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CRRA UTILITY MAXIMIZATION UNDER DYNAMIC RISK
CONSTRAINTS

SANTIAGO MORENO-BROMBERG, TRAIAN A. PIRVU, AND ANTHONY REVEILLAC*

ABSTRACT. The problem of optimal investment with CRRA (constant, relative
risk aversion) preferences, subject to dynamic risk constraints on trading strategies,
is the main focus of this paper. Several works in the literature, which deal either
with optimal trading under static risk constraints or with VaR-based dynamic risk
constraints, are extended. The market model considered is continuous in time and
incomplete, and the prices of financial assets are modeled by It6 processes. The
dynamic risk constraints, which are time and state dependent, are generated by
a general class of risk measures. Optimal trading strategies are characterized by
a quadratic BSDE. Within the class of time consistent distortion risk measures,
a three—fund separation result is established. Numerical results emphasize the
effects of imposing risk constraints on trading.

1. Introduction

In this paper we consider the problem of a utility-maximizing agent, whose prefer-
ences are of constant relative risk aversion (CRRA) type, and whose trading strategies
are subject to risk constraints. We work on a continuous-time, stochastic model with
randomness being driven by Brownian noise. The market is incomplete and consists
of several traded assets whose prices follow It6 processes.

In practice, managers set risk limits on the strategies executed by their traders. In
fact, the mechanisms used to control risk are more complex: financial institution have
specialized internal departments in charge of risk assessments. On top of that there
are external regulatory institutions to whom financial institutions must periodically
report their risk exposure. It is natural, therefore, to study the portfolio problem
with risk constraints, which has received a great deal of scrutiny lately. A well known
paper in this direction is [7]. The authors employ convex duality to characterize the
optimal constrained portfolio. A more recent paper in the same direction is [13]. Here
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the optimal constrained portfolio is characterized by a quadratic—growth Backward
Stochastic Differential Equation (BSDE), which renders the method more amenable
to numerical treatment. In these two (by now classical) papers the risk constraints are
imposed either via abstract convex sets in [7] or via closed, time-independent sets in
[13]. Lately, a line of research has been developed where the risk—constraint sets are
specified employing a specific risk measure, e.g. VaR (Value—at-Risk) or TVaR (Tail
Value-at-Risk). [6] introduced dynamically—consistent risk measurements in which the
VaR and TVaR of a portfolio is reevaluated dynamically using the current information.
In order to compute a portfolio dynamic VaR, TVaR, the authors assume that the
distribution of the portfolio composition is kept unchanged during the period over
which risk is assessed. In addition, the price is assumed to follow a linear coefficient
with a deterministic volatility matrix and a deterministic drift coefficient. In such
Markovian context the authors derive a characterization of the value function in terms
of the solution to a Hamilton-Jacobi-Bellman PDE.

In this paper, we first extend the risk measurements introduced by [6] by considering
a rich class of risk measures: we only require the latter to be Carathéodory maps.
This class includes many convex and coherent risk measures. Then, we reduce the
stochastic control problem with dynamic constraints to the study of a quadratic BSDE
by employing the method developed in [13], which combines the martingale optimality
principle with BSDE theory. The optimal, constrained trading strategies, as well as
the value functions, can then be deduced from the solution of the BSDE. The main
difference is that, unlike [13], our constraint sets are time dependent. This renders the
methodology developed in [13] not directly applicable within our context. In addition,
we derive a three—fund separation result for time—consistent, distortion risk measures.
Finally, taking advantage of the BSDE formulation, we present some numerical results
which allow one to evaluate the impact of constraints on the trading performance. We
provide below a brief overview of the related literature.

Existing Research: A risk measure that is commonly used by both practitioners
and academics is VaR. Despite its success, VaR has as drawbacks not being subadditive
and not recognizing the accumulation of risk. This encouraged researchers to develop
other risk measures, e.g. TVaR (Tail Value at Risk). The works on optimal investment
with risk constraints generated by VaR, TVaR (or other risk measures) split into two
categories, which depend on whether or not the risk assessment is performed in a
static or a dynamic fashion. Let us briefly touch on the first category. The seminal
paper is [3], where the optimal dynamic portfolio and wealth—consumption policies of
utility maximizing investors who use VaR to control their risk exposure is analyzed.
In a complete-market, [t6-processes framework, VaR is computed in a static manner
(the authors compute the VaR of the final wealth only). An interesting finding is
that VaR limits, when applied only at maturity, may actually increase risk. One way
to overcome this problem is to consider a risk measure that is based on the risk—
neutral expectation of loss - the Limited Expected Loss (LEL). In [10], a model with
Capital-at—Risk (a version of VaR) limits in the Black-Scholes—Samuelson framework
is presented. The authors assume that portfolio proportions are held constant during
the whole investment period, which makes the problem static. [8] extends [10] from
constant to deterministic parameters. In a market model with constant parameters,
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[11] extends [3] to cover the case of bounded expected loss. In a general, continuous—
time financial market model, [12] considers the portfolio problem under a downside risk
constraint measured by an abstract convex risk measure. [16] extends [10] by imposing
a uniform (in time) risk constraint.

In the category of dynamic risk measurements we recall the seminal paper [6]. Fol-
lowing the financial industry practice, the VaR (or some other risk measure) is com-
puted (and dynamically re—evaluated) using a time window (2 weeks in practice) over
which the trading strategies are assumed to be held constant for the purpose of risk
measurement. The finding of the authors is that dynamic VaR and TVaR constraints
reduce the investment (proportion wise) in the risky asset. [18] studies the impact of
VaR constraint on equilibrium prices and the relationship with the leverage effect. [5]
shows that, in equilibrium, VaR reduces market volatility. [23] finds that risk con-
straints may give rise to equilibrium asset—pricing bubbles. Among others, [2], [21],
and [26] analyze the problem of investment and consumption subject to dynamic VaR
constraints. [22] considers maximizing the growth rate of the portfolio in the context
of dynamic VaR, TVaR and LEL constraints. In a complete market model, [24] uses
a martingale method to study the optimal investment under dynamic risk constraints
and partial information.

Our Contribution: This paper extends the risk measurements introduced by [6]
by considering a relatively general class of risk measures (we only require them to be
Carathéodory maps, a class that is rich enough to include many convex and coherent
risk measures). The risk—constraint sets arising from such risk measures, and applied
to the trading strategies, are time and state dependent. Moreover, they satisfy some
important measurability properties. In addition, we go beyond the Markovian context
of [6] by allowing the volatility and the drift coefficient in the dynamics of the price
process to be non—deterministic and time-dependent.

We employ the methodology developed in [13] in order to provide existence of an
optimal trading strategy subject to a dynamic risk constraint (see Theorem 3.5 which
constitutes our first main result). Furthermore, we obtain a complete characteriza-
tion of say optimal strategy and of the corresponding value function in terms of the
solution of a quadratic growth BSDE (c.f. Theorem 3.6), which can be viewed as a
generalization of the Hamilton-Jacobi-Bellman PDE in the Markovian realm. Our
results depart from those in [13] in the sense that the constraint sets we consider are
time dependent. This renders the methodology developed in [13] not directly appli-
cable within our context. The difficulty stems from establishing the measurability of
the BSDE’s driver (the BSDE that characterizes the optimal trading strategy). This
is done by means of the Measurable Maximum Theorem and the Kuratowski-Ryll-
Nardzewski Selection Theorem. After this step is achieved we apply results from [19]
to get existence of solutions to the BSDE, which in turn yields the optimal trading
strategy.

We then restrict our analysis to the class of time consistent distortion risk measures.
By doing so we observe that the risk constraints have a particular structure: they are
compact sets (for a fixed time and state) and they depend on two statistics (portfolio
return and variance). This leads to a three—fund separation result. More precisely,
an investor subject to regulatory constraints will invest her wealth into three—funds:
a savings account and two index funds. One index fund is a mix of the stocks with
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weights given by the Merton proportion. This index fund is related to market risk
and most of the portfolio separation results refer to it. The second index is related to
volatility risk. In a market with non-random drift and volatility the second index is
absent. Thus, the second index can be explained by the demand of hedging volatility
risk.

Numerical results shed light into the structure of the optimal trading strategy. More
precisely, using recent results concerning numerical methods for quadratic growth BS-
DEs, we present in Section 5 some numerical examples for Value—at—Risk, Tail-Value—
at—Risk and Limited—-Expected-Loss. Our simulations clearly exhibit the effect of the
risk constraint on the optimal strategy and on the associated value function: from the
plots we observe that the risk constraints reduce gambling on the risky assets.

The paper is organized as follows: In Section 2 we introduce the basic model, the
risk measures and the corresponding risk constraints. Section 3 presents measurability
properties of the candidate optimal trading strategy and its characterization via a
quadratic BSDE. In Section 4, time consistent distortion risk measures are considered.
A three—fund separation result is obtained within this context. Numerical results are
presented in Section 5. The paper ends with an appendix that contains some technical
results.

2. Model Description and Problem Formulation

2.1. The financial market. Our model of a financial market, based on a filtered
probability space (Q2, F, {F; }+cjo,7], P) that satisfies the usual conditions, consists of n+
1 assets. The first one, {S) beejo, 1), is a riskless bond with a strictly positive, constant
interest rate » > 0. The remaining n assets are stocks, and their prices are modeled
by a n-dimensional It6-process {Si}ie,r] = {(Sf)i=1,...n}ttep,r)- Their dynamics
are given by the following stochastic differential equations, in which {W}.ej0.r) =
{(Wg)izl,...,m}te[O,T] is a m—dimensional standard Brownian motion:

ds? = 5% dt
m
L o te0,7], 2.1
dsgzsg(a;dwrza?dw;),i:1,...,n, 0] 2.1)
j=1
where the R"-valued process {a}icpo,r] = {())i=1,...n }teo,r) i the mean rate of
return, and {o}iecjom) = {(UZJ)g;ly’_'_'_'7’:f}te[o7T} € R™™ ig the wariance—covariance

process. In order for Equations (2.1) to admit unique strong solutions, we impose the
following regularity conditions on the coefficient processes a; and o7:

Assumption 2.1. All the components of the processes {a}icjo, 7] and {0t }ep0,) are
predictable, and

n t n.om t
Z/ |otl, | du—l—z g / o”iclu<oo7 for all t € [0,T], P-a.s.
=170 i=1j=1"0

To ease the exposition, we introduce the following notation: for an integrable R™-
valued process v, = (7})i=1,....n, and a sufficiently regular R™—valued process m, =

94



CRRA UTILITY MAXIMIZATION UNDER DYNAMIC RISK CONSTRAINT

(Wg)j:L.,,,m we write

t n t t m t
/’yudu::Z/ i du, /det ::Z/ AW
0 i=1"0 0 j=1"0

Further, we impose the following condition on the variance—covariance process o :
Assumption 2.2. The matrix o has, almost—surely, independent rows for all ¢ € [0, T.

This assumption makes it impossible for different stocks to have the same diffusion
structure. Otherwise, the market would either allow for arbitrage opportunities or
redundant assets would exist. As a consequence of Assumption 2.2 we have that n < m
- the number of risky assets does not exceed the number of “sources of uncertainty”.
Moreover, the inverse (o;0})~! is easily seen to exist. The equation

1 oM
010Gy =

uniquely defines a predictable stochastic process {Ciw }eejo, ), named the Merton—
proportion process, where {; }re[0,77 = {(ui)i:17,,_,n}te[0}T1 is the vector of excess rates
of return with

pp=ap—r
for i = 1,...,n. Note that the market model is incomplete whenever n < m. At this
point we make another assumption on the market coefficients:

Assumption 2.3. The market coefficients {a }vcjo, 7], {0t }tejo,r) and 7, and the corre-
sponding Merton—proportion process satisfy

T
2
exp ([ lictol du)] <o,

1

E

and the stochastic process o’ (oo”’) ™o is uniformly bounded. In addition, we assume
that there exists a constant ¢ > 0 such that

llo’(oo’) towm,|| <c, Vt€[0,T], P—a.s..

2.2. Trading strategies and wealth. Let P denote the predictable c—algebra on
[0,T] x Q. The control variables are the proportions of current wealth the investor
invests in the assets. More precisely, we have the following formal definition:

Definition 2.4. An R"-valued stochastic process {{, }repo, 7] = {(¢})i=1,....n Jreo,r) 18
called an admissible portfolio—proportion process if it is predictable (i.e. P-measurable)
and it satisfies

¢ ¢
]E{/ ¢y (0 — 1) du+/ I¢hoa]|? du| < 0o, forall te[0,T). (2.2)
0 0

Here ¢} denotes the transpose of ¢;, 1 = (1,...,1)" is a n—dimensional column vector
all of whose coordinates are equal to 1, and ||x|| is the standard Euclidean norm. The
set of admissible strategies will be denoted by A.

Given a portfolio—proportion process {,, we interpret its n coordinates as the pro-
portions of the current wealth Xf invested in each of the n stocks. In order for the
portfolio to be self-financing, the remaining wealth X¢(1 — i, ¢y) is assumed to
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be invested in the riskless bond SY. If this quantity is negative, we are effectively
borrowing at the rate » > 0. No short—selling restrictions are imposed, hence the
proportions C; are allowed to be negative, and they are not a priori bounded. The
equation governing the evolution of the total wealth {XtC }eejo,r) of the investor using
the portfolio-proportion process {¢;}+e[o,r7 is given by

dX¢ = x¢ (c;at dt + oy th) + (1 - c;1)7~X§ dt s
= XF (4 Chay) dt + Clor aWy),

where we recall that u¢ = af —r for i = 1,...,n. Under the regularity conditions
imposed on ¢, via Expression (2.2), Equation (2.3) admits a unique strong solution
given by

X§ = X(0)exp { / t (r+ Cumn = 3ICLoull”) du+ / o aw, ). (24

The initial wealth X¢(0) = X (0) € (0, 00) is considered to be exogenously given. As a
consequence of Assumption 2.3, and using Expression (2.2), a strategy ¢ is admissible
if and only if it is a predictable process such that

T 2
E[/ ¢l du] < oo. (2.5)
0
Indeed we have

I
Gt = (00,6,) (00,6, < NI aull 116, oull,

by the Cauchy—Buniakowski-Schwarz inequality. Thus, Inequality (2.5) follows from
Assumption 2.3, Expression (2.2) and the Cauchy—Buniakowski—Schwarz inequality.

Before proceeding any further, we briefly explain what is the stochastic control
problem considered in this paper. Our aim is to find a strategy ¢* such that its
associated wealth process X¢ maximizes the quantity

E[U,(X$)], Up(z) := %, p<l.

Any candidate solutions ¢ must belong to the (time—dependent) set of risk—admissible
strategies A”, which is determined via a dynamic risk constraint. We make precise
the definition of the wealth process in Section 2.2 below, and we introduce the formal
definition of the dynamic risk constraint imposed on the investor in Sections 2.3 and
2.4. The exact formulation of the maximization problem is finally given in Section 2.5.

It is clear from Expression (2.4) that the evolution of the wealth process Xf depends
on the R™-dimensional process ¢, only through two “sufficient statistics”, namely

¢t = Gy, and 7 = [[Coe|- (2.6)

These will be referred to in the sequel as portfolio rate of return and portfolio volatility,
respectively. The expression appearing inside the first integral in Equation (2.4) will
be given its own notation; namely, we define the quadratic function Q : R? — R as

Q(CH,C7) =1+ (M — L2 (2.7)
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It is also useful to define the random field @ : 2 x [0,00) x R™ — R
Qt:€) = Q¢ s, I ]).

2.3. Projected distribution of wealth. For the purposes of risk measurement, it
is common practice to use an approximation of the distribution of the investor’s wealth
at a future date. Given the current time ¢ > 0, and a length 7 > 0 of the measurement
horizon [t,t + 7), the projected distribution of the wealth from trading is calculated
under the simplifying assumptions that

(1) the proportions of the wealth {(}scjt,¢4-) invested in various securities, as
well as
(2) the market coefficients {as}sefr,i4r) and {0} et i4r)
stay constant and equal to their present values throughout the time interval [¢,t +
7). The wealth Equations (2.3) and (2.4) yield that the projected wealth loss is -
conditionally on F; - distributed as L = L(X, (},(7), where the law of L(z,(*, (%)
is the one of

2 (1= exp(Y(¢#,¢7))).

Here Y'(C*,(7) is a normal random variable with mean Q(¢*, () and standard de-
viation \/7¢?. The quantities ¢{* and (7 are the portfolio rate of return and volatility,
defined in Equation (2.6). In the upcoming sections we turn our focus to risk mea-
surements associated to the relative projected wealth gain, which will be defined as the
distribution of the quantity

XS(t4+7-)—X¢

X¢ '

This is not a technical requirement, and the method developed in Sections 2.4 to 3 still
holds for risk measurements in absolute terms. The economic implications, however,
may be stark, and the definition of the risk constraints below would require a certain
recursive structure. The latter in the sense that admissibility (risk—wise) at time ¢ will
depend on the choice of the strategy at all previous times. We elaborate further on
this in Remark 2.6. The measurement horizon 7 and the market coefficients will play
the role of “global variables”.

2.4. The risk constraints. In this section we introduce the risk constraints that will
be imposed on the trading strategies. We keep the presentation as general as possible
and make only sufficient assumptions on the risk measures. These allow us to show
existence (and in some cases uniqueness) of optimal, constrained trading strategies.
We begin by making precise how the risk of a given strategy is measured.

Let us define the gain over time interval [t,¢ + 7] by A, X¢ := Xf+T_ — X¢, and let
(pt)tefo,r) be a family of maps p; with

Pt Ct C LQ(.FT;]P)) — L2(~Fta]P))a

where
C := {ATXf/Xf ‘ ¢ is an admissible strategy}.

Notice that for all ¢ € (0,7], we have that C; C L?(Fr,P). We also define Cy :=
L?(Fr,P). For a given admissible (Cs)sefo,r) and ¢ € R™ we define the strategy ¢
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Qx[0,t+7) = R"as {, =, for s <tand , = ¢ for t < s < t 4+ 7. By definition
of the wealth process we obtain that X ¢ = Xff, moreover (under the assumptions

made in Section 2.3) the quantity ATXE / XtE depends exclusively on ¢, and not on ¢.
In order to establish the risk constraints, we define the acceptance sets

AP (w) = {c eR"

<
o ;3)(“) < Kt<w>} te o7,

where K, is a real-valued, exogenous, predictable process that satisfies K; > p:(0)
for all ¢ in [0,7T], P-almost surely. Notice that ¢ = 0 is in the constraint set. We

observe that, by construction, the sets A} € are independent of é’ , and we shall simply
write A}. In analogous fashion we will slightly abuse notation and write ATXtC / Xf for

ATXE / th . It follows from Equation (2.3) that in fact
A XE
Xg

= G(Cat) - 1a

where
t+71

t+1
etctymon{ [ (rct - gt [ o,

and ¢* and ¢ are defined in Expression (2.6). Hence, the expressions for the sets A
may be rewritten as

A (w) = {c e R" | p(€(¢,t) — 1)) < Kt(@} . (2.8)

Moreover, under the assumption that p, o and ¢ remain (for the purpose of risk
assessment) constant over [t,t + 7), we may write

E(¢,t) :=exp {7"7'} - exp {T(C“ — %C”z)} - exp {CO’ATWt},

and we shall denote by &;({,t) and ¢2({,t) the second and third factors of &(¢,1),
respectively.
We make the following assumption on the family (p:):epo, 7] :

Assumption 2.5. The family of maps
pt : Cp C L*(Fr,P) — L*(F,P)
satisfies that the mapping
(€, (w, 1)) = pe(€(C, 1) — 1)(w)
is a Carathéodory function; that is, for every (w,t) in Q x [0,7], the map ¢ —

pt(€(¢,t)—1)(w) is continuous and for every ¢ in R™ the map (w,t) — p:(€(¢, 1) —1)(w)
is P—measurable.

An example of a family (p;);c[0,7) that satisfies Assumption 2.5 is the following: Let
l:R — R be a convex, non-decreasing continuous and non-constant function! with
|l(—00)| < +00. Assume that the filtration {F;}:c0,1) is generated by the Brownian

LSuch functions are usually referred to as “loss functionals”.
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motion {W}cpo,r) and that ol = oI (t,Wy) and gy := p(t,W;) where o7 and p
are deterministic Borelian functions. We set

1
pr(=€(¢,1) = 1) = Efi(exp(r(r + (o5 ICyl*) + 2y A Wo))la=p(e,wo) y=o(t.w1)

so that p(—€((,t) — 1) = E[l(—€¢(¢,t) — 1)|F], P-almost surely. Then the family
(pt)iefo,r) satisfies Assumption 2.5. Indeed, fix @ in R™ and let ¢ in R™. Then, by
monotonicity of the exponential and [ we have that:

I(=00) < I(—=€(¢, 1) + 1) < I(1).
Hence, Lebesgue’s Dominated Convergence Theorem implies that:

lim pi(—€(C,t) — 1) = pr(—C(a,t) — 1), Vte[0,T].

¢—a

Finally, since the filtration we consider is the Brownian filtration, the stochastic process
(p¢(€(C,t) — 1))seo,1) is predictable.

Remark 2.6. If we were to consider risk constraints based not on the relative projected
wealth loss, but only on the quantities ATXtC , then the acceptance sets defined in
Expression 2.8 would depend on (¢)se[o,+)- More precisely, the set of risk-admissible
strategies would be

A= {C = (C4)sefo.1) | ¢ is admissible and ¢, € Af’clw’”}

In the case where p; is a F;_—coherent family, i.e. if p.(XY) = X p4(Y) forall X € F;_,
then risk constraints in absolute terms are generated by inequalities of the form

Kn () < .

t

This follows from the fact that the wealth level at time t is a J;_—measurable ran-
dom variable. The structure then reverts to that of risk constraints in relative terms,
except for a redefinition of the risk bound as K;(w) := K;(w)/X;(w). Notice that if
K; = K € R4, then K, would be a decreasing function of wealth. In other words,
highly capitalized investors would face more stringent constraints. This could lend an
approach to dealing with the too—big—to—fail problem, and could be further tweaked
by allowing K; to depend on the state of nature. It is, however, beyond the scope
of this paper to discuss such policy—making issues, and we shall stick to the relative—
measures—of-risk framework.

Remark 2.7. Note that (p¢)ico,r) is not stricto sensu a dynamic risk measure, since

every p; is a priori not defined on the whole space L?(Fr, P). As we we have seen

in the previous lines, defining the risk of every random variable in L?(Fr, P) is not

relevant for us;,, since we only need to evaluate the risk of the very specific random
Xy

: A
variables ==+t
Xt
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2.5. The optimization problem. We finish the section by formulating our central
problem. Given a choice of a dynamic risk measure p satisfying Assumption 2.5 and
a final date T, we are searching for a portfolio-—proportion process ¢; € A? which
maximizes the p—CRRA utility U,(z) = %,p < 1, of the final wealth among all
the portfolios satisfying the same constraint. In other words, for all ¢ € [0,7] and

Gredr={cer |p(e -1 <K}
E[U,(X$)] > E[U,(X$)]. (2.9)

This problem has the following economic motivation: Risk managers limit the risk
exposure of their traders by imposing risk constraints on their strategies. This can be
regarded as an external risk management mechanism. In our model this is represented
by the risk measures. On the other hand, traders have their own attitudes towards
risk, which are reflected by the risk aversion of the CRRA utility. However, p € [0,1)
is known to reflect a risk seeking attitude of the trader. The risk manager cannot
constrain the trader’s risk preferences. In order to deal with this, risk constraints on
the trader’s strategies must be imposed.

3. Analysis

In this section we prove the existence of an optimal investment strategy. For sim-
plicity we consider the case p € (0,1) (analogous arguments apply with minor modifi-
cations to p < 0). In order to do so, we make use of the powerful theory of backward
stochastic differential equations (BSDEs). Let

A= {C = (Cliery € A € A7, Vi€ [0,7]},

where A is the set of admissible strategies in the sense of Definition 2.4, and Af is
defined by (2.8). We recall that we consider the maximization problem

¢
coas E[Uy(X7)].
By means of Equation (2.4) we may write
t t
0,(xF) = U, exn ([ 0@t cydu+ [ pCiouaw).

where ¢* and (7 are as in Expression (2.6), and Q is defined in (2.7). In analogous
fashion as done in [13], let us introduce the auxiliary process

t 5 t
R&%M@Wm(n+ApM5me+/pqmﬂwQ,

0
where (Y, Z) is a solution to the BSDE

T T
Y, = of/ Z,dW 7/ h(u, Z,)du,  t€[0,T). (3.1)
t t

The function h(t, z) should be chosen in such a way that

a) the process RS is a supermartingale, RS = UP(X%) and there exists a constant
co > 0 (which does not depend on ¢), such that R¢(0) = ¢, for every ¢ € A”,
b) there exists at least one element ¢* in A” such that RS is a martingale.
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We shall verify ex—post that the function h(t, z) in question satisfies the measurability
and growth conditions required to guarantee existence of solutions to Equation (3.1).

Before going further we explain why achieving this would provide a solution to
Problem (2.9): If we were able to construct such a family of processes R¢, then we
would obtain that ¢* is an optimal strategy for Problem (2.9) with initial capital
X (0) > 0 independent of ¢. Indeed let ¢ any element of A”, then using (a) and (b) we
have i

E(U,(X$)) = B(RS) < RS(0) = RS (0) = E(RS).

This method is known as the martingale optimality principle.

Let us now perform a multiplicative decomposition of R¢ into martingale and an
increasing process. Given a continuous process M, we denote by £(M) its stochastic
exponential:

E(My) = exp (Mt - ;<M>t) |

where (M) denotes the quadratic variation. Then

RS = (X(;))pg (/Ot(p ¢ out Zu)qu> exp (/Otg(u,Zu) du>, (3.2)

where
2
p—p 2
~LlIchel
Since RS should be a supermartingale for every admissible ¢, (and a martingale for
some element (), then g has to be a non—positive process. With this in mind, a

suitable candidate would be

By 2) i —pr— S+ it {ope (g + ouz) + PP o2
2 ¢, EA, uAT 2 “

1
9(u, 2) := h(u, 2) + Sll21* + pr+ pC, (1, + 002) +

u

which leads to

1
hw,z) = o= SlelP + 5ol oo ) o) (33)
-1 2
I—p
If in addition we let
’ Nn—1 ~
PRI C.La0 i i 70 R R PR T Y (3.4)
1-p
then
’ n—1 2 , N1 5
dist (0’ LTS +Uuz);AZa'u> _ Ha wloo’)i (pm, +ouz) o
1-p 1-p
with

¢*0u € Proj(Zy, AL).
The available results on existence of solutions to BSDEs require, to begin with, the
predictability of the driver h. In our case this is closely related to the predictability
of ¢*, in other words, to whether or not the candidate for an optimal strategy is
acceptable.
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Theorem 3.1. Let Z be a predictable process such that

T
E </ ||Zu||2du> < oo0.
0

Then for (t,w) € [0,T] x Q, the mapping

(t,w) = dist(Z(w), AP (w)),

where Z is as in Equation (3.4), is predictable. In addition there exists a predictable
process ¢* in R™ such that
T 2
E / 1€ ol du | < oo
0

dist(Zy, AY) = dist(Z,, ¢ o), YVt e [0,T), P —a.s..
Proof. Let us define for k € N

AL (@) 1= {¢ € [k K" | (€ D) (@) — Kilw) < 0.

The purpose of artificially bounding the values of A” is to make use of the theory of
compact—valued correspondences (see Appendix A). It follows from Lemma A.1 that
for all k£ € N and for all (¢,w), the set Af) (w) is non-empty and compact. Moreover,
Proposition A.3 guarantees that for all ¢t € [0,7] and k£ € N, the correspondence
(w,t) — fif x(w) is weakly P-measurable (see Definition A.2 in the Appendix for the
definition of weak measurability). Let (C'(R™),H) denote the space of non-empty,
compact subsets of R™, equipped with the Hausdorff metric. This is a complete,
separable metric space, in which flf . (+) takes its values. Theorem A.4 then states that
for z € R™ and ¢ € [0, 7], the distance mapping

(w, z) = dist (2, A7 ,(w)o)

and

is a Carathéodory one. Since the process Z, is predictable and z — § (z,w) is continuous
for all w € Q, the map

(w,t) = dist(Z;(w), AL (w)o)
is P-measurable. Finally
dist (Z;(w), AL (w)) = l?elg {dist(Z:(w), AY L (w)o) ),
thus the mapping w + dist(Z;(w), A?(w)) is predictable as the pointwise infimum of

predictable ones. We now turn our attention to the second claim. First we observe
that since A (w) is closed (and contained in R™), the set

Al (w) = argminaeﬂf(w){dist(Zt(w), a)}

is compact. It follows from the Measurable Maximum Theorem ([1], page 605) that
the correspondence (t,w) ~ A (w) is weakly P-measurable. It is then implied by
the Kuratowski-Ryll-Nardzewski Selection Theorem that .71()() admits a measurable
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selection ¢*'o; in other words, there exists a predictable process ¢* : [0,T] x  — R”
such that
dist(Z, (w), AP (w)) = dist(Zy(w), ¢*' (L, w)o (t,w)), ¢ (tw)o(t,w) € AP(w).
Finally using the fact that the strategy (0,...,0) belongs to A” we have that

T o 9 T y B 9 T B 9
/HC Lol dus2/ 170w — Z du+2/ 12, du
0 0 0
T o T,
:2/ dist(Zu,Aﬁ)Qdu+2/ 120 2du (3.5)
0 0

T o o9
§4/ 1 Za|[” du < oo.
0
U

To finalize, we must show that the quadratic-growth BSDE (3.1) admits a solution.
In the following we will make use of the notion of BMO-martingale.

Definition 3.2. A continuous martingale M is a BMO-martingale if there exists a
positive constant a > 0 such that for every stopping time v < T,

E[{(M)r — (M), |F] <a, P—a.s..
We will use the following property of BMO-martingales (which can be found in [15]):
if M is a BMO-martingale then £(M) is a true martingale.

We require the following result of Morlais [19, Theorem 2.5, Theorem 2.6 and Lemma
3.1], which extends the results of Kobylanski [17]:

Theorem 3.3. Let h: [0,T] x Q@ x R™ — R be measurable. Assume that there ezist a
predictable process a and positive constants C1,Cy satisfying o > 0 and

T
/ asds < Cqp, P—a.s..
0

If h is such that
(1) z— h(u, z) is continuous
(2) |h(u, z1) =h(u, 22)| < Colaw+|[z1]+lz2)(lz=22[), V21, 22, and |h(u,0)] <
Q.
then the BSDE (3.1) with driver h admits a unique solution (Y, Z), where Y and Z

are predictable processes with Y bounded and Z satisfying E (fOT ||Zt||2dt) <o In

addition, the process fo ZsdW 5 is a BMO martingale and hence & (fo stWS) 1S G
true martingale.

The previous result allows us to show that the BSDE (3.1) with driver given by
Equation (3.3) admits a unique solution. Note that the fact that & (fo stWS) is a

true martingale is essential in our approach, since it implies that the process RS is a
(true) martingale for some element ¢*.

103



SANTIAGO MORENO-BROMBERG, TRAIAN A. PIRVU, AND ANTHONY REVEILLAC

Corollary 3.4. There exists a unique pair of predictable processes (Y, Z), with Y
bounded and Z satisfying E (fOT \|Zt||2dt) < 00, solution to the BSDE (3.1) with driver

given by Equation (3.3). In addition, the processes [, Z,dW s and [, ¢ oy dW, are
BMO-martingales with {* given by Theorem 3.1.

Proof. We combine the previous results to apply Theorem 3.3. First, measurability of h
is guaranteed by Theorem 3.1. Then, the continuity in z of the driver is straightforward,
as are the growth conditions, given Assumption 2.3. Hence by Theorem 3.3, there exists
a unique solution (Y, Z) to (3.1) such that Y is bounded, and [j Z,dW is a BMO-
martingale. By definition, the latter means that there exists a positive constant a > 0
such that for every stopping time v,

E

T
/ |Zs||2ds’]-)] <a, P—as..
Thus, by Estimate (3.5), we have for any stopping time v that

T . ) T o,
B[ NC ol du 1Z] " du| 7. |

which shows that | ¢ oy dW, is a BMO-martingale since o’ (o70”) ~Lorp is uniformly
bounded by Assumption 2.3. a

Fu| <4E

We conclude with the existence of an optimal strategy to Problem (2.9).

Theorem 3.5. Under the assumptions made above there exists an acceptable strategy
¢* that solves Problem (2.9). If we define the value function v(x) as:

v(x) := maxceApE(Up(Xg)), x>0

with AP the set of admissible R"-valued predictable processes ¢ such that ¢, € A} for
all t in [0,T] and X¢(0) = x, then it holds that

v(@) = Up() exp(Yp).
Here (Y, Z) is a solution to the BSDE (3.1) with driver given by Equation (3.3) and
¢l oy € Proj(Zy, AD).
Proof. The existence of a solution to the BSDE (3.1) is guaranteed by Corollary 3.4.
Furthermore, by Corollary 3.4 the process

([ (P + Z) aw.)

is a true martingale since [j Z,dW and |, ¢'o,dW,, are BMO-martingales (with
¢* given as in Theorem 3.1). Now, as in [13, Theorem 14], for any admissible ¢’, the
process R¢ given by Equation (3.2) is a supermartingale. Indeed, by construction

g is non-positive and the stochastic exponential & (fot(p Clowt+ Z,) qu> is local

martingale. Let (7,), be a localizing sequence associated to it. We have for every
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n (and s < t) that: E[RfATnU-"s] < RSAT” and RS is a non negative process. Thus,
Fatou’s Lemma implies that

E[R¢ |7, < RS

Using the martingale optimality principle, we have that the processes RS are well-
defined and satisfy requirements (a) and (b). In addition, by construction, the pro-
cesses ¢* such that RS is a martingale are those such that ¢'o,, € Proj(Z,,.A®).
Theorem 3.1 yields that these elements ¢* are admissible strategies, thus optimal.
Take such an optimal strategy ¢*. We have that

v(z) = E(Uy(X§ ) = E(U,(RS ) = RS (0) = Up(x) exp(Yo).

The previous result admits a dynamic version:

Theorem 3.6. Let v(t,x) be the dynamic value function defined as:

T
v(t, ) := esssup E (Up (x —|—/ CSXCdS ) ‘]_.t> Le[0,T], 2 >0,
CeAl t

where A' :=={¢ € A?, {, =0, s <t}. Then
v(t,z) = Uy(x) exp(Yr),

where (Y, Z) is a solution to the BSDE (3.1) with driver given by Equation (3.3) and
¢Hoy € Proj(Zy, A?).

Proof. Let ¢ be any element of A and let ¢* be such that the associated RS is a
martingale. Then by definition of the RS processes, we have that R¢ = U, (z) exp(Y;)
since {, = 0 for s < ¢t and so

E <Up (x—l—/T cSXCdS ) ‘E)
t

- E(RSIR)
. T endS,s
< RS =U,(z)exp(Y;) =E (R% |]-"t) =E (Up <x+/ ¢CEXS S" ’]—"t .
t s
Hence, v(t, z) = Uy (z) exp(Y2). O

Remark 3.7. Sometimes one might be interested in another version of the dynamic
value function above. Given an element ¢ in A” they may consider the quantity

T
v(t,Xf) :=esssup E (Up (Xf —I—/ &SXCdS > ‘.7-}) , te€0,7T],
CeAtt t

where A%¢ ;= {¢ € A°, ¢, =(,, s <t}. Then we have that v(t, X¢) = Up(Xf) exp(Yz)
where (Y, Z) is the unique solution of the BSDE (3.1) with driver given by Equation
(3.3).
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Remark 3.8. The stochastic process exp(Y;) in the expression of the value function is
sometimes called the opportunity process, since it gives the value of the optimal wealth
with initial capital one unit of currency (see [20]).

Remark 3.9. Notice that for the sake of the explanation, we have chosen to fix the risk
aversion coefficient p in (0, 1) but we can also consider the case where p < 0. Then the
driver h given by Equation (3.3) has to be modified suitably.

4. Time Consistent Distortion Risk Measures

In this section we define a broad class of families of risk measures that are time
consistent. We show that, under the constrains imposed by members of this class,
optimal investment strategies follow a three—fund separation behavior. Let

pu(€(C.1) = 1)(w) = exp {17 }€1(, 1) (@)po(€2(¢, ) (w) ~ 1),
where

&1(¢.0w) = exp {r(¢a — LliculP) )|

=p;(w),y=0(w)
and

po(€a(¢ ) (w) — 1) = po(exp {zyA;Wo} — 1)

Here pg is a distortion risk measure, i.e.

—1
po(X):/ FX " dD,,
[0,1]

o=, (w),y=0(w)

where FX ' is the inverse CDF of X, and D is a distortion; i.e., it is right—continuous,
increasing on [0,1], D(0) = 0 and D(1) = 1. The choice D, = 1{y>1-qa} yields
VaR, and D, = 1[u — (1 — a)]T yields TVaR,. LEL, can be recovered by choos-
ing D, = L[u— (1 — a)]*1,—0 (since LEL, is TVar, computed under one of the
risk neutral probability measures). Distortion risk measures form a rich class, which
contains, among others: proportional hazards, proportional odds, Gaussian distortion
and positive Poisson mixture (for more about these risk measures see Examples 3.5,

3.6, 3.7, 3.8 in [25]). It follows from direct computations that
pecn 1= [ [1-ew (@t )+ 8716 v7) | an
0,1

where N1 denotes the inverse of the distribution function of the standard Gaussian
law. Another example is given by considering D, = u. In that case, it holds that
po(X) = f[o,l} xdFX(r) = E[X]. In the light of this, one can see that Assumption
(2.5) holds true. From this point on we work under the assumption that K; < 1. This
implies (quite naturally) that the risk should be smaller than the current position.

4.1. A common form of the risk constraints. Below we present some properties
of the constraint sets A”.

Proposition 4.1. Each constraint set A7 can be expressed as

Al ={CeR™ : f(¢py,|I¢aull) < Ko},
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for some function f: R x [0,00) = RU {co}, which satisfies
feC ®x[0,00), f(0,00<0, lim f(CpylICol) =1, Podt—ae.
— 00

Proof. The function f is defined by
2

f(a:,y):/ [1exp ((r+xy)7+Nu1yﬁ>] D,

0.1] 2

so it follows that f € C*(R x [0,0)), £(0,0) < 0. Since
lim |1 - exp (Q(¢me, I ll)r + NIGTVT)| =1, Podt - ac,
(—o0

then Time oo £(¢'pr,, ICoe]]) = 1. -

The choice of the threshold K; < 1 and Proposition 4.1 yield the compactness of
the constraint sets associated with the risk measures considered in this section.

2. A three-fund separation result. In this section we further characterize the
optimal investment strategy. Let us recall that ¢* is given by

¢i'ow € Proj(Zu, A2), uel0,T].

Compactness of A? leads to compactness of A? which in turn yields the existence of
the projection.

Theorem 4.2. There exist two stochastic processes Y and B%* such that optimal
strategy ¢* can be decomposed as

1%
ct—ﬁt

where Zy,0 <t < T is part of the (Y, Z) solution of BSDE (3.1) with driver (3.3).

¢+ B (owoy) oz, 0<t<T, (4.1)

Proof. We cover the case p > 0 only (the p < 0 case can be obtained by an analogous
argument). Recall that for a fixed path w, the optimal strategy ¢} solves

|}

¢ — H(t,¢) = —pC'(my +poZs) + o’

is minimized over the constraint set A; at a point C267 which is either an absolute
minimum or else should be on the boundary of A;. Thus, for a fixed path, ¢} minimizes
H(t,¢) over the constraint f(¢'py, ||¢'o¢||) < Ky. The solution ¢} is not the zero vector,
since the latter is not an absolute minimum and f(0,0) < 0. For ¢ # 0, it follows that

VI g, IC o) = f1(¢ g [|1C ol ey — W

where fi and fo stand for the partial derivatives of the function f. According to the
Karush-Kuhn Tucker Theorem, either V £(¢'p,,|/¢"o¢||) = 0 or else there is a positive
A such that

¢t arggelglt{ —¢' (s + poi Zy) +

The convex, quadratic functional

Ut0267

H(t,¢) = AV, [[¢ae]]). (4.2)
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In both cases, straightforward computations show that ¢; should have the form given
in Equation (4.1). O

Theorem 4.2 is a three-fund separation result. It states that a utility—maximizing
investor who is subject to regulatory constraints will invest his wealth into three-funds:
1. the savings account; 2. a risky fund with return Ciw ,t €[0,7T); 3. arisky fund with
return (o,0) "t} Z;,t € [0,T]. Most of the results in the financial literature are two—
funds separation ones (optimal wealth being invested into a savings account and a risky
fund). We would obtain such a two—funds separation result if we restricted our model
to one in which stocks returns and volatilities were deterministic. It is a consequence
of the randomness of the stocks returns and volatilities that the optimal investment
includes an extra risky fund. Investments in the latter can be regarded as a hedges
against the risk implied by stochastic stock returns and volatilities.

Remark 4.3. For the special case of pg =TVaR,, the associated acceptance set A” is
convex; this is also the case when pg =VaR,, whenever « € [0,0.5]. The convexity of
AP implies the uniqueness of optimal trading strategy ¢*, a fact that turns out to be
useful in numerical implementations.

5. A Numerically Implemented Example

In this section we present numerical simulations for the constrained optimal strate-
gies and the associated constrained opportunity processes. Recall that by opportunity
process we mean the process exp(Y;), which appears in the value function v(¢,z) in
Theorem 3.6; that is v(t,z) = %pexp(Yt). The opportunity process represents the
value function of an investor with initial capital one dollar. It is a stochastic process
and in the figures below we present one sample path. For simplicity and the numerical
tractability of the analysis we assume that we deal with one risky asset (n = 1), one
bond with rate zero (r = 0) and one Brownian motion (m = 1). In addition, we assume
that the risky asset is given by the following SDE:

dSy = St(l[,l’ll(Wt)dt + th), te [0, 1] (T = 1), S0 =1.

Our simulations require the use of numerical schemes for quadratic growth BSDEs.
We use the scheme of Dos Reis and Imkeller [14, 9]. The latter relies, in a nutshell, on
a truncation argument of the driver, and it reduces the numerical-simulation problem
to one of a BSDE with a Lipschitz—growth driver . Here we use the so—called forward
scheme of Bender and Denk [4].

In Figure 1 we illustrate the opportunity processes arising from imposing VaR ,
TVar and LEL. We have used the following set of parameters: p=0.85, a=0.10,
K=0.3 and T = 1. The time discretization is 1/15 and 7=1/15. The unconstrained
opportunity process is also presented. The corresponding trading strategies are shown
in Figure 2. We observe a spike in the opportunity process that may be explained
by gambling; indeed looking at the TVaR constrained optimal strategy we see that it
differs considerably from the unconstrained one (in which the stock is shorted). This
finding supports the idea that risk constraints reduce speculation.
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FIGURE 2. Constrained and unconstrained optimal strategies.

6. Conclusions

We have analyzed, within an incomplete—market framework, the portfolio—choice
problem of a risk averse agent (who is characterized by CRRA preferences), when
risk constraints are imposed continuously throughout the investment phase. Using
BSDE technology, in the spirit of [13], has allowed us to consider a broad range of
risk measures that give rise to the risk constraints, the latter being (possibly) time—
dependent. In order to use such technology, we have made use of Measurable Selections
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theory, specifically when addressing the issue of measurability of the driver of the BSDE
at hand. We have characterized the optimal (constrained) investment strategies, and
in the case of distortion risk measures we have provided explicit expressions for them.
Here we have shown that optimal strategies may be described as investments in three
funds, which is in contrast with the classical two—fund separation theorems. Finally,
using recent results in [14], we have provided some examples that showcase the way in
which our dynamic risk constraints limit investment strategies and impact utility at
maturity.

Appendix A. Properties of the Constraint Sets A}

Several analytical properties of the (instantaneous) constraint sets A} are estab-
lished in this section. The analysis requires some core concepts of the theory of mea-
surable correspondences?. We require the following auxiliary correspondences:

AL (@) = {C € [=h M| pu(€(¢,8) — D)(w) — Ko(w) <0}, keN.

The purpose of artificially bounding the values of A” is to make use of the theory of
compact—valued correspondences, which exhibit many desirable properties.

Lemma A.1. For any m € N, the correspondence Af)’k 1[0, T] x Q2 — R™ is non—empty
and compact valued for almost all (t,w) € [0,T] x Q.

Proof. The non—vacuity follows from the fact that { = 0, i.e. no wealth invested in
risky assets, is an acceptable position. To show closedness of the sets .Aﬁ (W), fixw e Q
and consider a sequence {Cn} C .Af’k(w) such that ¢,, — ¢. Using Assumption 2.5 it
holds that

pe(€(C1) = 1)(w) = Ki(w) = lim py(E(C,0 1) = D(w) — Ki(w) <0

holds for all ¢ € [0, 7] and which implies that ¢ € A;(w). The latter, together with the
fact that ¢ € [—k, k]™ finalizes the proof. O

Definition A.2. A correspondence ¢ between a measurable space (0,G) and a topo-
logical space X is said to be weakly measurable if for all F' C X closed, the lower inverse
of F, defined as

'(F):={0€© | $(0)NF #0},
belongs to G.

In the case of compact—valued correspondences, weak—measurability and Borel mea-
surability (in terms of the Borel o—algebra generated by the Hausdorfl metric) are
equivalent notions. Given a correspondence ¢ : Q x [0,7] — R™ we define the corre-
sponding closure correspondence via ¢(w,t) := ¢(w, t). For notational purposes let

F((tw),€) = pe(€(¢, 1) — 1)(w) — Ki(w).

Recall that P denotes the predictable o—algebra on [0, 7] x Q2. The function f ((, s ) is
a Carathéodory function with respect to P, i.e. it is continuous in ¢ and P—measurable
in (t,w).

2For a comprehensive overview of the theory of measurable correspondences, we refer the reader
to [1].
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Proposition A.3. For any k € N, the correspondence Afk [0, 7] x Q — R™ is weakly
P-measurable.

Proof. Let F' C R™ be closed and consider {Cm}::1 C F dense. For n € N let

TAY ) (w) = {c € [k, k" | f((t,w),¢) < 717}

We have that
(A7) (F)

{(t,w) €10,7] x Q ’ f((tw),¢) < for some ¢ € F}

1
n
= {(t,w) S [O,T] x ’ f((tvw)7Cm) <

= UG-

1
; for some m € N}

The second equality holds because f is continuous in ¢, { ¢ m}il is dense and (o0, 1/n)
is open. Since f is Carathéodory, then f‘l((-7 ),C) ( — 00, %) € P, hence for all n € N,
the correspondence ”Af i is weakly P—measurable. Next we have

1
F(tw).€) < n},

where the second inclusion follows again from the continuity of f in ¢. This implies
that

A0 () C TAT (@) {c € kA"

A7 () = () A7 L (w).
n=1
By Lemma 18.4 (part 3) in [1], we conclude that the correspondence (¢,w) .Aﬁk(w)
is weakly P—measurable.

The following theorem, whose proof can be found in [1], page 595, plays an important
role in the proof of predictability of our BSDE’s driver:

Theorem A.4. A nonempty—valued correspondence mapping a measurable space into
a separable, metrizable space is weakly—measurable if and only if its associated distance
function is a Carathéodory function.

Acknowledgment. The authors are very thankful to Jianing Zhang for his guidance
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