# AN INTRODUCTION TO GRAPH EXTENSION

## G. Suresh Singh<sup>\*</sup> and Sunitha Grace Zacharia<sup>\*\*</sup>

### Abstract

In abstract algebra, field extensions are one of the main objects of study in field theory [5]. The general idea is to start with a base field and construct in some manner a larger field that contains the base field and satisfies additional properties. In this paper we study the extension of a graph G by adding edges in a particular manner. Extension in trees, cycles and neighbourhood graphs are also considered. Some graphs can be extended up to a complete graph. Further we characterise completely extendable graphs.

Keywords: Extendable Graph, Completely Extendable Graph, Order of Extension.

### 1. INTRODUCTION

Let G = (p, q) be a finite, non trivial, undirected simple graph which is not complete. Extension on *G* is defined as adding edges to non adjacent pair of vertices in such a way that in the first extension add one edge to *G* and denoted as  $G^1$ , in the second extension add two edges in  $G^1$ , denoted by  $G^2$ ,  $G^2 = G \cup \{e_1, e_2, e_3\}$  and so on until no such an extension remains. Certain graphs become complete after a finite number of extensions. Then, the given graph is said to be completely extendable. For basic definitions and results in graph theory we follow [2] and [3].

**Definition 1:** Let G be a simple (p, q) graph. Extension on G is defined as follows; in the first extension, add one edge to G, denoted as  $G^1$ ,  $G^1 = G \cup \{e_1\}$ . In the second extension add two edges on  $G^1$  denoted by  $G^2$ ,  $G^2 = G \cup \{e_1, e_2, e_3\}$  and so on until no such an extension remains.

**Theorem 2:** Let G be a (p, q) graph and let  $G^k = G \cup \{e_1, e_2, ..., e_m\}$ . If  $G^k$  is the  $k^{\text{th}}$  extension of G, then  $m = \frac{k(k+1)}{2}$ .

<sup>\*</sup> Department of Mathematics, University of Kerala, Kariavattom. Thiruvananthapuram, Kerala, India

<sup>\*\*</sup> Corresponding Author, Department of Mathematics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India. *Email: sunithajosie@gmail.com* 

**Proof:** We shall prove this theorem by induction on *k*, where  $G^k$  is the  $k^{\text{th}}$  extension of *G*. For k = 1,  $G^1 = G \cup \{e_1\}$ ,  $m = 1 \times 2/2$ 

Assume that result is true for k = n. We want to prove that it is true for k = n + 1. For k = n + 1,

$$G^{n+1} = G \cup \left\{ e_1, e_2, \dots, e_{\frac{n(n+1)}{2}}, e_{\frac{n(n+1)}{2}+1}, \dots, e_{\frac{n(n+1)}{2}+(n+1)} \right\}$$

That is  $G^{n+1} = G \cup \{e_1, e_2, ..., e_m\}$  where  $m = \frac{(n+1)(n+2)}{2}$  which implies theorem is true for k = n + 1.

Hence if 
$$G^k = G \cup \{e_1, e_2, ..., e_m\}$$
 is the  $k^{\text{th}}$  extension of G then  $m = \frac{k(k+1)}{2}$ .

**Definition 3:** If  $G^k \cong K_{p^*}$  then G is said to be a completely extendable graph and k is known as the order of extension.

**Example:** 



In Figure 1, *G* is a simple graph with 5 vertices and 7 edges. Number of edges added to *G* to get  $K_5$  is 3. That is  $m = 2 \times 3/2$ . In the first extension  $G^1$  add the edge (1, 4). That is

$$G^1 = G \cup \{(1, 4)\}.$$

To get  $G^2$  add 2 edges in  $G^1$ , (2, 5) (3, 4). That is  $G^2 = G \cup \{(1, 4), (2, 5), (3,4)\}$ . Then G became a complete graph after the second extension. Therefore G is a completely extendable graph and order of extension is 2.

Theorem 4: Every tree is completely extendable.

**Proof:** Let *T* be a tree with *p* vertices ( $p \ge 3$ ). If *T* is completely extendable then there exist a *k* such that  $T^k \cong K_p$ . Since *T* is a tree with *p* vertices |E(T)| = p - 1. But

$$|\operatorname{E}(K_p)| = \frac{p(p-1)}{2}.$$

Therefore number of edges added to T to get

$$K_p \text{ is} = \frac{p(p-1)}{2} - (p-1) = \frac{p^2 - 3p + 2}{2}.$$
 (1)

When p = 3 (1) becomes  $\frac{9-9+2}{2} = 1$ . Then it is clear that for p = 3 there exist k = 1 such that  $T^1 \cong K_3$ 

When p = 4 (1) becomes  $\frac{16-12+2}{2} = 3$ . Then it is clear that for p = 4 there exist a k = 2 such that  $T^2 \cong K_4$ .

In general for 
$$p = r, r \ge 3$$
 (1) becomes  $\frac{r^2 - 3r + 2}{2} = \frac{(r-2)(r-1)}{2}$ .  
That is number of edges added is equal to  $m = 1 + 2 + 3 + \dots, (r-2) = \frac{(r-2)(r-1)}{2}$   
For every  $p = r$  there exist a  $k = r - 2$  such that  $T^{r-2} \cong K_r$ .

Therefore every tree is completely extendable and order of extension is (p-2). **Theorem 5:** Cycle  $C_p$  is not completely extendable.

**Proof:** Let *G* be a cycle with *p* vertices ( $p \ge 4$ ). If *G* is completely extendable then there exist a *k* such that  $G^k \cong K_p$ . Since *G* is a cycle with *p* vertices |E(G)| = p. We know that  $|E(K_p)| = \frac{p(p-1)}{2}$ .

Number of edges added to G to get  $K_p$  is  $= \frac{p(p-1)}{2} - p = \frac{p^2 - 3p}{2}$  (1)

For 
$$p = 4$$
 (1) becomes  $\frac{16-12}{2} = 2$ . We cannot find a k such that  $G^k \cong K_p$ .

Therefore  $C_p$  is not completely extendable.

Definition 6: Chord is an edge joining two non adjacent vertices in a cycle.

**Theorem 7:** Any Cycle  $C_p$  with p - 3 chords is completely extendable.

**Proof:** Let  $C_p$  be a cycle with p vertices  $(p \ge 4)$ . Consider a graph G,  $G = C_p + (p-3)$  chords. If G is completely extendable then there exist a k such that  $G^k \cong K_p$ . Since G is a cycle with p vertices and (p-3) chords then |E(G)| = p + p + -3 = 2p - 3.

But 
$$|E(K_p)| = p(p-1)/2$$
.

Number of edges added to G to get  $K_p$  is = p(p-1)/2 - (2p-3)

$$=\frac{p^2 - 5p + 6}{2}$$
(1)

For any value of p in (1), for example p = 4 (1) becomes (16-20 + 6)/2 = 1. Then there exist a k (equal to1) such that  $G^1 \cong K_p$ .

For p = 5, (1) becomes (25-25+6)/2 = 3. Then there exist a k (equal to 2) such that  $G^2 \cong K_p$ .

In general for p = r,  $r \ge 4$ , (1) become s(r-3)(r-2)/2. There exist a k = r-3 such that  $G^{r-3} \cong K_p$  where m = (r-3)(r-2)/2. That is for every p there exist a k such that  $G^k \cong K_p$ .

Hence a cycle with p vertices and (p-3) chords is completely extendable.

**Remark:** Order of extension of any cycle with p vertices and p - 3 chords is (p - 3).

**Theorem 8:** Let *G* be a (p, q) graph. If q = pk - r where r = k(k + 1)/2 and k < p, then *G* is completely extendable.

**Proof:** We know that number of edges in  $K_p$  is  $|E(K_p)| = p(p-1)/2$ 

Number of edges in the given graph *G* is |E(G)| = pk - k(k+1)/2.

Number of edges added to G to get  $K_p$  is p(p-1)/2 - pk + k(k+1)/2

$$=\frac{p^2 - (2k+1)P + (k^2 + k)}{2}.$$
 (1)

For any value for p and k in (1), there exist a k such that  $G^k \cong K_p$ . Therefore G is completely extendable if q = pk - r, where r = k(k + 1)/2. That is q = p - 1, 2p - 3, 3p - 6, 4p - 10, etc.

Note: For 
$$k = 1$$
,  $q = p - 1$  then  $m = \frac{(p-2)(p-1)}{2}$ . Order of extension is  $p - 2$ .

For k = 2, q = 2p - 3 then m = (p - 3)(p - 2)/2. Order of extension is p - 3.

For k = 3, q = 3p-6 then m = (p-4)(p-3)/2. Order of extension is p - 4 and so on.

In general order of extension of a graph *G* with q = pk - r is p - (k + 1), where p > k.

**Theorem 9:** If *G* is completely extendable graph, then size of *G* is pk - r, where *k* is any positive integer, (k < p) and r = k(k + 1)/2.

**Proof:** Let *G* be a completely extendable graph and *n* be the order of extension of *G*. Then  $G^n \cong K_p$ . Number of edges added to *G* to get  $K_p$  is n(n + 1)/2.

That is q + n(n + 1)/2 = p(p - 1)/2.

$$q = [p(p-1)/2 - [n(n+1)/2]$$
(1)

For any value of p and n in (1), we get q = pk - r.

For example p = 6, n = 3 in (1) q = 9 and  $9 = 2 \times 6 - 2 \times 3/2$ , where k = 2, p = 8, n = 5 in (1) q = 13 and  $13 = 2 \times 8 - 2 \times 3/2$ , where k = 2.

That is for any completely extendable graph *G*, q = pk - r, where k = 1, 2, ... and r = k (k + 1)/2.

**Remark:** From theorem 8 and theorem 9 we can give a characterization for completely extendable graphs as follows.

**Theorem 10:** Let *G* be a completely extendable graph if and only if size of *G* is pk - r, where *k* is any positive integer (k < p) and r = k(k + 1)/2.

**Definition 11: (Neighbourhood Graphs)** [4]. Let *G* be a connected graph. For any  $v \in V(G)$ , open neighbourhood of *v* is defined as the set of all vertices of *G* which are adjacent to *v* and is denoted by N(v).

**Construction:** Let *G* be a connected graph with *p* vertices  $v_1, v_2, ..., v_p$  and let  $S_i = N(v_i)$ , i = 1, 2, ..., p. Then the neighbourhood graph N(G) of *G* is a graph with vertices are  $S_1, S_2, ..., S_p$  such that two vertices  $S_i$  and  $S_j$ ,  $i \neq j$  are adjacent, if  $S_i \cap S_j \neq \phi$ .



 $S_1 = N(v_1) = \{v_2, v_4\} S_2 = N(v_2) = \{v_1, v_3, v_4\} S_3 = N(v_3) = \{v_2\} S_4 = N(v_4) = \{v_1, v_2\} S_4 = N(v_4) = \{v_1, v_2\} S_4 = N(v_4) = \{v_1, v_3, v_4\} S_3 = N(v_3) = \{v_1, v_3, v_4\} S_4 = N(v_4) = \{v_1, v_4\} S_4 = N(v_4) = N(v_4$ 



**Theorem 12:**  $N(P_n)$  is not completely extendable.

**Proof:** Let  $P_n$  be a path with *n* vertices.



 $v_2$  is common neighbourhood of  $v_1$  and  $v_3$ . That is  $S_1$  and  $S_3$  are adjacent in  $N(P_n)$ , add one edge to  $N(P_n)$ .  $v_3$  is common neighbourhood of  $v_2$  and  $v_4$ . Therefore  $S_2$  and  $S_4$  are adjacent in  $N(P_n)$ . Again add one edge to  $N(P_n)$ . Continuing like this  $v_{n-1}$  is common neighbourhood of  $v_{n-2}$  and  $v_n$ . Therefore  $S_{n-2}$  and  $S_n$  are adjacent in  $N(P_n)$ , add one edge in  $N(P_n)$ . Total number of edges in  $N(P_n) = n - 2$ .

By Theorem 8, a graph G with n - 2 edges is not completely extendable.

**Theorem 13:** Neighbourhood graph of tree *T* with three pendant vertices is completely extendable.



**Proof:** Let *T* be a tree with three pendant vertices.  $v_2$  is the common neighbour of  $v_1$  and  $v_3$ . Therefore  $S_1$  and  $S_3$  are adjacent in N(T).  $v_3$  is the common neighbour of  $v_2$  and  $v_4$ . Therefore  $S_2$  and  $S_4$  are adjacent in N(T). Continuing like this  $v_{p-2}$  is common neighbour of  $v_{p-3}$ ,  $v_{p-1}$  and  $v_p$ . Therefore  $S_{p-3}$  and  $S_{p-1}$  are adjacent,  $S_{p-3}$  and  $S_p$  are adjacent,  $S_{p-1}$  and  $S_p$  are adjacent in N(T). Total number of edges in N(T) = p - 1. By Theorem 8, *G* with p - 1 edges is completely extendable.

Therefore N(T) is completely extendable.

**Theorem 14:** Let G be a (p, q) graph. If G has (p - 2) triangles contains all the edges then G is completely extendable.

**Proof:** Let *G* be a graph with *p* vertices, *q* edges and (p - 2) triangles. We have to show that *G* is completely extendable. For, it is enough to show that *G* has pk - r edges (by theorem 8). This can be proved by the method of mathematical induction on number of vertices p ( $p \ge 3$ ).

For 
$$p = 3$$
,  $t = 1$ ,  $q = 3 = 2 \times 3 - 3$ , where  $k = 2$ ,  $r = 2 \times 3/2$ 

Assume that result is true for p = k and t = k - 2.

We want to show that result is true for p = k + 1 and t = k - 1. Let G be a graph with k + 1 vertices and k - 1 triangles. Remove one vertex of degree 2 from G, which causes removal of two edges. Then the resulting graph say  $G^*$  has k vertices and k - 2 triangles. Then by assumption

$$|E(G^*)| = 2k - 3.$$

But we have  $E(G^*) = E(G) - 2$ 

Thus, 2k - 3 = E(G) - 2

E(G) = 2k - 1 = 2(k + 1) - 3.

Thus the result holds for p = k + 1.

Thus for any G with p vertices and p - 2 triangles, number of edges = pk - r.

**Remark:** For any graph G with p vertices and p - 2 triangles, number of edges is 2p - 3.

**Theorem 15:** Let G be a (p, q) graph. If p = q then, G is not completely extendable.

**Proof:** By Theorem 8, G with q = pk - r where r = k(k+1)/2 is completely extendable. But in this graph k = 1 and r = 0. Therefore G is not completely extendable.

**Notation 1:**  $\sum_{i} d_{G^k}(v_i)$  denotes sum of the degree of vertices of  $G^k$  where  $G^k$  is the  $k^{th}$  extension of G.

2.  $\left| \sum_{i} d_{G^k}(v_i) : \sum_{i} d_G(v_i) \right|$  denotes the difference between sum of the degree of vertices of  $G^k$  and sum of the degree vertices of G.

**Theorem 16:** Let G be a (p,q) graph.  $G^1, G^2, ..., G^k$  are the extension graphs of G. Then

$$\begin{bmatrix} \sum_{i} d_{G^{k}}(v_{i}) : \sum_{i} d_{G}(v_{i}) \end{bmatrix} = \begin{bmatrix} \sum_{i} d_{G^{k}}(v_{i}) : \sum_{i} d_{G^{k-1}}(v_{i}) \end{bmatrix} + \begin{bmatrix} \sum_{i} d_{G^{k-1}}(v_{i}) : \sum_{i} d_{G^{k-2}}(v_{i}) \end{bmatrix} + \dots \begin{bmatrix} \sum_{i} d_{G^{1}}(v_{i}) : \sum_{i} d_{G}(v_{i}) \end{bmatrix}.$$

**Proof:** Let G be a graph with p vertices and q edges.  $G^1, G^2, ..., G^k$  be the extensions of G. Number of edges added to G to get  $G^{k}$  is k(k+1)/2. By fundamental theorem of graphs, sum of degree of vertices is twice the number of edges. Sum of the degree of vertices of  $G^k = 2[q + k(k+1)/2]$ . We want to show that

LHS = RHS

$$\left[\sum_{i} d_{G^{k}}(v_{i}) : \sum_{i} d_{G}(v_{i})\right] = 2[q + k(k+1)/2] - 2q = k(k+1)$$
(1)

$$\left[\sum_{i} d_{G^{k}}(v_{i}) : \sum_{i} d_{G^{k-1}}(v_{i})\right] = 2[q + k(k+1)/2] - 2[q + (k-1)k/2] = 2k$$

$$\sum_{i} d_{G^{k-1}}(v_i) : \sum_{i} d_{G^{k-2}}(v_i) = 2[q + k(k-1)k/2] - 2[q + (k-2)(k-1)/2]$$
$$= 2(k-1)$$
$$\left[\sum_{i} d_{G^2}(v_i) : \sum_{i} d_{G^1}(v_i)\right] = 2[q+3] - 2[q+1] = 4 = 2 \times 2$$
$$\left[\sum_{i} d_{G^1}(v_i) : \sum_{i} d_{G}(v_i)\right] = 2[q+1] - 2q = 2 = 2 \times 1$$

By adding the above equations, we get

$$\left[\sum_{i} d_{G^{k}}(v_{i}) : \sum_{i} d_{G^{k-1}}(v_{i})\right] + \left[\sum_{i} d_{G^{k-1}}(v_{i}) : \sum_{i} d_{G^{k-2}}(v_{i})\right] + \dots \left[\sum_{i} d_{G^{1}}(v_{i}) : \sum_{i} d_{G}(v_{i})\right].$$

$$= 2[1 + 2 + \dots + (k-1) + k]$$

$$= 2[k(k+1)/2] = k(k+1)$$
(2)

Equating (1) and (2) LHS = RHS.

**Theorem 17:** Let A(G) be the  $p \times p$  adjacency matrix of the graph G with p vertices. If total number of zeros in A(G) = r(r+1) + p, then G is completely extendable and order of extension is r, where r is any positive integer.

**Proof:** In A(G) if  $v_{ij}$  is zero, then  $v_{ji}$  is also zero. If A(G) has r(r+1) + p zeros implies it has [2 r(r+1)/2] + p zeros. That is G has r(r+1)/2 non adjacent vertices. If number of edges added to G to get  $K_p$  is r(r+1)/2, then G is completely extendable.  $v_{ii}$  are zero for all i in A(G). Therefore if G is completely extendable then total number of zeros in A(G) is r(r+1) + p.

**Definition 18:** (*Laplace Matrix of a graph*) [1]. The Laplace Matrix of *G* is the matrix *L* indexed by the vertex set of *G*, with zero row sums, where  $L_{xy} = -A_{xy}$  for  $x \neq y$ . If *D* is the diagonal matrix, indexed by the vertex set of *G* such that  $D_{xx}$  is the degree of *x*, then

L = D - A. The elements of Laplace matrix are given by

$$L_{ij} = \begin{cases} \deg v_i & \text{if } i = j \\ -1 & \text{if } v_i \text{ and } v_j \text{ are adjacent} \\ 0 & \text{if } v_i \text{ and } v_j \text{ are not adjacent} \end{cases}$$

Example: Consider the following graph G,



The Laplace Matrix of G is,

$$L(G) = \begin{pmatrix} \cdot & v_1 & v_2 & v_3 & v_4 \\ v_1 & 2 & -1 & 0 & -1 \\ v_2 & -1 & 3 & -1 & -1 \\ v_3 & 0 & -1 & 2 & -1 \\ v_4 & -1 & -1 & -1 & 3 \end{pmatrix}$$

**Theorem 19:** Laplace matrix of a completely extendable graph has r(r + 1) zeros, where r is any positive integer.

**Proof:** Laplacian Matrix has r(r+1) zeros implies G has r(r+1)/2 non adjacent vertices. Number of edges added to G to get  $K_p$  is r(r+1)/2 which implies G is a completely extendable graph and r is the order of extension.

#### References

- [1] Andries.E.Brouwer, Willem. H. Haemers, Spectra of graphs, Springer, 2011.
- [2] Frank Harary, Graph Theory, Narosa Publishing House 2001.
- [3] G. Suresh Singh, *Graph theory*, PHI Learning Private Limited, New Delhi, 2010.
- [4] G. Suresh Singh and M.R. Hari Krishnan, On Neighbourhood Graphs, International journal of Mathematical Sciences & Engineering Applications, volume 6 (November 2012).
- [5] John.B.Fraleigh, A First Course In Abstract Algebra, Narosa Publishing House.