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Abstract
In abstract algebra, field extensions are one of the main objects of study in 
field theory [5]. The general idea is to start with a base field and construct in 
some manner a larger field that contains the base field and satisfies additional 
properties. In this paper we study the extension of a graph G by adding edges 
in a particular manner. Extension in trees, cycles and neighbourhood graphs 
are also considered. Some graphs can be extended up to a complete graph. 
Further we characterise completely extendable graphs.
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INTRODUCTION1.	
Let G = (p, q) be a finite, non trivial, undirected simple graph which is not complete. 
Extension on G is defined as adding edges to non adjacent pair of vertices in such 
a way that in the first extension add one edge to G and denoted as G1, in the second 
extension add two edges in G1, denoted by G2, G2 = G »{e1, e2, e3} and so on until 
no such an extension remains. Certain graphs become complete after a finite number 
of extensions. Then, the given graph is said to be completely extendable. For basic 
definitions and results in graph theory we follow [2] and [3].

Definition 1: Let G be a simple (p, q) graph. Extension on G is defined as follows; 
in the first extension, add one edge to G, denoted as G1, G1 = G » {e1}. In the 
second extension add two edges on G1 denoted by G2, G2 = G » {e1, e2, e3} and so 
on until no such an extension remains.

Theorem 2: Let G be a (p, q) graph and let Gk = G » {e1, e2, ..., em}. If Gk is the 

kth extension of G, then m = k k( )+ 1
2

.
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Proof: We shall prove this theorem by induction on k, where Gk is the kth extension 
of G. For k = 1, G1 = G » {e1}, m = 1 ¥ 2/2

Assume that result is true for k = n. We want to prove that it is true for k = n + 1.

For k = n + 1,

	 Gn + 1 = G » e e e e en n n n n n n1 2 1
2
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That is Gn + 1 = G » {e1, e2, ..., em} where m = ( )( )n n+ +1 2
2

 which implies

theorem is true for k = n + 1.

Hence if Gk = G » {e1, e2, ..., em} is the kth extension of G then m = 
k k +( )1

2
.

Definition 3: If Gk @ Kp, then G is said to be a completely extendable graph and k 
is known as the order of extension.

Example:

Figure 1

In Figure 1, G is a simple graph with 5 vertices and 7 edges. Number of edges 
added to G to get K5 is 3.That is m = 2 ¥ 3/2. In the first extension G1 add the edge 
(1, 4).That is

	 G1 = G » {(1, 4)}.

To get G2 add 2 edges in G1, (2, 5) (3, 4). That is G2 = G » {(1, 4), (2, 5), 
(3,4)}. Then G became a complete graph after the second extension. Therefore G 
is a completely extendable graph and order of extension is 2.

Theorem 4: Every tree is completely extendable.

Proof: Let T be a tree with p vertices (p ≥ 3). If T is completely extendable then there 
exist a k such that Tk @ Kp. Since T is a tree with p vertices | E(T) | = p - 1. But

	 | E(Kp) | = 
p p -( )1

2
.
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Therefore number of edges added to T to get

	 Kp is = 
p p -( )1

2
 - (p - 1) = p p2 3 2

2
- + . 	 (1)

When p = 3 (1) becomes 9 9 2
2

1- + = .  Then it is clear that for p = 3 there exist

k = 1 such that T1 @ K3

When p = 4 (1) becomes 16 12 2
2

3- + = .  Then it is clear that for p = 4 there

exist a k = 2 such that T2 @ K4.

In general for p = r, r ≥ 3 (1) becomes r r r r2 3 2
2

2 1
2

- + =
-( ) -( )

.

That is number of edges added is equal to m = 1 + 2 + 3 + ..., (r - 2) = 
r r-( ) -( )2 1

2

For every p = r there exist a k = r - 2 such that Tr - 2 @ Kr.

Therefore every tree is completely extendable and order of extension is (p - 2).

Theorem 5: Cycle Cp is not completely extendable.

Proof: Let G be a cycle with p vertices (p ≥ 4). If G is completely extendable then 
there exist a k such that Gk @ Kp. Since G is a cycle with p vertices | E(G) | = p. We 

know that | E(Kp) | = 
p p -( )1

2
.

Number of edges added to G to get Kp is = 
p p -( )1

2
 - p = p p2 3

2
- 	 (1)

For p = 4 (1) becomes 
16 12

2
-  = 2.We cannot find a k such that Gk @ Kp.

Therefore Cp is not completely extendable.

Definition 6: Chord is an edge joining two non adjacent vertices in a cycle.

Theorem 7: Any Cycle Cp with p - 3 chords is completely extendable.

Proof: Let Cp be a cycle with p vertices (p ≥ 4). Consider a graph G, G = Cp + (p - 3) 
chords. If G is completely extendable then there exist a k such that Gk @ Kp. Since 
G is a cycle with p vertices and (p - 3) chords then | E(G) | = p + p + -3 = 2p - 3.

But | E(Kp) | = p(p - 1)/2.

Number of edges added to G to get Kp is	= p(p - 1)/2 - (2p - 3)
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	 = p p2 5 6
2

- + 	 (1)

For any value of p in (1), for example p = 4 (1) becomes (16-20 + 6)/2 =1. 
Then there exist a k (equal to1) such that G1 @ Kp.

For p = 5, (1) becomes (25-25 + 6)/2 = 3. Then there exist a k (equal to 2) such 
that G2 @ Kp.

In general for p = r , r ≥ 4, (1) become s(r - 3)(r - 2)/2. There exist a k = r - 3 
such that Gr - 3 @ Kp where m = (r - 3)(r - 2)/2. That is for every p there exist a k 
such that Gk @ Kp.

Hence a cycle with p vertices and (p – 3) chords is completely extendable.

Remark: Order of extension of any cycle with p vertices and p - 3 chords is (p - 3).

Theorem 8: Let G be a (p, q) graph. If q = pk - r where r = k(k + 1)/2 and k < p, 
then G is completely extendable.

Proof: We know that number of edges in Kp is | E(Kp) | = p(p - 1)/2

Number of edges in the given graph G is | E(G) | = pk - k(k + 1)/2.

Number of edges added to G to get Kp is p(p - 1)/2 - pk + k(k + 1)/2

	 = 
p k P k k2 22 1

2

- +( ) + +( )
. 	 (1)

For any value for p and k in (1), there exist a k such that Gk @ Kp . Therefore 
G is completely extendable if q = pk - r, where r = k(k + 1)/2. That is q = p - 1, 
2p - 3, 3p - 6, 4p - 10, etc.

Note: For k = 1, q = p - 1 then m = 
p p-( ) -( )2 1

2
. Order of extension is p - 2.

For k = 2, q = 2p - 3 then m = (p - 3)(p - 2)/2. Order of extension is p - 3.

For k = 3, q = 3p-6 then m = (p - 4)(p - 3)/2. Order of extension is p - 4 and 
so on.

In general order of extension of a graph G with q = pk - r is p - (k + 1), where 
p > k.

Theorem 9: If G is completely extendable graph, then size of G is pk - r, where k 
is any positive integer, (k < p) and r = k(k + 1)/2.

Proof: Let G be a completely extendable graph and n be the order of extension of 
G. Then Gn @ Kp. Number of edges added to G to get Kp is n(n + 1)/2.
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That is q + n(n + 1)/2 = p(p - 1)/2.

	 q = [p(p - 1)/2 - [n(n + 1)/2]	 (1)

For any value of p and n in (1), we get q = pk - r.

For example p = 6, n = 3 in (1) q = 9 and 9 = 2 ¥ 6 - 2 ¥ 3/2, where k = 2, p = 8, 
n = 5 in (1) q = 13 and 13 = 2 ¥ 8 - 2 ¥ 3/2, where k = 2.

That is for any completely extendable graph G, q = pk - r, where k = 1, 2, ... 
and r = k (k + 1)/2.

Remark: From theorem 8 and theorem 9 we can give a characterization for 
completely extendable graphs as follows.

Theorem 10: Let G be a completely extendable graph if and only if size of G is 
pk - r, where k is any positive integer (k < p) and r = k(k + 1)/2.

Definition 11: (Neighbourhood Graphs) [4]. Let G be a connected graph . For any 
v Œ V(G), open neighbourhood of v is defined as the set of all vertices of G which 
are adjacent to v and is denoted by N(v).

Construction: Let G be a connected graph with p vertices v1, v2, ..., vp and let 
Si = N(vi), i = 1, 2, ..., p. Then the neighbourhood graph N(G) of G is a graph 
with vertices are S1, S2, ..., Sp such that two vertices Si and Sj, i π j are adjacent, if 
Si « Sj π f.

Figure 2

S1 = N(v1) = {v2, v4} S2 = N(v2) = {v1, v3, v4} S3 = N(v3) = {v2} S4 = N(v4) = {v1, v2}

Theorem 12: N(Pn) is not completely extendable.

Proof: Let Pn be a path with n vertices.

Figure 3
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v2 is common neighbourhood of v1 and v3. That is S1 and S3 are adjacent in 
N(Pn), add one edge to N(Pn). v3 is common neighbourhood of v2 and v4. Therefore 
S2 and S4 are adjacent in N(Pn). Again add one edge to N(Pn). Continuing like this 
vn - 1 is common neighbourhood of vn - 2 and vn. Therefore Sn - 2 and Sn are adjacent 
in N(Pn), add one edge in N(Pn). Total number of edges in N(Pn) = n - 2.

By Theorem 8, a graph G with n - 2 edges is not completely extendable.

Theorem 13: Neighbourhood graph of tree T with three pendant vertices is completely 
extendable.

Figure 4

Proof: Let T be a tree with three pendant vertices. v2 is the common neighbour of 
v1 and v3. Therefore S1and S3 are adjacent in N(T). v3 is the common neighbour of 
v2 and v4. Therefore S2 and S4 are adjacent in N(T). Continuing like this vp - 2 is 
common neighbour of vp - 3, vp - 1 and vp. Therefore Sp - 3 and Sp - 1 are adjacent, 
Sp - 3 and Sp are adjacent, Sp - 1 and Sp are adjacent in N(T). Total number of edges 
in N(T) = p - 1. By Theorem 8, G with p - 1 edges is completely extendable.

Therefore N(T) is completely extendable.

Theorem 14: Let G be a (p, q) graph. If G has (p - 2) triangles contains all the 
edges then G is completely extendable.

Proof: Let G be a graph with p vertices, q edges and (p - 2) triangles. We have to 
show that G is completely extendable. For, it is enough to show that G has pk - r 
edges (by theorem 8). This can be proved by the method of mathematical induction 
on number of vertices p (p ≥ 3).

For p = 3, t = 1, q = 3 = 2 ¥ 3 - 3, where k = 2 , r = 2 ¥ 3/2

Assume that result is true for p = k and t = k - 2.

We want to show that result is true for p = k + 1 and t = k - 1. Let G be a graph 
with k + 1 vertices and k - 1 triangles. Remove one vertex of degree 2 from G, 
which causes removal of two edges. Then the resulting graph say G* has k vertices 
and k - 2 triangles. Then by assumption

	 | E(G*) | = 2k - 3.

But we have E(G*) = E(G) - 2
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Thus, 2k - 3 = E(G) - 2

	 E(G) = 2k - 1 = 2(k + 1) - 3.

Thus the result holds for p = k + 1.

Thus for any G with p vertices and p - 2 triangles, number of edges = pk - r.

Remark: For any graph G with p vertices and p - 2 triangles, number of edges is 
2p - 3.

Theorem 15: Let G be a (p, q) graph. If p = q then, G is not completely extendable.

Proof: By Theorem 8, G with q = pk - r where r = k(k + 1)/2 is completely extendable. 
But in this graph k = 1 and r = 0 . Therefore G is not completely extendable.

Notation 1: d vG i
i

k ( )Â  denotes sum of the degree of vertices of Gk where Gk is

the kth extension of G.

2.	 d v d vG i
i

G i
i

k ( ) : ( )Â Â
È

Î
Í
Í

˘

˚
˙
˙

 denotes the difference between sum of the degree of

	 vertices of Gk and sum of the degree vertices of G.

Theorem 16: Let G be a (p ,q) graph. G1, G2, ..., Gk are the extension graphs of 
G. Then

d v d vG i
i

G i
i

k ( ) : ( )Â Â
È

Î
Í
Í

˘

˚
˙
˙

 = d v d vG i
i

G i
i

k k( ) : ( )Â Â -

È

Î
Í
Í

˘

˚
˙
˙

1

	 + d v d vG i
i

G i
i

k k- -Â Â
È

Î
Í
Í

˘

˚
˙
˙

1 2( ) : ( )  + ... d v d vG i
i

G i
i

1 ( ) : ( )Â Â
È

Î
Í
Í

˘

˚
˙
˙

.

Proof: Let G be a graph with p vertices and q edges. G1, G2, ..., Gk be the extensions 
of G. Number of edges added to G to get Gk is k(k + 1)/2. By fundamental theorem 
of graphs, sum of degree of vertices is twice the number of edges. Sum of the degree 
of vertices of Gk = 2[q + k(k + 1)/2]. We want to show that

	 LHS =	RHS

	 d v d vG i
i

G i
i

k ( ) : ( )Â Â
È

Î
Í
Í

˘

˚
˙
˙

 =	2[q + k(k + 1)/2] –2q = k(k + 1)	 (1)

	 d v d vG i
i

G i
i

k k( ) : ( )Â Â -

È

Î
Í
Í

˘

˚
˙
˙

1  =	2[q + k(k + 1)/2] – 2[q + (k - 1)k/2] = 2k
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	 d v d vG i
i

G i
i

k k- -Â Â
È

Î
Í
Í

˘

˚
˙
˙

1 2( ) : ( )  =	2[q + k(k - 1)k/2] – 2[q + (k - 2)(k - 1)/2]

	 =	2(k - 1)

	 d v d vG i
i

G i
i

2 1( ) : ( )Â Â
È

Î
Í
Í

˘

˚
˙
˙

 =	2[q + 3] - 2[q + 1] = 4 = 2 ¥ 2

	 d v d vG i
i

G i
i

1 ( ) : ( )Â Â
È

Î
Í
Í

˘

˚
˙
˙

 =	2[q + 1] - 2 q = 2 = 2 ¥ 1

By adding the above equations, we get

	 d v d v d v d vG i
i

G i
i

G i
i

G i
i

k k k k( ) : ( ) ( ) : ( )Â Â Â Â- - -

È

Î
Í
Í

˘

˚
˙
˙

+
È

Î
Í
Í

˘
1 1 2

˚̊
˙
˙

		  + ... d v d vG i
i

G i
i

1 ( ) : ( )Â Â
È

Î
Í
Í

˘

˚
˙
˙

.

	 = 2[1 + 2 + ...... + (k-1) + k]

	 = 2[k(k + 1)/2] = k (k + 1)	 (2)

Equating (1) and (2) LHS = RHS.

Theorem 17: Let A(G) be the p ¥ p adjacency matrix of the graph G with p vertices. 
If total number of zeros in A (G) = r (r + 1) + p, then G is completely extendable 
and order of extension is r, where r is any positive integer.

Proof: In A(G) if vij is zero, then vji is also zero. If A(G) has r (r + 1) + p zeros implies 
it has [2 r (r + 1)/2] + p zeros. That is G has r(r + 1)/2 non adjacent vertices. If number 
of edges added to G to get Kp is r(r + 1)/2 , then G is completely extendable. vii are 
zero for all i in A(G). Therefore if G is completely extendable then total number of 
zeros in A(G) is r (r + 1) + p.

Definition 18: (Laplace Matrix of a graph) [1]. The Laplace Matrix of G is the 
matrix L indexed by the vertex set of G ,with zero row sums, where Lxy = -Axy for 
x π y. If D is the diagonal matrix, indexed by the vertex set of G such that Dxx is 
the degree of x, then

	 L = D - A. The elements of Laplace matrix are given by

	 Lij = 
deg v i j

v v

v v

i

i j

i j

if
if and are adjacent

if and are not adjacent

=
-

Ï

Ì 1

0

ÔÔÔ

Ó
Ô
Ô
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Example: Consider the following graph G,

The Laplace Matrix of G is,

	 L(G) = 

. v v v v
v
v
v
v

1 2 3 4

1

2

3

4

2 1 0 1
1 3 1 1

0 1 2 1
1 1 1 3

- -
- - -

- -
- - -

Ê

Ë

Á
Á
Á
Á
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ˆ

¯

˜
˜
˜
˜
˜̃̃

Theorem 19: Laplace matrix of a completely extendable graph has r (r + 1) zeros, 
where r is any positive integer.

Proof: Laplacian Matrix has r (r + 1) zeros implies G has r (r + 1)/2 non adjacent 
vertices. Number of edges added to G to get Kp is r(r + 1)/2 which implies G is a 
completely extendable graph and r is the order of extension.
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