DECOMPOSITIONS OF COMPLETE GRAPHS INTO ISOMORPHIC BIPARTITE GRAPHS

S. Somasundaram, A. Nagarajan & G. Mahadevan

ABSTRACT: In this paper we deal with the decomposition of a complete graph into isomorphic bipartite graphs using α - valuation.

1. INTRODUCTION

In this paper, we consider only simple graphs. Our notation and terminology are as in [1]. Rosa introduced in [3] (see also [1]) the β - and β -valuations of a graph *G* as follows: Let $|E(G)| = \epsilon$ and let *f* be a one to one mapping of V(G) into $\{0, 1, 2, ..., \epsilon\}$. Then *f* is called a β -valuation of *G* if $\{|f(u) - f(v)|: uv \in E(G)\} = \{1, 2, 3, ..., \epsilon\}$. A β -valuation *f* is called an α -valuation if there exists a non-negative number λ such that for every $uv \in E(G)$ with $f(u) < f(v), f(u) \le 1 < f(v)$. If a graph *G* admits an α -valuation, then (X, Y), where $X = \{u: f(u) \le \lambda\}$ and $Y = \{v: \lambda < f(v)\}$, forms a bipartition of *G*. For any positive

integer *n*, $Q_n(G) = G_X \underbrace{K_2 x \dots x K_2}_{n-1 \text{ times}}$ is the *n*-dimensional *G*-cube. Note that the graph $Q_n(K_2)$

is the ordinary *n*-dimensional cube. $Q_n(G)$ has $n2^{n-1}$ vertices and $[2 \in +(n-1)\nu]2^{n-2}$ edges where ν and \in denote number of vertices and edges of *G* respectively.

In [1] R. Balakrishnan and R. Sampathkumar show that the graphs $Q_n(K_{3,3})$, $Q_n(K_{4,4}]$ and $Q_n(P_k)$ admit α -valuations. In this paper we prove that $Q_n(K_{2,3})$ admits an α -valuation.

2. SOME RESULTS

Theorem 2.1: [1] For every positive integer *n* there exists an α -valuation of $Q_n(K_2)$.

Theorem 2.2: [1] For every positive integer *n* there exists an α -valuation of $Q_n(K_{3,3})$.

Theorem 2.3: [1] For every positive integer *n* there exists an α -valuation of $Q_n(K_{4,4})$.

Theorem 2.4: [1] For every positive integer *n* there exists an α -valuation of $Q_n(P_k)$.

In [3] Rosa has proved the following Theorem.

Theorem 2.5: If a graph G with \in edges has an α -valuation, then for any positive integer c there exists a cyclic decomposition of the edges of the complete graph $K_{2c \in +1}$ into subgraphs isomorphic to G.

3. MAIN RESULTS

R. Balakrishnan and R. Sampathkumar suggested the following open problem in [1].

Problem: Does there exist an α -valuation for $Q_n(K_{r,r})$, $r \ge 5$ and $n \ge 2$.

In this connection we propose the conjecture, "There is no α -valuation for $Q_2(K_{5,5})$ and $Q_2(K_{6,6})$ ". The following computer program in Pascal gives a result which is the basis of our conjecture 1.

PROGRAM K55 (INPUT, OUTPUT); LABEL 80; VAR I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I,J,K : INTEGER; A: ARRAY [1..25] OF INTEGER; BEGIN I1:=0; I10:=25; FOR I2:= 1 TO 24 DO FOR I3:=I2+1 TO 24 DO FOR I4:=I3+1 TO 24 DO FOR I5:=I4+1 TO 24 DO BEGIN A[1]:=I10-I1; A[2]:= I10-I2; A[3]:= I10-I3; A[4]:= I10-I4; A[5]:= I10-I5; FOR I6:=I5+1 TO 24 DO BEGIN A[6]:=I6-I1; A[7]:=I6-I2; A[8]:=I6-I3;

```
A[9]:=I6-I4;
       A[10]:=I6-I5;
FOR I7:=I6+1 TO 24 DO
BEGIN
       A[11]:=I7-I1;
       A[12]:=I7-I2;
       A[13]:=I7-I3;
       A[14]:=I7-I4;
       A[15]:=I7-I5;
FOR I8:=I7+1 TO 24 DO
BEGIN
       A[16]:=I8-I1;
       A[17]:=I8-I2;
       A[18]:=I8-I3;
       A[19]:=I8-I4;
       A[20]:=I8-I5;
FOR I9:=I8+1 TO 24 DO
BEGIN
       A[21]:=I9-I1;
       A[22]:=I9-I2;
       A[23]:=I9-I3;
       A[24]:=I9-I4;
       A[25]:=I9-I5;
FOR I:=1 TO 24 DO
FOR J:=I+1 TO 25 DO
IF ABS(A[I])=ABS(A[J]) THEN GOTO 80;
WRITELN(LST, I1:4, I2:4, I3:4, I4:4,I5:4);
WRITELN(LST, I6:4, I7:4, I8:4, I9:4,I10:4);
```

WRITELN; WRITELN; 80: ; END; END; END; END; END; END; END;

The output of the above program is

0	1	2	3	4
5	10	15	20	25
0	5	10	15	20
21	22	23	24	25

From the output we have the following result :

The only possible α -valuations of $K_{5,5}$ are of the following form: The vertex labels have a difference of five in one set of the bipartition and a difference of one in the other.

We believe the following is true.

Conjecture 1: There is no a-valuation for $Q_2(K_{5,5})$.

However we present below a spanning subgraph of $K_{5,5}$ for which the situation is entirely different. Consider a bipartite graph G which is a subgraph of $K_{5,5}$.

Theorem 3.1: For every positive integer *n*, there exists an *a*-valuation of $Q_n(G)$ where *G* is given above in Figure 1.

Figure 1.

Proof: The proof will be by induction on *n*. The vertices of $Q_n(G)$ are labelled as 1, 2, 3, ..., 5.2^{*n*}. The value assigned to a vertex *i* (respectively an edge *e*) of $Q_n(G)$ in the α -valuation which is to be constructed will be denoted by $f_n(i)$ (respectively $\overline{f_n}(e)$). $Q_n(G)$ is a bipartite graph with bipartition (*X*, *Y*) where $X = \{1, 2, 3, ..., 5.2^{n-1}\}$ and $Y = \{5.2^{n-1} + 1, ..., 5.2^n\}$. We will choose the labelling of the vertices in $Q_{n+1}(G)$ corresponding to the centrally symmetric scheme shown in Fig 2.

In Figure 2, only the edges of $Q_{n+1}(G)$ that link the two isomorphic copies $Q'_n(G)$, $Q''_n(G)$ of $Q_n(G)$ are indicated, edges within $Q'_n(G)$ and $Q''_n(G)$ are omitted. We show that for every positive integer *n*, an α -valuation f_n of $Q_n(G)$ can be constructed with the following property:

 $\{|f_n(u) - f_n(v)|: uv \in E(Q_n(G))\} = \{1, 2, 3, ..., (5n + 12).2^{n-1}\} \text{ and } 0 = f_n(1) < f_n(2) < ... < f_n(5.2^{n-1}) = 1 < f_n(5.2^{n-1} + i), 1 \le i \le 5.2^{n-1} ... (1). \text{ Condition (1) is trivially satisfied for } Q_1(G) = G \text{ upon putting } f_1(1) = 0, f_1(2) = 3, f_1(3) = 5, f_1(4) = 7, f_1(5) = 9, f_1(6) = 11, f_1(7) = 10, f_1(8) = 15, f_1(9) = 16, f_1(10) = 17. \text{ Assume that } f_n \text{ has already been constructed.} We construct f_{n+1} as follows :$

For
$$1 \le i \le 5.2^{n-1}$$
, put
 $f_{n+1}(i) = f_n(i)$
 $f_{n+1}(5.2^{n-1} + i) = f_n(i) + k_n$
 $f_{n+1}(5.2^n + i) = f_n(5.2^{n-1} + i) + k_n$
 $f_{n+1}(15.2^{n-1} + i) = f_n(5.2^{n-1} + i) + k_{n+1}$

where $k_1 = 11$ and for $n \ge 1$, $k_{n+1} = |E(Q_{n+1}(G))| - |E(Q_n(G))| = (22 + 5n)2^{n-1}$

Since the values of $\overline{f_n}$ form the integer interval $[1, (5n + 12)2^{n-1}]$, the values of $\overline{f_{n+1}}$ corresponding to the edges in $Q_n'(G)$ form the integer interval $[(22 + 5n)2^{n-1} + 1, (22 + 5n)2^{n-1} + (5n + 12)2^{n-1}] = [(22 + 5n)2^{n-1} + 1, (10n + 34)2^{n-1}] = [(22 + 5n)2^{n-1} + 1, (5n + 17)2^n]$ and the values of $\overline{f_{n+1}}$ corresponding to the edges in $Q_n''(G)$ form the integer interval $[1, (5n + 12)2^{n-1}]$. By induction, one can verify that the values of $\overline{f_{n+1}}$ at the edges indicated in Figure 2 will form the integer interval $[(5n + 12)2^{n-1} + 1, (22 + 5n)2^{n-1}]$. From (1) and from the definition of f_{n+1} it is clear that $f_{n+1}(1) < f_{n+1}(2) < \ldots < f_{n+1}(5.2^n) = \lambda_1 < f_{n+1}(5.2^n + i), 1 \le i \le 5.2^n$. Hence we have $f_{n+1}(u) \le \lambda_1 < f_{n+1}(v)$ for every edge uv in $E(Q_{n+1}(G))$, as $Q_{n+1}(G)$ is a bipartite graph with bipartition (X, Y) where $X = \{1, 2, 3, \ldots, 5.2^n\}$ and $Y = \{5.2^n + 1, 5.2^n + 2, \ldots, 5.2^{n+1}\}$. This completes the proof of 3.1.

Corollary 3.2: For every positive integer *n*, there exists an α -valuation of $Q_n(K_{2,2})$.

Proof: If n = 1, then the labelling f_1 is given for $Q_1(K_{2,3})$ as follows: $f_1(1) = 0, f_1(2) = 3, f_1(3) = 4, f_1(4) = 5, f_1(5) = 6$. The labelling of the vertices of $Q_2(G)$ corresponding to the centrally symmetric scheme is shown in Figure 3. The labelling f_2 is given as below: $f_2(1) = 0, f_2(2) = 3, f_2(3) = 5, f_2(4) = 7, f_2(5) = 9, f_2(6) = 11, f_2(7) = 10, f_2(8) = 15, f_2(9) = 16, f_2(10) = 17$. This is the labelling for G in 3.1. Hence by 3.1, for every positive integer n there exists an α -valuation for $Q_n(K_{2,3})$.

A graph G is said to be H-decomposable if G is the edge-disjoint union of subgraphs of G each of which is isomorphic to H. This is denoted by $H \mid G$.

2.5 and 3.2 combine to give the following corollary.

Corollary 3.3: Let *n* and *c* be integers ≥ 1 . Then $Q_n(K_{2,3})|K_m$, where $m = c(5n + 7)2^{n-1} + 1$.

The following computer program in Pascal gives a result which is the basis of our conjecture 2.

PROGRAM K66 (INPUT, OUTPUT);

```
LABEL 80;
VAR
   11,12,13,14,15,16,17,18,19,110,111, 112, 1,J,K : INTEGER;
   A: ARRAY [1..36] OF INTEGER;
   BEGIN
          I1:=0;
          I12:=36;
   FOR I2:= 1 TO 35 DO
   FOR I3:=I2+1 TO 35 DO
   FOR I4:=I3+1 TO 35 DO
   FOR I5:=I4+1 TO 35 DO
   FOR I6:=I5+1 TO 35 DO
   BEGIN
          A[1]:=I12-I1;
          A[2]:= I12-I2;
          A[3]:= I12-I3;
          A[4]:= I12-I4;
          A[5]:= I12-I5;
          A[6]:= I12-I6;
   FOR I7:=I6+1 TO 35 DO
   BEGIN
          A[7]:=I7-I1;
          A[8]:=I7-I2;
          A[9]:=I7-I3;
          A[10]:=I7-I4;
          A[11]:=I7-I5;
          A[12]:=I7-I6;
   FOR I8:=I7+1 TO 35 DO
   BEGIN
          A[13]:=I8-I1;
          A[14]:=I8-I2;
```

```
A[15]:=I8-I3;
       A[16]:=I8-I4;
       A[17]:=I8-I5;
       A[18]:=I8-I6;
FOR I9:=I8+1 TO 35 DO
BEGIN
       A[19]:=I9-I1;
       A[20]:=I9-I2;
       A[21]:=I9-I3;
       A[22]:=I9-I4;
       A[23]:=I9-I5;
       A[24]:=I9-I6;
FOR I10:=I9+1 TO 35 DO
BEGIN
       A[25]:=I10-I1;
       A[26]:=I10-I2;
       A[27]:=I10-I3;
       A[28]:=I10-I4;
       A[29]:=I10-I5;
       A[30]:=I10-I6;
FOR I11:=I10+1 TO 35 DO
BEGIN
       A[31]:=I11-I1;
       A[32]:=I11-I2;
       A[33]:=I11-I3;
       A[34]:=I11-I4;
       A[35]:=I11-I5;
       A[36]:=I11-I6;
FOR I:=1 TO 35 DO
FOR J:=I+1 TO 36 DO
```

```
IF ABS(A[I])=ABS(A[J]) THEN GOTO 80;
```

The output of the above program shows the only possible α -valuations of $K_{6,6}$ are of the following form:

0	1	2	3	4	5	
6	12	18	24	30	36	
0	1	2	6	7	8	
9	12	21	24	33	36	
0	1	2	9	10	11	
12	15	18	30	33	36	
0	1	2	18	19	20	
21	24	27	30	33	36	
0	1	4	5	8	9	
10	12	22	24	34	36	
0	1	6	7	12	13	
14	16	18	32	34	36	
0	1	12	13	24	25	
26	28	30	32	34	36	
0	2	4	6	8	10	
11	12	23	24	35	36	
0	2	4	18	20	22	
23	24	29	30	35	36	
0	2	12	14	24	26	
27	28	31	32	35	36	

0	3	6	9	12	15
16	17	18	34	35	36
0	3	6	18	21	24
25	26	27	34	35	36
0	3	12	15	24	27
28	29	30	34	35	36
0	6	12	18	24	30
31	32	33	34	35	36

As before in this case also we believe the following is true:

Conjecture 2: There is no α -valuation for $Q_2(K_{6,6})$.

However the situation is different for the subgraph $Q_2(K_{3,3})$ of $K_{6,6}$.

Theorem 3.4: Let $G = Q_2(K_{3,3})$. There exists an α -valuation of $Q_n(G)$ for any positive integer *n*.

Proof: The Proof follows from 2.2.

REFERENCES

- [1] R. Balakrishnan and R. Sampathkumar, Decomposition of complete graphs into isomorphic bipartite subgraphs, *Graphs and Combinatorics*, **10** (1994), 19–25.
- [2] A. Kotzig, Decompositions of complete graphs into isomorphic cubes, *J. Comb. Theory Ser.*, **B. 31** (1981), 292–296.
- [3] A. Rosa, On certain valuations of the vertices in a graph, In Theorie des graphs, *Journees Internationales détude*. Rome 1966, Dunod, Paris, (1967), 349–355.

S. Somasundaram

Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627 012.

A. Nagarajan

Department of Mathematics, V.O. Chidambaram College, Tuticorin-628 008.

G. Mahadevan

Department of Mathematics, Gandhigram Rural University, Gandhigram-624 302.

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/