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Interval Timers for Process Handling

Rajamohan L.* and Ravi S**

ABSTRACT

An external asynchronousevent may be either signalsor software interrupts, used to alter the course of aprogram.
These may occur at any time during the execution of a program and differ from other methods of inter-process
communication. Processor scheduling del ays prevent the process from handling the signal assoon asit isgenerated.
This problem can be handled by implementing atimer such that each timer containsafield that indicateshow far in
thefuturethe timer should expire. Linux cons derstwo typesof timers, dynamic and interval timer. Dynamic timer
is used by kernel while interval timer can be created by processes in user mode. It can ensure that all processes
(both parent and child) are executed ether at proper time or after adelay. Additionally, to suit real-time application,
thetimers are designed with expiration timestrictly enforced. This paper discusseshow totrack the passage of time
using different kinds of alarm signalsand manage the child process creation and avoid Zombie situations.

Keywords: Timers, Alarm signal, Profile, Virtual processtimer, Dynamic thread affinity.

1. INTRODUCTION

Tasks can be dynamically scheduled for execution based on the mutual dependencies and on the
computational resources available. The dynamic runtime system efficiently schedules the implemented
kernelsacrossthe processing units & ensuresthe datadependenciesare not violated. Linux supportsprocess
specific interval timers. A process can use these timers to send itself various signals each time that they
cease. In thiswork, three types of interval timers are supported and are listed in Table 1.

The state of a timer is described by the interval _timer_status type which is a record with two fields
(each afloat) representing time:

The field it_interval is the period of the timer.

Thefield it_valueis the current value of the timer; when it turns O, the signal sigvtalrmis sent and the
timer isreset to the value init_interval.

A timer is therefore inactive when its two fields are O (as listed in Table 2).

Tablel
Different Timer intervalsand their representation

Timer Representation Value of type Function

Real ITIMER_REAL Real time Thetimer ticksin real time, and when thetimer has expired, the
(dgalrm) processissent a SIGALRM signal.

Virtual ITIMER_VIRTUAL  User time Thistimer only tickswhen the processisrunning and when it
(dgvtalrm) expiresit sendsa SIGVTALRM signal

Profile ITIMER_PROF User time and Thistimer ticks both when the processisrunning and when the
systemtime system is executing on behalf of the processitsaf. SIGPROF is
(sigprof) signaled when it expires.
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Table2
Timer state descriptions
it value it_interval Inference
#0 #0 Indicatestimeto the next timer expiration and reloading it_value
0 X Disablesthetimer
#0 0 Disablestimer after itsnext expiration

One or al of the interval timers may be running and Linux keeps all of the necessary information in the
process's task_struct data structure. Every clock tick the current process'sinterval timers are decremented
and, if they have expired, the appropriate signal is sent. This generates the SIGALRM signal and restarts
the interval timer, adding it back into the system timer queue. The alarm () function may cause the system
to generate a SIGALRM signal for the process after the number of real-time seconds specified
by seconds have elapsed. If secondsis 0, a pending alarm request, if any, is canceled. Alarm requests are
not stacked; only one SIGALRM generation can be scheduled in this manner. If the SIGALRM signal has
not yet been generated, the call shall result in rescheduling the time at which the SIGALRM signdl is
generated.

2. RELATED WORKS

Kuperberg M. et a. (2009) analysed runtime behaviour and performance of software systems, accurate
time measurements are obtained using timer methods. The underlying hardware timers and counters are
read and processed by several software layers, which introduce overhead and delays that impact accuracy
and dtatistical validity of fine-granular measurements. To understand and to control these impacts, the
resulting accuracy of timer methods and their invocation costs must be quantified. However, quantitative
properties of timer methods are usually not specified as they are platform-specific due to differences in
hardware, operating systems and virtual machines. Also, no algorithm exists for precisely quantifying the
timer methods’ properties, so programmers have to work with coarse estimates. In this paper, we present
TimerMeter, a novel algorithm for platform-independent quantification of accuracy and invocation cost of
any timer methods, without inspecting their implementation.

Chaturvedi S.K. (2011) suggested multiple researches are proposed on to provide fairnessand protection
to the packet flow through a router, A General Processor Sharing (GPS) has been used as a conceptual
scheduler with many desirable properties, GPS supports guaranteed service traffic and to provide best-
effort servicetraffic. A novel datastructurecalled Interleaved Stratified Timer Wheels (ISTW) isintroduced.
Thisdesign enablesthe construction of a set of novel packet schedulerswith effectively constant complexity,
constant fairness and delay characteristics in all relevant dimensions. The ISTW data structure isused as a
compact and efficient priority queue that enables the virtual traffic shaping necessary for achieving these
characteristics. ISTW parallelization of the GPS is done.

Lawson G. (2014) The Intel Xeon Phi coprocessor offers high parallelism on energy-efficient hardware
to minimize energy consumption while maintaining performance. Dynamic frequency and voltage scaling
isnot accessible onthe Intel Xeon Phi. Hence, saving energy relies mainly ontuning application performance.
Onegenerd optimization techniqueisthread affinity, which isan important factor in multi-core architectures.
Thiswork investigates the effects of varying thread affinity modes and reducing core utilization on energy
and executiontime for the NASA Advanced Supercomputing Parallel Benchmarks (NPB). The measurements
are checked against total power captured using Watts up power meters. The results are compared to the
system-default thread affinity and granularity modes. Mostly positive impacts on performance and energy
are observed: When executed at the maximum thread count on all unoccupied cores, all the benchmarks
but one exhibited energy savings if a specific affinity mode is set.
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Roy A. 2014 proposed large-scale cache-coherent systems often impose unnecessary overhead on data
that isthread-private for the whole of itslifetime. Theseinclude resources devoted to tracking the coherence
state of the data, as well as unnecessary coherence messages sent out over the inter-connect. In this paper
we show how the memory alocation strategy for non-uniform memory access (NUMA) systems can be
exploited to remove any coherence-related traffic for thread-local data, as well removing the need to track
those cache lines in sparse directories. Solution is entirely backward compatible with existing operating
systems and software, and provides a means to scale cache coherence into the many-core era. On amix of
SPLASH?2 and Parsec workloads, ALLARM is able to improve performance by 13% on average while
reducing dynamic energy consumption by 9% in the on-chip network and 15% in the directory controller.
This is achieved through a 46% reduction in the number of sparse directory entries evicted.

Zijiang Yang, et al. (2013) proposed this paper asthe statistical analysis for darm signalsin order to detect
whether two darm dgnals are corrdated. First, a smilarity measurement, namely, Sorgenfrei coefficient, is
selected among 22 smilarity coefficientsfor binary datain the literature. The selection is based on the desired
properties associated with specidities of alarm signals. Second, the distribution of a so-cdled correlation
delay is shown to beindispensable and effective for the detection of correlated alarms. Findly, anovel method
for detection of correlated darmsisproposed based on Sorgenfrei coefficient and distribution of the correlation
delay. Numericd and industrial examples are provided to illustrate and validate the obtained reaults.

Shraddha et al. (2012) introduced Real Time Operating System to new comers the maor research
trends identified. After describing the characteristics of modern embedded applications, the paper presents
the problems of the current approachesand discussesthe new research trendsinreal time operating systems
and scheduling emerging to overcome them. Most of today’s embedded systems are required to work in
dynamic environments, where the characteristics of the computational load cannot always be predicted in
advance. Still timely responses to events have to be provided within precise timing constraints in order to
guarantee a desired level of performance. Hence, embedded systems are, by nature, inherently real-time.
Moreover, most of embedded systemswork under several resource congtraints, due to space, weight, energy,
and cost limitations imposed by the specific application.

3. IMPLEMENTATION OF PROCESSTIMERS
The implementation of the timers has been designed to meet the following requirements and assumptions:

» Timer management must be as lightweight as possible.

» The design should scale well as the number of active timers increases.

* Most timers shall be time bound expire within a few seconds or minutes at most and timers with
long delays are scheduled to avoid resource contention.

* A timer should run on the same CPU that registered it to achieve maximum speed.

A task queue is alist of tasks, each task being represented by a function pointer and an argument.
When atask isrun, it receivesasingle void * argument and returns void. The pointer argument can be used
to pass dong a data structure to the routine, or it can be ignored. The queue itself isalist of structures (the
tasks) that are owned by the kernel module declaring and queuing them. The moduleis completely responsible
for alocating, de-allocating the structures and static structures are commonly used for this purpose.

Structtq_struct {
Structtg_struct *next;
int sync;
void(*routine)(void*);
void *data;

|3
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The “bh” is meant for bottom half, i.e., “half of an interrupt handler”. A bottom half is a mechanism
provided by a device driver to handle asynchronous tasks which, usually, are too large to be done while
handling a hardware interrupt. The most important fields in the data structure shown above
are routine and data. To queue atask for later execution, it is needed to set these fields before queuing the
structure, while next and sync should be cleared. The sync flag in the structure is used by the kernel to
prevent queuing the same task more than once, because thiswould corrupt the next pointer. Once the task
has been queued, the structure is considered “owned” by the kernel and should not be modified until the
task isrun.

3.1. Benefits Of Virtual Process Timers
3.1.1. Case (i): TO REMOVE DEADLOCK

Virtual process timers can overcome deadlock situations using scheduling types. Deadlock can occur due
to process running in single core and use of more virtual timers in an optimal manner can relieve this
problem.

Deadlock can occur in
» Mutual exclusion: only one process at atime can use a resource.

» Hold andwait: A processholding at least one resourcewhichiswaiting to acquire additional resources
held by other processes

* No preemption: A resource can be released only voluntarily by the process holding it, after that
process has completed its task.

* Circular wait: there existsaset { PO, P1, ..., PO} of waiting processes such that PO is waiting for a
resource that is held by P1, P1 iswaiting for aresourcethat is held by P2, ..., Pn — 1 iswaiting for
aresource that is held by Pn, and Pn is waiting for a resource that is held by PO.

The Deadlock due to circular wait and the process dependency is shown in Figure 1 and table 3. From
table 3, it can be observed that the wait among the processes P, P, P,& P, are cyclic (P, P, P, P, P)) and
this results in a deadlock. To overcome the deadlock, avirtual timer to handle processP, is used as shown
in Figure 2. The new dependency is shown in table 4, where there is no deadlock.

Figure 1: Dead lock condition
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Table3
Process Dependency in the case of Deadlock
Process parent child
1 4 2
2 1 3
3 2 4
4 3 1
controlling virtual °
timer new process P5 /
/ \

Figure 2: Elimination of deadlock

Table4
Process Dependency after addition of virtual timer
Process parent Child
1 4 5(VIRTUAL TIMER)
5 1 3
3 5 4
4 3 1

A general resource system is characterized by:
* A nonempty set of processes[[={P,P,, ... P }.

 Anonempty set of resourcesI’ ={R, R, ... R }. T can be partitioned into two digoint sets. I , aset
of reusable resources and I, a set of consumable resources.

« For every reusable resource R, there exists a nonnegative integer t denoting the total number of
units of the resources present in the system.

* For every consumable resource R, there exists a non empty subset of processes of [1, called the
producersof R.

» For every reusable resource R
* The number of assignment edges, #(R, *) <t
cr=t—#R,*)

* ¥P: P, 2 11 #(PJ., R) +#R, PJ.) <t.That s, at any instant a process cannot request more than the
total units of reusable resource.
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For every consumable resource R:
* Thereisan edge from R to a process P iff P is a producer of R.
120
A generd resource graph can be reduced in the following way by aprocess P, which is not blocked.

» For each reusableresourceRJ, deleteall edges (P, RJ) and (RJ, P.) fromthe graph. For each assignment
edge(RJ, P) deleted, increase r; by one.

* For each consumable resource R,

a. Decrementr, by the number of edges (P, RJ).
b. If P, isaproducer of R, then set r;to ooll.

c. Delete all edges (P, RJ) and (RJ, P).

If the system isin safe state then no deadlock. If the system is in unsafe state, possibility of deadlock.
Their avoidance ensures that a system will never enter an unsafe state.

Safety algorithm:
1. Let work and Finish be vectors of length m and n, respectively. Initialize Work: = Available and
Finish[i]:= Falsefori=1,2...n
2. Find i such that both Finish [i] = false, Need [i] = True.
3. Work: = Work + Allocation
i. Finish[i]: = True
ii. Goto step 2.
4. If Finish [i] = Truefor al i, then the systemisin a safe state.
Safe State Checking algorithm:
1. Pick an unfinished process P, such that E. < D. If no such process exists, then go to step 3.
2. D: =D+ C.Tag P, asfinished. Go to step 1.

3. If al processes are tagged “finished”, the current system state is a safe state; otherwise, it isnot a
safe state.

3.1.2. Case (ii) Dynamic Thread Affinity

The Dynamic Thread affinity has been studied in shared memory with various views in Linux and windows
operating systems introduced new affinity level system calls. AMD & INTEL compilers alow programmer
to control thread binding by using modules. Dynamic Thread affinity cache between processor to processor
can have a dramatic effect on the application speed. Dynamic Thread affinity restricts execution of certain
threads (virtual execution units) to a subset of the physical processing units in a multiprocessor. Dynamic
Thread affinity is supported on Windows OS systems and versions of Linux OS systems that have kernel
support for dynamic thread affinity.

4. HARDWARE IMPLEMENTATION

The advantage of using ARM 11 core processor islow dynamic power consumption, lower standby power
(static power) and maturity. ARM processor implements atimer which is needed to set the least permissible
value, so that the user can set the timer expiry as per his needs and still get the results. The thing isif timer
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interval is high, then chances are execution of test program can end before the timer tick. If the interval is
very low (like 1ns), then even though the API takes 1ns value, but chances are the ARM processor may not
accept the 1ns value. It is necessary to set it to the least permissible value accepted by processor. The
hardware implementation program codes are shown in appendix.

1. (8) ARM core with root file system mounted in Sd-card
(b) Linux Kernel mounted as image file

2. Hyper Terminal to view the results.

5. RESULTSAND DISCUSSION

All forms of UNIX make use of signals, which are mechanisms used by a process to notify another process
that an event has occurred. Some examplesare the user pressing the delete key, the run time system detecting
an attempt to divide by zero, or one of the itimers reaching zero. Upon receiving a signal, the process
executes code for that particular signal. Note that signals can be used between application processes. There
are different categories of time such as rea-time (i.e. wall-clock time), processor time (the time that a
process is actually running in both user and kernel space), user space time and kernel space time.

For implementing Fibonacci number, the method used in this work is creating an array of Fibonacci
using recursive method. The N number in Fibonacci seriesis N = 30 by default and N = 35, the user value.
As an example of calculation, for child 2 process, CPU time is calculated by adding user time and kernel
time, 100ms + 10ms = 110ms. It is done in the same way for parent and child 1 processes respectively. It
shows the outputs of a C program using the fork() system call that generates the Fibonacci sequencein the
child process and then have the parent processto print out the sequence. Make the processes share memory
(mutual exclusion issue) in addition to making the parent process wait for the child process to finish

Table5
Comparison between process execution
Features Process 1 Process 2
Valueof N 30 35
Nature of Value Default User
Child process Valueof real timeisincremented with Value of real time is double the value of CPU time

valueof kernel time
Parent process Similar aschild process Real time executesin few milliseconds
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[root@FORLINXG4101IN . /output
fibarg = 30

Child 2 fib 832040, real time » 0 sec., 350 millisec
Child 2 fib = 832040, cpu time = 0 sec, 110 millisec
Child 2 fib = 832040, user time = 0 sec, 100 millisec
Child 2 fib = 832040, kernel time = 0 sec, 10 millisec
Child 1 fib = 832040, recal time = 0 sec, 340 millisec
Child 1 fib = 832040, cpu time =~ 0 sec, 110 millisec
Child 1 fib = 832040, user time = 0 sec, 100 millisec
Child 1 fib = 832040, kernel time = 0 sec, 10 millisec

832040, real time = 0 sec, 360 millisec
832040, cpu time = 0 sec, 110 millisec

832040, user time = 0 sec, 110 millisec
832040, kernel time = 0 sec, 0 millisec

Processes executing Fibonacci program for default value N = 30:

Parent fib
Parent fib
Parent fib
Parent fib

e

[root@ORLINK64101# ./output 35

fibarg = 35

Child 2 fib = 9227465, real time = 3 sec, 980 millisec
Child 2 fib = 9227465, cpu time = 1 sec, 310 millisec
Child 2 fib = 9227465, user time = 1 sec, 310 millisec
Child 2 fib = 9227465, kernel time = 0 sec, 0 millisec
Child 1 fib = 9227465, real time = 3 sec, 990 millisec
Child 1 fib = 9227465, cpu time = 1 sec, 330 millisec
Child 1 fib = 9227465, user time = 1 sec, 330 millisec
Child 1 fib = 9227465, kernel time = 0 sec, 0 millisec
Parent fib = 9227465, real time = &4 sec, 10 millisec
Parent fib = 9227465, cpu time = 1 sec, 320 millisec
Parent fib = 9227465, user time = 1 sec, 320 millisec
Parent fib = 9227465, kernel time = 0 sec, 0 millisec

Processes executing Fibonacci program for user value N = 35:

(synchronization issue). The parent invokes the wait() call to wait for the child process to complete before
exiting the program. Necessary error checking is performed to ensure that a non-negative number is passed
on the command line. The comparison between process execution is listed in table 5.

6. CONCLUSION

Tasks are dynamically scheduled based on resources available and interdependencies. Scheduling delays
prevented the process from handling the signal generated. Dynamic runtime system schedules kernel
efficiently. When a process starts execution, it first initiates the child process and when all child process
execution gets completed the parent process starts its execution. Different child process executesin parallel
and only when all child process completes its execution and terminates, parent process terminates. During
child process creation, different kinds of alarm signals are kept in track of passage of time to ensure that
memory resources are allocated and deallocated properly do not get blocked due to Zombie.
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