# AN INTRODUCTION TO GRAPH EXTENSION 

## G. Suresh Singh * and Sunitha Grace Zacharia**


#### Abstract

In abstract algebra, field extensions are one of the main objects of study in field theory [5]. The general idea is to start with a base field and construct in some manner a larger field that contains the base field and satisfies additional properties. In this paper we study the extension of a graph $G$ by adding edges in a particular manner. Extension in trees, cycles and neighbourhood graphs are also considered. Some graphs can be extended up to a complete graph. Further we characterise completely extendable graphs.


Keywords: Extendable Graph, Completely Extendable Graph, Order of Extension.

## 1. INTRODUCTION

Let $G=(p, q)$ be a finite, non trivial, undirected simple graph which is not complete. Extension on $G$ is defined as adding edges to non adjacent pair of vertices in such a way that in the first extension add one edge to $G$ and denoted as $G^{1}$, in the second extension add two edges in $G^{1}$, denoted by $G^{2}, G^{2}=G \cup\left\{e_{1}, e_{2}, e_{3}\right\}$ and so on until no such an extension remains. Certain graphs become complete after a finite number of extensions. Then, the given graph is said to be completely extendable. For basic definitions and results in graph theory we follow [2] and [3].

Definition 1: Let $G$ be a simple $(p, q)$ graph. Extension on $G$ is defined as follows; in the first extension, add one edge to $G$, denoted as $G^{1}, G^{1}=G \cup\left\{e_{1}\right\}$. In the second extension add two edges on $G^{1}$ denoted by $G^{2}, G^{2}=G \cup\left\{e_{1}, e_{2}, e_{3}\right\}$ and so on until no such an extension remains.

Theorem 2: Let $G$ be a $(p, q)$ graph and let $G^{k}=G \cup\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. If $G^{k}$ is the $k^{\text {th }}$ extension of $G$, then $m=\frac{k(k+1)}{2}$.

[^0]Proof: We shall prove this theorem by induction on $k$, where $G^{k}$ is the $k^{\text {th }}$ extension of $G$. For $k=1, G^{1}=G \cup\left\{e_{1}\right\}, m=1 \times 2 / 2$

Assume that result is true for $k=n$. We want to prove that it is true for $k=n+1$.
For $k=n+1$,

$$
G^{n+1}=G \cup\left\{e_{1}, e_{2}, \ldots, e_{\frac{n(n+1)}{2}}, e_{\frac{n(n+1)}{2}+1}, \ldots, e_{\frac{n(n+1)}{2}+(n+1)}\right\}
$$

That is $G^{n+1}=G \cup\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ where $m=\frac{(n+1)(n+2)}{2}$ which implies theorem is true for $k=n+1$.

Hence if $G^{k}=G \cup\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ is the $k^{\text {th }}$ extension of $G$ then $m=\frac{k(k+1)}{2}$.
Definition 3: If $G^{k} \cong K_{p}$, then $G$ is said to be a completely extendable graph and $k$ is known as the order of extension.

## Example:



Figure 1
In Figure 1, $G$ is a simple graph with 5 vertices and 7 edges. Number of edges added to $G$ to get $K_{5}$ is 3 . That is $m=2 \times 3 / 2$. In the first extension $G^{1}$ add the edge $(1,4)$.That is

$$
G^{1}=G \cup\{(1,4)\} .
$$

To get $G^{2}$ add 2 edges in $G^{1},(2,5)(3,4)$. That is $G^{2}=G \cup\{(1,4),(2,5)$, $(3,4)\}$. Then $G$ became a complete graph after the second extension. Therefore $G$ is a completely extendable graph and order of extension is 2 .

Theorem 4: Every tree is completely extendable.
Proof: Let $T$ be a tree with $p$ vertices ( $p \geq 3$ ). If $T$ is completely extendable then there exist a $k$ such that $T^{k} \cong K_{p}$. Since $T$ is a tree with $p$ vertices $|\mathrm{E}(T)|=p-1$. But

$$
\left|\mathrm{E}\left(K_{p}\right)\right|=\frac{p(p-1)}{2}
$$

Therefore number of edges added to $T$ to get

$$
\begin{equation*}
K_{p} \text { is }=\frac{p(p-1)}{2}-(p-1)=\frac{p^{2}-3 p+2}{2} \tag{1}
\end{equation*}
$$

When $p=3$ (1) becomes $\frac{9-9+2}{2}=1$. Then it is clear that for $p=3$ there exist $k=1$ such that $T^{1} \cong K_{3}$

When $p=4$ (1) becomes $\frac{16-12+2}{2}=3$. Then it is clear that for $p=4$ there exist a $k=2$ such that $T^{2} \cong K_{4}$.

In general for $p=r, r \geq 3$ (1) becomes $\frac{r^{2}-3 r+2}{2}=\frac{(r-2)(r-1)}{2}$.
That is number of edges added is equal to $m=1+2+3+\ldots,(r-2)=\frac{(r-2)(r-1)}{2}$
For every $p=r$ there exist a $k=r-2$ such that $T^{r-2} \cong K_{r}$.
Therefore every tree is completely extendable and order of extension is $(p-2)$.
Theorem 5: Cycle $C_{p}$ is not completely extendable.
Proof: Let $G$ be a cycle with $p$ vertices ( $p \geq 4$ ). If $G$ is completely extendable then there exist a $k$ such that $G^{k} \cong K_{p}$. Since $G$ is a cycle with $p$ vertices $|\mathrm{E}(\mathrm{G})|=p$. We know that $\left|\mathrm{E}\left(K_{p}\right)\right|=\frac{p(p-1)}{2}$.

Number of edges added to $G$ to get $K_{p}$ is $=\frac{p(p-1)}{2}-p=\frac{p^{2}-3 p}{2}$
For $p=4$ (1) becomes $\frac{16-12}{2}=2$. We cannot find a $k$ such that $G^{k} \cong K_{p}$.
Therefore $C_{p}$ is not completely extendable.
Definition 6: Chord is an edge joining two non adjacent vertices in a cycle.
Theorem 7: Any Cycle $C_{p}$ with $p-3$ chords is completely extendable.
Proof: Let $C_{p}$ be a cycle with $p$ vertices $(p \geq 4)$. Consider a graph $G, G=C_{p}+(p-3)$ chords. If $G$ is completely extendable then there exist a $k$ such that $G^{k} \cong K_{p}$. Since $G$ is a cycle with $p$ vertices and $(p-3)$ chords then $|E(G)|=p+p+-3=2 p-3$.

But $\left|\mathrm{E}\left(K_{p}\right)\right|=p(p-1) / 2$.
Number of edges added to $G$ to get $K_{p}$ is $=p(p-1) / 2-(2 p-3)$

$$
\begin{equation*}
=\frac{p^{2}-5 p+6}{2} \tag{1}
\end{equation*}
$$

For any value of $p$ in (1), for example $p=4$ (1) becomes $(16-20+6) / 2=1$. Then there exist a $k$ (equal tol) such that $G^{1} \cong K_{p}$.

For $p=5$, ( 1 ) becomes $(25-25+6) / 2=3$. Then there exist a $k$ (equal to 2 ) such that $G^{2} \cong K_{p}$.

In general for $p=r, r \geq 4$, (1) become $s(r-3)(r-2) / 2$. There exist a $k=r-3$ such that $G^{r-3} \cong K_{p}$ where $m=(r-3)(r-2) / 2$. That is for every $p$ there exist a $k$ such that $G^{k} \cong K_{p}$.

Hence a cycle with $p$ vertices and $(p-3)$ chords is completely extendable.
Remark: Order of extension of any cycle with $p$ vertices and $p-3$ chords is $(p-3)$.
Theorem 8: Let $G$ be a $(p, q)$ graph. If $q=p k-r$ where $r=k(k+1) / 2$ and $k<p$, then $G$ is completely extendable.

Proof: We know that number of edges in $K_{p}$ is $\left|E\left(K_{p}\right)\right|=p(p-1) / 2$
Number of edges in the given graph $G$ is $|E(G)|=p k-k(k+1) / 2$.
Number of edges added to $G$ to get $K_{p}$ is $p(p-1) / 2-p k+k(k+1) / 2$

$$
\begin{equation*}
=\frac{p^{2}-(2 k+1) P+\left(k^{2}+k\right)}{2} \tag{1}
\end{equation*}
$$

For any value for $p$ and $k$ in (1), there exist a $k$ such that $G^{k} \cong K_{p}$. Therefore $G$ is completely extendable if $q=p k-r$, where $r=k(k+1) / 2$. That is $q=p-1$, $2 p-3,3 p-6,4 p-10$, etc.
Note: For $k=1, q=p-1$ then $m=\frac{(p-2)(p-1)}{2}$. Order of extension is $p-2$.
For $k=2, q=2 p-3$ then $m=(p-3)(p-2) / 2$. Order of extension is $p-3$.
For $k=3, q=3 p-6$ then $m=(p-4)(p-3) / 2$. Order of extension is $p-4$ and so on.

In general order of extension of a graph $G$ with $q=p k-r$ is $p-(k+1)$, where $p>k$.
Theorem 9: If $G$ is completely extendable graph, then size of $G$ is $p k-r$, where $k$ is any positive integer, $(k<p)$ and $r=k(k+1) / 2$.

Proof: Let $G$ be a completely extendable graph and $n$ be the order of extension of $G$. Then $G^{n} \cong K_{p}$. Number of edges added to $G$ to get $K_{p}$ is $n(n+1) / 2$.

That is $q+n(n+1) / 2=p(p-1) / 2$.

$$
\begin{equation*}
q=[p(p-1) / 2-[n(n+1) / 2] \tag{1}
\end{equation*}
$$

For any value of $p$ and $n$ in (1), we get $q=p k-r$.
For example $p=6, n=3$ in (1) $q=9$ and $9=2 \times 6-2 \times 3 / 2$, where $k=2, p=8$, $n=5$ in (1) $q=13$ and $13=2 \times 8-2 \times 3 / 2$, where $k=2$.

That is for any completely extendable graph $G, q=p k-r$, where $k=1,2, \ldots$ and $r=k(k+1) / 2$.

Remark: From theorem 8 and theorem 9 we can give a characterization for completely extendable graphs as follows.

Theorem 10: Let $G$ be a completely extendable graph if and only if size of $G$ is $p k-r$, where $k$ is any positive integer $(k<p)$ and $r=k(k+1) / 2$.

Definition 11: (Neighbourhood Graphs) [4]. Let $G$ be a connected graph . For any $v \in V(G)$, open neighbourhood of $v$ is defined as the set of all vertices of $G$ which are adjacent to $v$ and is denoted by $N(v)$.

Construction: Let $G$ be a connected graph with $p$ vertices $v_{1}, v_{2}, \ldots, v_{p}$ and let $S_{i}=N\left(v_{i}\right), i=1,2, \ldots, p$. Then the neighbourhood $\operatorname{graph} N(G)$ of $G$ is a graph with vertices are $S_{1}, S_{2}, \ldots, S_{p}$ such that two vertices $S_{i}$ and $S_{j}, i \neq j$ are adjacent, if $S_{i} \cap S_{j} \neq \phi$.


Figure 2

$$
S_{1}=N\left(v_{1}\right)=\left\{v_{2}, v_{4}\right\} S_{2}=N\left(v_{2}\right)=\left\{v_{1}, v_{3}, v_{4}\right\} S_{3}=N\left(v_{3}\right)=\left\{v_{2}\right\} S_{4}=N\left(v_{4}\right)=\left\{v_{1}, v_{2}\right\}
$$



Theorem 12: $N\left(P_{n}\right)$ is not completely extendable.
Proof: Let $P_{n}$ be a path with $n$ vertices.


Figure 3
$v_{2}$ is common neighbourhood of $v_{1}$ and $v_{3}$. That is $S_{1}$ and $S_{3}$ are adjacent in $N\left(P_{n}\right)$, add one edge to $N\left(P_{n}\right) \cdot v_{3}$ is common neighbourhood of $v_{2}$ and $v_{4}$. Therefore $S_{2}$ and $S_{4}$ are adjacent in $N\left(P_{n}\right)$. Again add one edge to $N\left(P_{n}\right)$. Continuing like this $v_{n-1}$ is common neighbourhood of $v_{n-2}$ and $v_{n}$. Therefore $S_{n-2}$ and $S_{n}$ are adjacent in $N\left(P_{n}\right)$, add one edge in $N\left(P_{n}\right)$. Total number of edges in $N\left(P_{n}\right)=n-2$.

By Theorem 8, a graph $G$ with $n-2$ edges is not completely extendable.
Theorem 13: Neighbourhood graph of tree $T$ with three pendant vertices is completely extendable.


Figure 4
Proof: Let $T$ be a tree with three pendant vertices. $v_{2}$ is the common neighbour of $v_{1}$ and $v_{3}$. Therefore $S_{1}$ and $S_{3}$ are adjacent in $N(T) . v_{3}$ is the common neighbour of $v_{2}$ and $v_{4}$. Therefore $S_{2}$ and $S_{4}$ are adjacent in $N(T)$. Continuing like this $v_{p-2}$ is common neighbour of $v_{p-3}, v_{p-1}$ and $v_{p}$. Therefore $S_{p-3}$ and $S_{p-1}$ are adjacent, $S_{p-3}$ and $S_{p}$ are adjacent, $S_{p-1}$ and $S_{p}$ are adjacent in $N(T)$. Total number of edges in $N(T)=p-1$. By Theorem $8, G$ with $p-1$ edges is completely extendable.

Therefore $N(T)$ is completely extendable.
Theorem 14: Let $G$ be a $(p, q)$ graph. If $G$ has $(p-2)$ triangles contains all the edges then $G$ is completely extendable.

Proof: Let $G$ be a graph with $p$ vertices, $q$ edges and $(p-2)$ triangles. We have to show that $G$ is completely extendable. For, it is enough to show that $G$ has $p k-r$ edges (by theorem 8). This can be proved by the method of mathematical induction on number of vertices $p(p \geq 3)$.

For $p=3, t=1, q=3=2 \times 3-3$, where $k=2, r=2 \times 3 / 2$
Assume that result is true for $p=k$ and $t=k-2$.
We want to show that result is true for $p=k+1$ and $t=k-1$. Let $G$ be a graph with $k+1$ vertices and $k-1$ triangles. Remove one vertex of degree 2 from $G$, which causes removal of two edges. Then the resulting graph say $G^{*}$ has $k$ vertices and $k-2$ triangles. Then by assumption

$$
\left|E\left(G^{*}\right)\right|=2 k-3 .
$$

But we have $E\left(G^{*}\right)=E(G)-2$

Thus, $2 k-3=E(G)-2$

$$
E(G)=2 k-1=2(k+1)-3 .
$$

Thus the result holds for $p=k+1$.
Thus for any $G$ with $p$ vertices and $p-2$ triangles, number of edges $=p k-r$.
Remark: For any graph $G$ with $p$ vertices and $p-2$ triangles, number of edges is $2 p-3$.

Theorem 15: Let $G$ be a $(p, q)$ graph. If $p=q$ then, $G$ is not completely extendable.
Proof: By Theorem $8, G$ with $q=p k-r$ where $r=k(k+1) / 2$ is completely extendable. But in this graph $k=1$ and $r=0$. Therefore $G$ is not completely extendable.
Notation 1: $\sum_{i} d_{G^{k}}\left(v_{i}\right)$ denotes sum of the degree of vertices of $G^{k}$ where $G^{k}$ is the $k^{\text {th }}$ extension of $G$.
2. $\left[\sum_{i} d_{G^{k}}\left(v_{i}\right): \sum_{i} d_{G}\left(v_{i}\right)\right]$ denotes the difference between sum of the degree of vertices of $G^{k}$ and sum of the degree vertices of $G$.
Theorem 16: Let $G$ be a $(p, q)$ graph. $G^{1}, G^{2}, \ldots, G^{k}$ are the extension graphs of $G$. Then

$$
\begin{aligned}
& {\left[\sum_{i} d_{G^{k}}\left(v_{i}\right): \sum_{i} d_{G}\left(v_{i}\right)\right]=\left[\sum_{i} d_{G^{k}}\left(v_{i}\right): \sum_{i} d_{G^{k-1}}\left(v_{i}\right)\right]} \\
& +\left[\sum_{i} d_{G^{k-1}}\left(v_{i}\right): \sum_{i} d_{G^{k-2}}\left(v_{i}\right)\right]+\ldots\left[\sum_{i} d_{G^{1}}\left(v_{i}\right): \sum_{i} d_{G}\left(v_{i}\right)\right] .
\end{aligned}
$$

Proof: Let $G$ be a graph with $p$ vertices and $q$ edges. $G^{1}, G^{2}, \ldots, G^{k}$ be the extensions of $G$. Number of edges added to $G$ to get $G^{k}$ is $k(k+1) / 2$. By fundamental theorem of graphs, sum of degree of vertices is twice the number of edges. Sum of the degree of vertices of $G^{k}=2[q+k(k+1) / 2]$. We want to show that
LHS = RHS

$$
\begin{align*}
{\left[\sum_{i} d_{G^{k}}\left(v_{i}\right): \sum_{i} d_{G}\left(v_{i}\right)\right] } & =2[q+k(k+1) / 2]-2 q=k(k+1)  \tag{1}\\
{\left[\sum_{i} d_{G^{k}}\left(v_{i}\right): \sum_{i} d_{G^{k-1}}\left(v_{i}\right)\right] } & =2[q+k(k+1) / 2]-2[q+(k-1) k / 2]=2 k
\end{align*}
$$

$$
\begin{aligned}
{\left[\sum_{i} d_{G^{k-1}}\left(v_{i}\right): \sum_{i} d_{G^{k-2}}\left(v_{i}\right)\right] } & =2[q+k(k-1) k / 2]-2[q+(k-2)(k-1) / 2] \\
& =2(k-1) \\
{\left[\sum_{i} d_{G^{2}}\left(v_{i}\right): \sum_{i} d_{G^{1}}\left(v_{i}\right)\right] } & =2[q+3]-2[q+1]=4=2 \times 2 \\
{\left[\sum_{i} d_{G^{1}}\left(v_{i}\right): \sum_{i} d_{G}\left(v_{i}\right)\right] } & =2[q+1]-2 q=2=2 \times 1
\end{aligned}
$$

By adding the above equations, we get

$$
\begin{align*}
& {\left[\sum_{i} d_{G^{k}}\left(v_{i}\right): \sum_{i} d_{G^{k-1}}\left(v_{i}\right)\right]+\left[\sum_{i} d_{G^{k-1}}\left(v_{i}\right): \sum_{i} d_{G^{k-2}}\left(v_{i}\right)\right]} \\
& +\ldots\left[\sum_{i} d_{G^{1}}\left(v_{i}\right): \sum_{i} d_{G}\left(v_{i}\right)\right] . \\
& =2[1+2+\ldots \ldots+(k-1)+k] \\
& =2[k(k+1) / 2]=k(k+1) \tag{2}
\end{align*}
$$

Equating (1) and (2) LHS = RHS.
Theorem 17: Let $A(G)$ be the $p \times p$ adjacency matrix of the graph $G$ with $p$ vertices. If total number of zeros in $A(G)=r(r+1)+p$, then $G$ is completely extendable and order of extension is $r$, where $r$ is any positive integer.

Proof: In $A(G)$ if $v_{i j}$ is zero, then $v_{j i}$ is also zero. If $A(G)$ has $r(r+1)+p$ zeros implies it has $[2 r(r+1) / 2]+p$ zeros. That is $G$ has $r(r+1) / 2$ non adjacent vertices. If number of edges added to $G$ to get $K_{p}$ is $r(r+1) / 2$, then $G$ is completely extendable. $v_{i i}$ are zero for all $i$ in $A(G)$. Therefore if $G$ is completely extendable then total number of zeros in $A(G)$ is $r(r+1)+p$.

Definition 18: (Laplace Matrix of a graph) [1]. The Laplace Matrix of $G$ is the matrix $L$ indexed by the vertex set of $G$, with zero row sums, where $L_{x y}=-A_{x y}$ for $x \neq y$. If $D$ is the diagonal matrix, indexed by the vertex set of $G$ such that $D_{x x}$ is the degree of $x$, then

$$
L=D-A \text {. The elements of Laplace matrix are given by }
$$

$$
\mathrm{L}_{i j}= \begin{cases}\operatorname{deg} v_{i} & \text { if } i=j \\ -1 & \text { if } v_{i} \text { and } v_{j} \text { are adjacent } \\ 0 & \text { if } v_{i} \text { and } v_{j} \text { are not adjacent }\end{cases}
$$

Example: Consider the following graph $G$,


The Laplace Matrix of $G$ is,

$$
\mathrm{L}(\mathrm{G})=\left(\begin{array}{ccccc}
. & v_{1} & v_{2} & v_{3} & v_{4} \\
v_{1} & 2 & -1 & 0 & -1 \\
v_{2} & -1 & 3 & -1 & -1 \\
v_{3} & 0 & -1 & 2 & -1 \\
v_{4} & -1 & -1 & -1 & 3
\end{array}\right)
$$

Theorem 19: Laplace matrix of a completely extendable graph has $r(r+1)$ zeros, where $r$ is any positive integer.

Proof: Laplacian Matrix has $r(r+1)$ zeros implies $G$ has $r(r+1) / 2$ non adjacent vertices. Number of edges added to $G$ to get $K_{p}$ is $r(r+1) / 2$ which implies $G$ is a completely extendable graph and $r$ is the order of extension.

## References

[1] Andries.E.Brouwer, Willem. H. Haemers, Spectra of graphs, Springer, 2011.
[2] Frank Harary, Graph Theory, Narosa Publishing House 2001.
[3] G. Suresh Singh, Graph theory, PHI Learning Private Limited, New Delhi, 2010.
[4] G. Suresh Singh and M.R. Hari Krishnan, On Neighbourhood Graphs, International journal of Mathematical Sciences \&Engineering Applications, volume 6 (November 2012).
[5] John.B.Fraleigh, A First Course In Abstract Algebra, Narosa Publishing House.


[^0]:    * Department of Mathematics, University of Kerala, Kariavattom. Thiruvananthapuram, Kerala, India
    ** Corresponding Author, Department of Mathematics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India. Email: sunithajosie@gmail.com

