: ) =i B)(ew)

Or iy mey(of;) < (1 +B)ngy(d)

Or  XiL; aey(i) < (1+B) ney(Xj=q(oyfy +: BD)
< (1+ ) {noy (Zfka(asfy ) + noy (BD)
=Noy (k1 ajfj ) + BneyPney its ofj) + (1 + B)Bngy (D
< Noy(Zje1 o4fi ) + BEj1 ajney () + (1 + B)Bney (D
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< Moy (Zj=1 o4fj ) + aB Xitiney () + (1 + B)Bngy (D
< oy (Xjzr ofi) + aB XLy (6:8) + (1 + B)Bney(H
~ Bty () — nay (T (ayfy)
< aBXRL,(fi:0) + (1 +B)B(f:0) <€,
If we choose 8 sufﬁciently small.
This completes the proof.
2.8 Proposition
Let f € &40 (G), where G is a IcH topological group. Let W be a
nhood of the identity e € G. Let F = {x € G : f (x) #0}. Then there exists
somexj€Fand fj€ ¢4, (G)(j=1, 2,3, ..,n) such that
f= Z?:I f]
and if Fj = {x € G : f; (x) # 0}, then F; c Wx;.
Proof
Let W0 be the interior of W.WP is an open nhood of e. There exists
an open nhood V of e such that V ¢ W% and V is compact. By lemma
6.1.4, F is compact. Since each right translation of G onto G is a
homeomorphism, hence W% is open and Vx is compact for every x € G.
Also Vx € W9 < Wx. Obviously, if x runs through F then W0 is an open
cover of a compact set F, hence there exists some x; € F such that F ¢
Ul WOx;. Since Vx; is compact and W% is open such that Vx; € Wox;.
Hence by Urysohn’s lemma, there exists a continuous function,
$i:G-[0,1] such that
1ifx € Vx;
0ifx € (W%%;)’
Put ¢(x) =Xj; d; (%). Then p(x) > 1forallx € F.

$i(x) ={
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Now we may define

f)d;(x) . =
— ) ifx €F,

fi(x)={ o® B .
0= i8¢ F.

Obviously f; is continuous on G and fj(F) = { 0 } where is F is
compact. Hence fj € ¢4,* (G). Also 2= fj (x) = f(x) for all x € G. Hence
Xi=afi =L
fi(x) #0 only when f(x) and ¢;(x) both are non-zero, that is, only
when
x € Fn Vx;.
Hence FjcVx;c Wx;. Therefore
Fjc Vx =Vx c Wx
as Vxj, being a compact subset of a Hausdroff space G, is closed.
2.9 Corollary
For every nhood W of e of a IcH topological group G, there exist x;
€Gandf € ¢y*(G)(j=1, 2, .., n) such that
fix = o for all x € (Wx))’ <(W0x;)’
and
Yl fi x)=1forallxe F
Where F={x € G :f(x)#0 }and f€ ¢oq" (G).
Proof
If we slightly amend the definition of fj in the proof of the

proposition as below:

fi(x] ={ o
f(x) ifx ¢ F.

ifx €F,
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the XL, f; (x) = 1 forallx € F and fj(x) #0 only when x € Vxjc Wx;. Thus
fi(x) = 0 for all x € (Wx;)". It is obvious that fj € ¢4, (G).
2.10 Note ’

Using the left translation in place of right translation in the proof,
we can easily see that there exist some x; € Fand fj € ¢4, (G) (j = 1, 2,
.., 1) such that
L, f; = fand Fjc xW;
And in particular ¥fL, f; (x)= 1 forallx € Fand

fj(x) = =0 for all x (Wx;)’.

2.11 Propesition

Let G be a IcH topological group. Let f (20) € 40" (G). Let o > 0 be
any real number. Let U be an open nhood of the identity e € G such that
whenever x, y € G implies y-1x € U, then |f(x) -f(y)| < a (such U exists as f
being an element of &y,*(G) is left uniformly continuous. Let F be a
compact subset of G such that f(F')={0}. Let y (20) € &, (G) such that
¢ (U} = {0}. Let & be a real number such that 6 > «, then there exist
some t; € F-! and real numbers

20 (j=1,2,..n)suchthat

If(g) Xy (@)l <8

Forallg € G.
Proof

Ift,x € G such that t''x € U then

[f(x) -f(t)| < a; thatis

f(x) - a < f(t) < f(x) + « o)
and hence '

(F(x) - o) (1) < (1) Y (%) < (£(x) + ) U (t7%) (2]



If t, x € G such that tix € U then{ (t1x) = 0 as ¢ (U} = {0}.
Corresponding to each y € &4,*(G), there is Y* defined on G such that
U*(x) = ¢ (x1) for all x € G. Let V be a nhood of & such that V is compact.
Since Y € &,(G) hence 11: is right uniformly continuous. Accordingly, if x,
y € G such that xy! € V then { { (x) - ¢ (y)| < B for any § > 0. We choose
B so that

(f:y*)B<b-a _ ~(3)

Since f(F’) = {0}, hence there exist x; € F (j = 1, 2, .... n) and hence tj

= xr¥€ P such that

{x€G:f(x)#0} cFc UiL,(xV) ..(4)
By previous proposition there exist continuous functions ¢; €
Zo0 ' (G) such that }
(V)Y = {0} (= 1,2, 2, n)
and XL, ¢(x) = 1iff(x) #0 ' .{5)

for every x, g € G we have x;1g € G and x'1g € G where (x;1g) (x'1g)

1 = x;1x. Hence if x71x € V, that s, if x € x;V, then

W (x'g) - b (x1g)| < B .(0)
And if x;1x € V, then x € ¥V and hence x €(x;V)’
Which implies ¢;(x) =0 sl )

From (6) we have
P (x1g) -B < (x'g) <y (x1g) + B
if x71x € V. Hence, x;1x € V then for each j
¢y (%) [ (x'g) - Bl = b (x)f(x) Wix'g)
< ¢i(x)f(x) [W(x1g) + B (8]

For all x, g € G. Giving the values of j in {8) and then adding we get
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Or

Or

Or

Or

Or

T i) ) [W (x1) - Bl STy () Fx) Wiiie)
<SP (%) () [W(xg) + Bl
() W (x18) - B] Ty () < f(x) T, by () il
< £(x) [W(xg) + B1 Zky o
If x € G and f(x)} # 0, then using (5), we get
) [W (xctg) - B] < £ Tiky () Wixiig)

< f(x) {U(x*g) + Bl
if f(x) = 0, then it holds trivially, Thus for all x, g € G,
We have

f(x) W (x1g) - B f(x) < f(x) Tty j(x) Wixig)

<fx)W(xg) + B fx) -+(9)

If x'1g € U then using (2) in (9), we have
(£(g) - b (x1g) - B f(x) < f(x) Y (x'g) - B f(x)

< f(x) X1 ¢ ¥ (x7g)

< fx) ¥ (x1g) + B f(x)

< (f(g)+ ) ¥ (x1g) + Bf(x)
(f(8) - W (x1g) - B f(x) < f(x) XL, ¢d;(x) W(teg)

< (f(g)+ ) W (xg) + B £(x)

(astj=x1)
(f(g) - )Y*(gx) - B (%) < Ty Wit;e)(dif) ()

< (f(g)+ o) ¥~ (g'x) + B f(x)
(£(8) = @) Lyug-1 (%) - B f(x) < Y{t;g)(H;D(x)

< (f(@)+ @) g (%) + B £(x)
([£(8) - o] Lyug-1- BOE) = T (W(tj8)dH ()

< ([£(g)+ o) g2+ BO()
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[f(g) ~ o] lyug-1- BF < XL, W(tye) df
< {f(g)+ a ly.g-1+ Bf ..(10)
Let 8, fo € &¢*(G) such that A # 0, fo # 0. Then from the first
inequality of (10) we have
[f(g) - o] lyg-1< B+ TiLy W(t;g)dyf
And hence from proposition 6.2.6, we have
Nor, ([f(8) - o] ly.g-1) < mgp, (B f+ Ty W(tig)dyf)
<7Nas, (BE)+ nas, Ty W(tig)diD)
= Brgy, (F)+ 17, (s W(tg)di0
= Mgy, ((F(8) - a] lyg=1) - Briag, (£) S mop, Cfy (gD -.(11)
And similarly the second inequality of (10} implies
Nog, Sy W(tg)dyf < [F(8) - adnag, (Lywgs) *+ BRogy () .-(12)
Where gy, (ly.g-1) =gz, U*. From (11) and (12), we have
[£(8) - ] o7, (™) - Ba, (£) S Moz, (Za W(58) i)
< [f(g) - al ngg, (W*) + Brgys, (F) -.(13)

(fo)
Mofol) _ 0oy _ _(F1fo) (Lm0 :fo)

Since = et = — i :
Noro(br) SO T )T (Wi fo)
Hence ~20) ¢ (f: Pgx*)s< a=d (from (3)) asl L4
D) ]
Dividing (13) by 74y, (U*} and using proposition 6.2.6, we have
XL, ‘I—'(tig)d)if
(f(g) -a] < (6 — a) +ngy, IW]

And

og, [ | () 4 o) 4 (6 — @) =1(g) + &
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P G
O = 8< oy, [ Lo 11g) 4 5
That is, f(g) - €1< ngy, [Z, i w(t,g(ii,)] <fg) ¥ e1 ik 197

For some €1< 4. For,

DLv(tg)dif _on  W(te) g
nareWe)  “i=ingr we) T

Pute>0,x>0,0<c< a.
By proposition 6.2.7, there exists a nhood W of e
Such that if 6(W') = {0}, then

n_w(te) [ w(te)
?1 i .
St ey M0 ) STag, | Tty o (¢]f)}+g .(16)

Applying (ii) and (iii) of proposition 6.2.6 on (16) and using (15) we

have
Fg) = £1< g, [ Zes o (@3] S Bon ot 1oz, ()
< logy [T B (@D + £ (g) + 1+ .(17)
If we put%‘;—%%g =, then from (17) we have

f(g) -e1+£<f(g) - &1 < Xjoq o lb(tjg) <f(g) +e1+¢
or fg)-86<¥lq q;(tjg) <f(g)+6

~ |f(g) ~ Xj=1 oy W(tg)l < 6
Forall g € Gand for somet € F? C G.

This completes the proof.
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2.12 Proposition

Let G be a IcH topological group. Let f € ¢4, (G) be a non-zero
function. Then for a given real § > 0, there exist non-zero functions , fo
€ 40" (G), some real o; = 0 and t; € G (j=1, 2, .., n)such that

If(g) - &%= o W(t;g)] < 6 folg)
For all g, thatis

If = X% Wty <6 fo

Proof

Since G is locally compact, hence there exists an open nhood U of
the identity e € G such that Uy is compact. Let 8 € ¢ 4,7 (G) such that 6 #
0.Then f+ € ¢oo*(G)and f+ 8 # 0. Let

A={x€eG:(f+8)(x) %0} i)

Put F = A Uo. Then F is a closed and compact. Let fo € ¢4, " (G) such

that fo(F) = {1}. Such fo exists by Urysohn’s lemma. Since f € ¢;,"(G) <
¢y (G), hence f is left uniformly continuous. Therefore, there exists an
open nhood Vy of e such that

If(x) - fy) | <5 (2)
providedx,y € G = y'1x € Wo.

Similarly there exists an open nhood Wy of e such that
8

16(x) -0 <3 (3)
providedx,y € G = yix € Vq.

Let W = Ug N Vo N Wo. Then W is an open nhood of e such that
whenever x, y € G and y'1x € W then (2) and (3} will hold, that is]

8 8
) -f(y) [ <5 and |6 (x) -6 (y) | <3 )

We can choose a function € ¢o,* (G) such that (W) = {0}.
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Suppose that

Ao={x€eG: (fx) # 0} s D)
Put Ao = E.Then A C Aand hence E = Ao CA< A Uo=F.

Since E is a closed subset of a compact set F, hence E is compact.
Also we have from (5)

f(x) = forallx €E’.

=~ f(E") = {0} s:(0)
Applying previous proposition there exist some t; € E* and real number

a; = (j=1, 2, .., n)such that

If(e) - -y oy W(ti)l < 8 (7)

Forallg € G.

Since E € Fand f (E) = {0}, hence f (F'} = {0}.

W (t;g) # 0 only when t;g €W,

Butt;g W e gEIWE EW = Ao W cAo Uoc Al = F

Thus Y(tjg) = O forallg € F.

Since fo(g) = 1 for all g € F, hence from (7),

We have
If(g) ~ X7y o W) < 6 folg) (8)
Forall g € F. Since fo{g) # 0.f(g) = 0 and Y(t;g) = O forallg e F".
Hence |f(g) - Xj=1 @ W(t;g)| = 0 < 4 fo(g) .(9)
For all g € G. From (8) and (9), we have
If(g) - Xj=1 05 W(t;8)] < 6 fo(g) -(10)

For all g € G. Thus there exist s, fo € ¢40*(G) and real o; 2 0,4 =G
(i=1,2, .., n) such that
f(g) - X1 o1ty <6 fo (11)
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This completes the proof.

‘Let G be a IcH topological group. Let U be an open nhood of the
identity e € G. Let ¢y be a function in ¢y *(G) such that ¢y # 0 and
dy(U) = {0). Let U1 and ¢U; be two functions in &gz0"(G)

L corresponding to open nhood U; and Uz of e, where Ui © Uz Then we
write Uy < Uz It can be easily shown that {¢y} is a directed set with
the partial ordering ‘<’.

2.13 Remarks
Let G be a IcH topclogical group. Let 8 be a non-zero function in
Zo0 " (G). then by proposition 6.2.6 we see that for every non-zero

function Y € ¢o* (G),

@%sngw(f) < (F: 0 )iff#0,

Noy(la) = Ngy(f),

Ney (af) = angy(f), foraz0,

Noy (f1 + £2) < 1gy (F1) + 1y (f2)
For all a € G and for all f, f; and f2 € ¢4, " (G), But by proposition 6.2.7,
we see that fiand fz € ¢00+(G) then for every € > 0,

Ney(f1) + ngy(f2) S ngy(fi + f2) + €
Now, let U be an open nhood of the identity e € G. Then

0 < ngg, (F)iff#0, (1)

Nogp, () =ngge, (), sk 2]

Nopy, (af) =1ngge, (), foraz0 il 3)
And

Nogp, (1 + 2) <ngg, (f1) + Nog, (f2) <1gg, (f1 + £2) + E. ..(4)

Foralla € G and forall f, fi and f; € ¢, (G) where f # 0.
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Taking limits and applying the previous proposition 2.13, we

have the following:
2.14 Proposition

Let G be a IcH topological group. Then

(i) ng(f) is real and non-negative if f #0,

(ii) ng(Ira) = Mo (),

(iii) np(af) = ang(f), fora 2 0,

(iv) mg(f1 + £2) = ng(f1) + me(f2)

Foralla € Gand forallf, f; and f2 € ¢4, " (G).

Thus it follows that we have constructed a function ng on &y," (G)
which is nontrivial, left-invariant, non-negative and positive
homogeneous where G is IcH topological group.

3 Haar integrals on ¢, " (G) and its uniqueness
3.1 Definition
A function ng corresponding to a given non-zero 6€ ¢y,*(G) as
constructed above which satisfies (i) to (iv) of previous proposition
2.14 is called a left Haar integral on ¢4, " (G).

A function 74 satisfying (i), (iii) and (iv) and also having the

property

1o (rea) = ng(f)
can be constructed on ¢4, (G), where G is IcH topological group. this
function will be called a right Haar integral on ¢,,* (G).

The following proposition shows that a left (right) Haar integral is
unique up to a multiplicative constant, that is, if there are two left

(right) Haar integrals then they differ only by a constant factor.
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3.2 Proposition
Let G be a IcH topological group. Let 8 be a non-zero function in
Zo0'(G). Let ngand &g be two left Haar integrals defined on ¢y,"(G).
Then there exists a real a > 0 such that
ne(f) = aq (f)
Forall f € &0 " (G). Similar results holds for right Haar integral.
Proof
Let f € &4,*(G). Proposition 2.1 shows that for every non-zero
function Y € &44" (G), there exist some real aj = 0 and elements x; € G
such that
f <1 olyy s d)
Since &g is a left Haar integral on ¢4,* (G), hence
S () =g (Xf=104lyx)
= Xj=180 (Wlyx) = Loy 05 ()
=X a,f W)
= (B )€, (¥) W

When f = 0, the case is trivial. Hence we assume that f # 0. For

non-zero f, Z}’=1 a; > 0. Hence from (2), we have

go (W) <20 5 3)

j=1%
For all non-zeroy € ¢, (G).
Let ¢ be a non-zero function in &,,*(G). Then again by
proposition 6.2.1, there existreal fj>0and ;€ G (j =1, 2, ..., m) such
that

f <37 Bilo, .(4)
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$o () < (Zf=1 BS 4 (4)

-1y > 222 forall possible ;- .(5)
Taking infimum on (5) we have
$o (H)
1 p) = B
(F: ) 2 (6)

Forall f € ¢4,*(G) and all non-zero ¢ € ¢, (G).
Let € > 0 be given. Then by proposition 6.2.12, there exist non-

zero functions f, w € ¢¢o*(G),real ¢ = Gandt; € G (j = 1, 2, ..., p) such

that
932 Glug, | < €6 A7)
2?21 G lpgsyp +€.fo ..(8)
and
Y<E.fot Z;’zlcjlwtj ..(9)

From (8), we have
§0 07y Glur,) <& (P + €. 0)
Or 201680 Qar)) s Eo (W) + &o (€.f0)
Or (1) W) <& @) +€.& (fo) -(10)
Again from (9), we have
(W )< (E. fo+ Ty ol : )
<€ (fo+ ¢) + EF=1 65 lu : D)
s€.(for ) + 2710 luy 0 )
=€ (fo+ ) + 7oy €l D)
=€.(fo+ ) + Xy gj(w: )
=€.{fo+ d) + Qj=1 ¢ (w: ) i by
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For every non-zero ¢ € ¢4," (G).

Taking w in place of ¢ in (6) and (11) we have
(F: ) %20 foralif#0. “ (12)
And
W w)s (€. (for w)+ XTios ) 18]
From (10) and (13), we have
So W)+ €89 (fo) 2 (Tfor1 ) o (W) Z [(¥ 2 w)- €. (for w)] &g (w)
-[1-e L2y w) & ()

(Y w)
> [1_€ (o w)(w “”](w o) & (el
=[1-€. (fo LW )€ (@) (1)

As &y (f) > 0 for f # 0, we have from (14),

Eo () fe(fo) $o (w)
o T e ST E Vo I @) &y

>[1-€.(fo : VI @) ﬁ% (using (12))

vy W: )
={1-€.(fo : ¢)](f 2)

W w)

=[1—-€.(fy : ¥Y)] E? :ﬁ

=[1-€.(fy : )]t -(15)

Taking limitin (15) over w € { ¢u} we have (as ¢ — 0)

So(¥) _ ne(¥)

> soel 1
e (F) — melf) (18]
Or ne{¥ ) >§6(¢) (‘17)

ne(f) ~ $a(N)
From (16) and (17), we have

$o (V) s ne(¥)
$o () ne(f)
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or  ne(f) =Pt (D=a.5 (1)

Where a = ne)

$o (W)
This completes the proof.

4 Extension of a function

Let X be a non-empty set. Let L(X) be a real linear space of real-
valued functions on X such that f € L(X) implies | f | € L:(X). Suppose
that L:*(X) denotes the of all non-negative function in L(X). We have

4.1 Proposition

Let u be a real-valued function on L:*(X) such that

u(f+g) = u(f)+ ulg)
and

u(af) = au(g)
for all f, g € L*(X) and for all a = 0. Then g can be extended uniquely so
as to be a linear functional on L(X).
Proof

If f € L;(X), then we define

f==(If1+ fandf=>(f1- f)
Obviously, f+ >0, f = 0; f*, f € L(X) and

[ =fef

This shows that every function f € LX) can be written as
difference of two functions in L#(X). If ¢ = ¢, - ¢, where ¢ € L(X) and
$1. 2 € Lt (X) then we define

e (9) = (1) - (P2).

Ifp= b1 -dy = ¥y -y where ¢y, ¢z, ¥y, P2 € Lo (X) then = ¢y
+, =, + ;. Therefore,
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by + P3) = u(dps + ¥4)
Or  u(d1) +u@y) - p(d2)- ny,)
or  u(d,) -u(dy) = u@r) - u@?)

Which shows that pur is defined uniquely on L(X) and is an extension of
. It is not difficult to verify that . is a linear functional on L-(X).
4.2 Proposition

Let X be a non-empty set. Let Lk(X) be a complex linear space of
complex - valued functions of X. Let Rx and Rx* be the set of real valued
and non-negative real valued functions in Lk(X), respectively. If f € Li(X)
implies f € L«(X) and that every f € Rx can be written as difference of
two functions on Rx*. If 7 be any complex - valued function defined on
Rx* such that

n(f+g) =n(f)+n(e)
and

n(a f)+an(f)
for all f, g € Ryx*and for all « > 0. Then 7 can be extended uniquely so as
to be a linear functional on L(X).
Proof

By previous proposition, 1 can be extended uniquely to a function
1+ on Rx. The function 7; is additive as well as homogeneous. Let f€

Lk(X). If we define
fi=2(f + flandfz= (f - f)
Then f = f1 +if; and fy, f2 € Rx. Let us define

ne(f) = n(f)+ in:(f2)
[t is obvious that

ne(f +g) =n{fi)+ n(g)
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and

n<(Bf) = Pne(f)
Forall f, g € Lk(X) and for all B € K.
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