DECOMPOSITIONS OF COMPLETE GRAPHS INTO ISOMORPHIC BIPARTITE GRAPHS

S. Somasundaram, A. Nagarajan \& G. Mahadevan

Abstract

In this paper we deal with the decomposition of a complete graph into isomorphic bipartite graphs using α - valuation.

1. INTRODUCTION

In this paper, we consider only simple graphs. Our notation and terminology are as in [1]. Rosa introduced in [3] (see also [1]) the β - and β-valuations of a graph G as follows: Let $|E(G)|=\in$ and let f be a one to one mapping of $V(\mathrm{G})$ into $\{0,1,2, \ldots, \in\}$. Then f is called a β-valuation of G if $\{|f(u)-f(v)|: u v \in E(G)\}=\{1,2,3, \ldots, \in\}$. A β-valuation f is called an α-valuation if there exists a non-negative number λ such that for every $u v \in E(G)$ with $f(u)<f(v), f(u) \leq 1<f(v)$. If a graph G admits an α-valuation, then (X, Y), where $X=\{u: f(u) \leq \lambda\}$ and $Y=\{v: \lambda<f(v)\}$, forms a bipartition of G. For any positive integer $n, Q_{n}(G)=G x \underbrace{K_{2} x \ldots x K_{2}}_{n-1 \text { times }}$ is the n-dimensional G-cube. Note that the graph $Q_{n}\left(K_{2}\right)$ is the ordinary n-dimensional cube. $Q_{n}(G)$ has $n 2^{n-1}$ vertices and $[2 \in+(n-1) v] 2^{n-2}$ edges where v and \in denote number of vertices and edges of G respectively.

In [1] R. Balakrishnan and R. Sampathkumar show that the graphs $Q_{n}\left(K_{3,3}\right), Q_{n}\left(K_{4,4}\right]$ and $Q_{n}\left(P_{k}\right)$ admit α-valuations. In this paper we prove that $Q_{n}\left(K_{2,3}\right)$ admits an α-valuation.

2. SOME RESULTS

Theorem 2.1: [1] For every positive integer n there exists an α-valuation of $Q_{n}\left(K_{2}\right)$.
Theorem 2.2: [1] For every positive integer n there exists an α-valuation of $Q_{n}\left(K_{3,3}\right)$.
Theorem 2.3: [1] For every positive integer n there exists an α-valuation of $\mathrm{Q}_{\mathrm{n}}\left(\mathrm{K}_{4,4}\right)$.
Theorem 2.4: [1] For every positive integer n there exists an α-valuation of $Q_{n}\left(P_{k}\right)$.
In [3] Rosa has proved the following Theorem.
Theorem 2.5: If a graph G with \in edges has an α-valuation, then for any positive integer c there exists a cyclic decomposition of the edges of the complete graph $K_{2 c \in+1}$ into subgraphs isomorphic to G.

3. MAIN RESULTS

R. Balakrishnan and R. Sampathkumar suggested the following open problem in [1].

Problem: Does there exist an α-valuation for $Q_{n}\left(K_{r, r}\right), r \geq 5$ and $n \geq 2$.
In this connection we propose the conjecture, "There is no α-valuation for $Q_{2}\left(K_{5,5}\right)$ and $Q_{2}\left(K_{6,6}\right)$ ". The following computer program in Pascal gives a result which is the basis of our conjecture 1.

PROGRAM K55 (INPUT, OUTPUT);
LABEL 80;
VAR
I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I,J,K : INTEGER;
A: ARRAY [1..25] OF INTEGER;
BEGIN

$$
\mathrm{I} 1:=0
$$

$$
\mathrm{I} 10:=25
$$

FOR I2:= 1 TO 24 DO
FOR I3:=I2+1 TO 24 DO
FOR I4:=I3+1 TO 24 DO
FOR I5:=I4+1 TO 24 DO
BEGIN
A [1]:=I10-I1;
$\mathrm{A}[2]:=\mathrm{I} 10-\mathrm{I} 2 ;$
$\mathrm{A}[3]:=\mathrm{I} 10-\mathrm{I} 3$;
A[4]:= I10-I4;
A[5]:= I10-I5;
FOR I6:=I5+1 TO 24 DO
BEGIN
$\mathrm{A}[6]:=\mathrm{I} 6-\mathrm{I} 1$;
A[7]:=I6-I2;
A[8]:=I6-I3;

$$
\begin{aligned}
& \mathrm{A}[9]:=\mathrm{I} 6-\mathrm{I} 4 ; \\
& \mathrm{A}[10]:=\mathrm{I} 6-\mathrm{I} 5 ;
\end{aligned}
$$

FOR I7:=I6+1 TO 24 DO
BEGIN

$$
\mathrm{A}[11]:=\mathrm{I} 7-\mathrm{I} 1 ;
$$

$$
\mathrm{A}[12]:=\mathrm{I} 7-\mathrm{I} 2
$$

$$
\mathrm{A}[13]:=\mathrm{I} 7-\mathrm{I} 3 ;
$$

$$
\mathrm{A}[14]:=\mathrm{I} 7-\mathrm{I} 4 ;
$$

$$
\mathrm{A}[15]:=\mathrm{I} 7-\mathrm{I} 5 ;
$$

FOR I8:=I7+1 TO 24 DO
BEGIN

$$
\mathrm{A}[16]:=\mathrm{I} 8-\mathrm{I} 1 ;
$$

$$
\mathrm{A}[17]:=\mathrm{I} 8-\mathrm{I} 2
$$

$$
\mathrm{A}[18]:=\mathrm{I} 8-\mathrm{I} 3 ;
$$

A [19]:=I8-I4;

$$
\mathrm{A}[20]:=\mathrm{I} 8-\mathrm{I} 5 ;
$$

FOR I9:=I8+1 TO 24 DO
BEGIN

$$
\begin{aligned}
& \mathrm{A}[21]:=\mathrm{I} 9-\mathrm{I} 1 ; \\
& \mathrm{A}[22]:=\mathrm{I} 9-\mathrm{I} 2 ; \\
& \mathrm{A}[23]:=\mathrm{I} 9-\mathrm{I} 3 ; \\
& \mathrm{A}[24]:=\mathrm{I} 9-\mathrm{I} 4 ; \\
& \mathrm{A}[25]:=\mathrm{I} 9-\mathrm{I} 5 ;
\end{aligned}
$$

FOR I:=1 TO 24 DO
FOR J:=I+1 TO 25 DO
IF ABS(A[I])=ABS(A[J]) THEN GOTO 80;
WRITELN(LST, I1:4, I2:4, I3:4, I4:4,I5:4);
WRITELN(LST, I6:4, I7:4, I8:4, I9:4,I10:4);

WRITELN;

WRITELN;

80: ;
END;
END;
END;
END;
END;
END.
The output of the above program is

0	1	2	3	4
5	10	15	20	25
0	5	10	15	20
21	22	23	24	25

From the output we have the following result :
The only possible α-valuations of $K_{5,5}$ are of the following form: The vertex labels have a difference of five in one set of the bipartition and a difference of one in the other.

We believe the following is true.
Conjecture 1: There is no a-valuation for $Q_{2}\left(K_{5,5}\right)$.
However we present below a spanning subgraph of $K_{5,5}$ for which the situation is entirely different. Consider a bipartite graph G which is a subgraph of $K_{5,5}$.

Theorem 3.1: For every positive integer n, there exists an a-valuation of $Q_{n}(G)$ where G is given above in Figure 1.

Figure 1.

Figure 2
Proof: The proof will be by induction on n. The vertices of $Q_{n}(G)$ are labelled as 1, $2,3, \ldots, 5.2^{n}$. The value assigned to a vertex i (respectively an edge e) of $Q_{n}(G)$ in the α-valuation which is to be constructed will be denoted by $f_{n}(i)$ (respectively $\bar{f}_{n}(e)$). $Q_{n}(G)$ is a bipartite graph with bipartition (X, Y) where $X=\left\{1,2,3, \ldots ., 5.2^{n-1}\right\}$ and $Y=\left\{5.2^{n-1}+1, \ldots, 5.2^{n}\right\}$. We will choose the labelling of the vertices in $Q_{n+1}(G)$ corresponding to the centrally symmetric scheme shown in Fig 2.

In Figure 2, only the edges of $Q_{n+1}(G)$ that link the two isomorphic copies $Q_{n}{ }^{\prime}(G)$, $Q_{n}{ }^{\prime \prime}(G)$ of $Q_{n}(G)$ are indicated, edges within $Q_{n}{ }^{\prime}(G)$ and $Q_{n}{ }^{\prime \prime}(G)$ are omitted. We show that for every positive integer n, an α-valuation f_{n} of $Q_{n}(G)$ can be constructed with the following property:
$\left\{\left|f_{n}(u)-f_{n}(v)\right|: u v \in E\left(Q_{n}(G)\right)\right\}=\left\{1,2,3, \ldots,(5 n+12) .2^{n-1}\right\}$ and $0=f_{n}(1)<f_{n}(2)<$ $\ldots .<f_{n}\left(5.2^{n-1}\right)=1<f_{n}\left(5.2^{n-1}+i\right), 1 \leq i \leq 5.2^{n-1} \ldots$ (1). Condition (1) is trivially satisfied for $Q_{1}(G)=G$ upon putting $f_{1}(1)=0, f_{1}(2)=3, f_{1}(3)=5, f_{1}(4)=7, f_{1}(5)=9, f_{1}(6)=11$, $f_{1}(7)=10, f_{1}(8)=15, f_{1}(9)=16, f_{1}(10)=17$. Assume that f_{n} has already been constructed. We construct f_{n+1} as follows :

For $1 \leq i \leq 5.2^{n-1}$, put

$$
\begin{aligned}
f_{n+1}(i) & =f_{n}(i) \\
f_{n+1}\left(5.2^{n-1}+i\right) & =f_{n}(i)+k_{n} \\
f_{n+1}\left(5.2^{n}+i\right) & =f_{n}\left(5.2^{n-1}+i\right)+k_{n} \\
f_{n+1}\left(15.2^{n-1}+i\right) & =f_{n}\left(5.2^{n-1}+i\right)+k_{n+1}
\end{aligned}
$$

where $k_{1}=11$ and for $n \geq 1, k_{n+1}=\mid E\left(Q_{n+1}(G)\left|-\left|E\left(Q_{n}(G)\right)\right|=(22+5 n) 2^{n-1}\right.\right.$

Figure 3
Since the values of \bar{f}_{n} form the integer interval $\left[1,(5 n+12) 2^{n-1}\right]$, the values of $\overline{f_{n+1}}$ corresponding to the edges in $Q_{n}^{\prime}(G)$ form the integer interval $\left[(22+5 n) 2^{n-1}+1,(22+\right.$ $\left.5 n) 2^{n-1}+(5 n+12) 2^{n-1}\right]=\left[(22+5 n) 2^{n-1}+1,(10 n+34) 2^{n-1}\right]=\left[(22+5 n) 2^{n-1}+1,(5 n+\right.$ 17) $\left.2^{n}\right]$ and the values of $\overline{f_{n+1}}$ corresponding to the edges in $Q_{n}{ }^{\prime \prime}(G)$ form the integer interval $\left[1,(5 n+12) 2^{n-1}\right]$. By induction, one can verify that the values of $\overline{f_{n+1}}$ at the edges indicated in Figure 2 will form the integer interval $\left[(5 n+12) 2^{n-1}+1,(22+5 n) 2^{n-}\right.$ ${ }^{1}$]. From (1) and from the definition of f_{n+1} it is clear that $f_{n+1}(1)<f_{n+1}(2)<\ldots<f_{n+1}\left(5.2^{n}\right)$ $=\lambda_{1}<f_{n+1}\left(5.2^{n}+i\right), 1 \leq i \leq 5.2^{n}$. Hence we have $f_{n+1}(u) \leq \lambda_{1}<f_{n+1}(v)$ for every edge $u v$ in $E\left(Q_{n+1}(G)\right)$, as $Q_{n+1}(G)$ is a bipartite graph with bipartition (X, Y) where $X=\{1,2,3, \ldots$, $\left.5.2^{n}\right\}$ and $Y=\left\{5.2^{n}+1,5.2^{n}+2, \ldots, 5.2^{n+1}\right\}$. This completes the proof of 3.1.

Corollary 3.2: For every positive integer n, there exists an α-valuation of $Q_{n}\left(K_{2,3}\right)$.
Proof: If $n=1$, then the labelling f_{1} is given for $Q_{1}\left(K_{2,3}\right)$ as follows: $f_{1}(1)=0, f_{1}(2)$ $=3, f_{1}(3)=4, f_{1}(4)=5, f_{1}(5)=6$. The labelling of the vertices of $Q_{2}(G)$ corresponding to the centrally symmetric scheme is shown in Figure 3. The labelling f_{2} is given as below: $f_{2}(1)=0, f_{2}(2)=3, f_{2}(3)=5, f_{2}(4)=7, f_{2}(5)=9, f_{2}(6)=11, f_{2}(7)=10, f_{2}(8)=15, f_{2}(9)=$ $16, f_{2}(10)=17$. This is the labelling for G in 3.1. Hence by 3.1, for every positive integer n there exists an α-valuation for $Q_{n}\left(K_{2,3}\right)$.

A graph G is said to be H-decomposable if G is the edge-disjoint union of subgraphs of G each of which is isomorphic to H. This is denoted by $H \mid G$.
2.5 and 3.2 combine to give the following corollary.

Corollary 3.3: Let n and c be integers ≥ 1. Then $Q_{n}\left(K_{2,3}\right) \mid K_{m}$, where $m=c(5 n+7) 2^{n-1}$ +1 .

The following computer program in Pascal gives a result which is the basis of our conjecture 2.

PROGRAM K66 (INPUT, OUTPUT);

LABEL 80;
VAR
I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11, I12, I,J,K : INTEGER;
A: ARRAY [1..36] OF INTEGER;
BEGIN

$$
\mathrm{I} 1:=0
$$

I12:=36;

FOR I2:= 1 TO 35 DO
FOR I3:=I2+1 TO 35 DO
FOR I4:=I3+1 TO 35 DO
FOR I5:=I4+1 TO 35 DO
FOR I6:=I5+1 TO 35 DO
BEGIN
A [1]:=I12-I1;
A[2]:= I12-I2;

$$
\mathrm{A}[3]:=\mathrm{I} 12-\mathrm{I} 3 ;
$$

$$
\mathrm{A}[4]:=\mathrm{I} 12-\mathrm{I} 4 ;
$$

$$
\mathrm{A}[5]:=\mathrm{I} 12-\mathrm{I} 5 ;
$$

$$
\mathrm{A}[6]:=\mathrm{I} 12-\mathrm{I} 6 ;
$$

FOR I7:=I6+1 TO 35 DO
BEGIN
A[7]:=I7-I1;

$$
\mathrm{A}[8]:=\mathrm{I} 7-\mathrm{I} 2 ;
$$

$$
\mathrm{A}[9]:=\mathrm{I} 7-\mathrm{I} 3 ;
$$

$$
\mathrm{A}[10]:=\mathrm{I} 7-\mathrm{I} 4 ;
$$

$$
\mathrm{A}[11]:=\mathrm{I} 7-\mathrm{I} 5
$$

A [12]:=I7-I6;

FOR I8:=I7+1 TO 35 DO
BEGIN
A[13]:=I8-I1;
A[14]:=I8-I2;

```
    A[15]:=I8-I3;
    A[16]:=I8-I4;
    A[17]:=I8-I5;
    A[18]:=I8-I6;
FOR I9:=I8+1 TO 35 DO
BEGIN
    A[19]:=I9-I1;
    A[20]:=I9-I2;
    A[21]:=I9-I3;
    A[22]:=I9-I4;
    A[23]:=I9-I5;
    A[24]:=I9-I6;
FOR I10:=I9+1 TO 35 DO
BEGIN
    A[25]:=I10-I1;
    A[26]:=I10-I2;
    A[27]:=I10-I3;
    A[28]:=I10-I4;
    A[29]:=I10-I5;
    A[30]:=I10-I6;
FOR I11:=I10+1 TO 35 DO
BEGIN
    A[31]:=I11-I1;
    A[32]:=I11-I2;
    A[33]:=I11-I3;
    A[34]:=I11-I4;
    A[35]:=I11-I5;
    A[36]:=I11-I6;
FOR I:=1 TO 35 DO
FOR J:=I+1 TO 36 DO IF ABS(A[I])=ABS(A[J]) THEN GOTO 80;
```

```
WRITELN(LST, I1:4, I2:4, I3:4, I4:4,I5:4, I6:4);
WRITELN(LST, I7:4, I8:4, I9:4, I10:4,I11:4, I12:4);
80:;
```

END;
END;
END;
END;
END;
END;
END.

The output of the above program shows the only possible α-valuations of $K_{6,6}$ are of the following form:

0	1	2	3	4	5
6	12	18	24	30	36
0	1	2	6	7	8
9	12	21	24	33	36
0	1	2	9	10	11
12	15	18	30	33	36
0	1	2	18	19	20
21	24	27	30	33	36
0	1	4	5	8	9
10	12	22	24	34	36
0	1	6	7	12	13
14	16	18	32	34	36
0	1	12	13	24	25
26	28	30	32	34	36
0	2	4	6	8	10
11	12	23	24	35	36
0	2	4	18	20	22
23	24	29	30	35	36
0	2	12	14	24	26
27	28	31	32	35	36

0	3	6	9	12	15
16	17	18	34	35	36
0	3	6	18	21	24
25	26	27	34	35	36
0	3	12	15	24	27
28	29	30	34	35	36
0	6	12	18	24	30
31	32	33	34	35	36

As before in this case also we believe the following is true:
Conjecture 2: There is no α-valuation for $Q_{2}\left(K_{6,6}\right)$.
However the situation is different for the subgraph $Q_{2}\left(K_{3,3}\right)$ of $K_{6,6}$.
Theorem 3.4: Let $G=Q_{2}\left(K_{3,3}\right)$. There exists an α-valuation of $Q_{n}(G)$ for any positive integer n.

Proof: The Proof follows from 2.2.

REFERENCES

[1] R. Balakrishnan and R. Sampathkumar, Decomposition of complete graphs into isomorphic bipartite subgraphs, Graphs and Combinatorics, 10 (1994), 19-25.
[2] A. Kotzig, Decompositions of complete graphs into isomorphic cubes, J. Comb. Theory Ser., B. 31 (1981), 292-296.
[3] A. Rosa, On certain valuations of the vertices in a graph, In Theorie des graphs, Journees Internationales détude. Rome 1966, Dunod, Paris, (1967), 349-355.

S. Somasundaram

Department of Mathematics,
Manonmaniam Sundaranar University,
Tirunelveli-627 012.

A. Nagarajan

Department of Mathematics, V.O. Chidambaram College, Tuticorin-628 008.
G. Mahadevan

Department of Mathematics, Gandhigram Rural University, Gandhigram-624 302.

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.
This page will not be added after purchasing Win2PDF.
http://www.win2pdf.com/purchase/

