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Abstract: The estimation of signal parameters like frequency of higher Resolution is an important task in signal 
processing. In several applications of signal processing like time series analysis, ESPRIT algorithm is used for the 
perfect frequency estimation with less computational efforts. In this paper, Total Least Squares Estimation version 
of ESPRIT is implemented for finding the frequency estimates of the seismic signals. ESPRIT employs a basic 
rotational invariance in the subspaces of the signal. This technique exhibits some computational advantages above 
earlier algorithms like MUSIC, MEM etc.
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Introduction1.	

1.1.	 Seismology
Seismology is the study of earth quakes, according to some researches in olden times the earthquakes are caused 
by the volcanic explosions that take place under the earth’s crust and the waves travel to the earth’s surface causing 
the tremors which causes lots of destruction to the mankind and according to some researches the earth quakes 
are caused [1] by the drifting of continents which causes the landmass to move and create mass earth quakes. 
These waves are of two types, one is the transverse waves and the other is the longitudinal waves, the transverse 
waves travel parallel to the epicenter of the earthquake while the longitudinal waves travel perpendicular to 
the epicenter of the earth quake. Generally, these earthquakes are detected by a device known as seismograph, 
it simply records the data of the earthquake like duration, magnitude etc. [12] this data is further converted, 
simplified etc. or simply it is called as processing of seismic signal which is briefly explained below.

1.2.	 Seismic Signal Processing
Basically, seismic signal processing is a digital signal process in which a seismic signal is taken as input signal 
and also it is a processing of seismic signals which enhances the signal to noise ratio and provides a clearer 
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response of the earthquake [3]. In several applied signal processing problems, the main aim is to estimate a set 
of constant parameters from the measurements on which the received signals rely on. For instance, direction of 
arrival (DOA) of higher resolution estimation is significant in several sensor systems like electronic surveillance, 
seismic exploration, radar and sonar. Frequency estimation of higher resolution is significant in many applications, 
present day examples of which involve the control and design of robots and huge space structures. In those tasks, 
the workable structure of the underlying signals are usually assumed to be known [11]. There are several methods 
involved in the processing of the seismic signals, algorithms are used to process the seismic data for a better-
quality response. Some of the algorithms are Burg’s method, maximum entropy method, modified co-variance 
method, minimum norm method, MUSIC algorithm, ESPRIT algorithm, yule walker’s method, Welch’s method 
etc., these methods are classified into parametric methods, non-parametric methods and frequency estimation 
methods, so basically these methods are classified into three types, the main task for every digital processing 
technique is to reduce noise and increase the signal strength, so that our data remains as best as possible, the 
seismic signals are of two types, this type of classification of seismic signals differs only with the source where 
these signals are being emitted from [13]. The two types of seismic signals are, real time signal and synthetic 
signal. Real time signals are the signals of earthquakes appeared in real life while the synthetic signals are the 
signals that are produced by controlled explosions executed under some expert guidance. These synthetic signals 
could be from the roots of a tree which is blown by the wind on a windy day or from a tunnel in which a metro 
train passes etc. [14]. Generally, the work of this seismic signal processing starts by taking a seismic signal 
as input. By applying ESPRIT algorithm the PSD (power spectral density) of the signal is found out. PSD is 
nothing but representation of the power of the signal by using frequency functions. After this the Raw seismic 
signal is taken and detrended. Detrending is nothing but removing the aspects of the signal which are causing 
distortion. This detrended raw seismic signal is then applied to a FIR Bandpass filter, which further converts the 
signal from frequency domain to time domain, later FFT is applied to the FIR Bandpass filtered seismic signal 
in order to convert it back to frequency domain.

1.3.	 ESPRIT Algorithm
ESPRIT stands for estimation of signal parameters via rotational invariance techniques is developed on the 
similar values just like the other subspace procedures but additionally exploits a deterministic connection among 
subspaces [6]. It is a frequency estimation technique. This method differs from the other subspace methods in 
that the signal subspace is estimated from the data matrix A rather than the estimated correlation matrix. The 
essence of ESPRIT lies in the rotational property between staggered subspaces that is invoked to produce the 
frequency estimates. In the case of a discrete-time signal or time series, this property relies on observations of 
the signal over two identical intervals staggered in time [9]. This condition arises naturally for discrete-time 
signals, provided that the sampling is performed uniformly in time. Extensions of the ESPRIT method to a 
spatial array of sensors, the application for which it was originally proposed, the original, least-squares version 
of the algorithm is described in first place and then the derivation to total least-squares ESPRIT was extended 
[8], which is the preferred method for use. Since the derivation of the algorithm requires an extensive amount 
of formulation and matrix manipulations.

MATHEMATICAL MODELLING2.	
Let us take a complex exponential S0 = ej2pfn which has a complex amplitude α and a frequency f. The property 
of the signal which we have taken is shown below [2].

	 S0(n + 1) = aej2pf (n + 1) = S0(n)ej2pf	 (1)
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Hence, the phase-shifted version of the present value is the succeeding sample value. The rotation on the 
unit circle ej2pf is a representation of this phase shift.

	 x n f e np p
j nf n
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p( ) ( ) ( )= + = ∆

=Â a pV W V
P 2

1
 a + W(n) = S(n) + W(n)	 (2)

where the P columns of matrix U are length-N interval frequency vectors of the complex exponentials.

	 U = [U( f1), U( f2), ..., U( fp)].	 (3)

The complex exponentials ap amplitudes are present in the vector a. The diagonal matrix of phase shifts 
among the adjacent time samples of the individual is the matrix ∆ complex exponential elements of S(n).
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This rotation matrix is entirely expressed by the complex exponential frequencies fp. If ∆ can be acquired, 
then frequency estimates can be acquired. Take two overlaying sub-windows of length N - 1 with the length N 
time window vector and signal which has the sum of complex exponentials.
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where, SN - 1(n) is the length (N - 1) subwindow of S(n), hence SN - 1(n) = UN - 1∆
na.

Matrix UN - 1 is built in the equivalent way as U other than its time-window frequency vectors are of length 
N - 1, represented as UN - 1( f ).

	 UN - 1 = [UN - 1( f1), UN - 1( f2), ..., UN - 1( fp)]	 (6)

Remember that S(n), a scalar signal which is shaped up of the sum of complex exponentials at time n.

	 U1 = UN - 1∆
n and U2 = UN - 1∆

n + 1	 (7)

U1 and U2 relate to the unstaggered and staggered windows, which is
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The two matrices with vectors having intervals are expressed as

	 U2 = U1∆	 (9)

Observe that both matrices spaces a distinct, however related, (N - 1) dimensional subspace. Assume that 
we possess a data matrix A with M data records of the length N interval vector signal x(n). By singular value 
decomposition (SVD), data matrix is

	 A = L S VH	 (10)

L is a M ¥ M matrix of left singular vectors and v is a N ¥ N matrix of right singular vectors. Each of these 
matrices are unit matrices, hence LHL = I and VHV = I. Dimensions of the matrix S are M ¥ N which contains 
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singular quantities on the main diagonal which is ordered in a magnitude of decreasing value. The singular 
valued magnitudes are squared and are equivalent to the eigen values of R  scaled with a M factor and the 
V’s columns are their related eigen vectors. Hence, v shapes an orthogonal and normalized foundation for the 
underlying N-dimensional vector space. The signal and noise subspaces are formed by dividing this subspace 
as V = [Vs/Vn]

Relating to the p largest magnitudes of the singular values Vs is a matrix of right hand singular vectors 
[4]. All of these frequency vectors for f = f1, f2, ..., fp should lie in the signal subspace since the sum of complex 
exponentials formed as time-window frequency vectors U( f ) are contained in the signal portion. Hence, U and 
Vs matrices occupy the identical subspace. Hence, there lies an invertible transformation T that draws Vs into 
U = VsT

In this derivation, T transformation is never elucidated, in the other way it is only constructed just like a 
mapping inside the subspace of the signal among these two matrices. Divide the subspace of the signal as two 
tiny subspaces of dimensions(N - 1).
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where, V1 and V2 relate to the staggered and unstaggered subspaces because U1 and U2 related to the equivalent 
subspaces.

	 U1 = V1T, U2 = V2T	 (12)

The rotation Ø subspaces are being corresponded by the matrix U’s staggered and un-staggered elements. 
A same, though un-like, rotation should be present that associates V1 to V2 because the matrices V1 and V2 also 
spaces these subspaces as V2 = V1Y

Where, Y is the matrix of rotation. Remember that the estimation of frequency arrives below for summarizing 
the rotation matrix ∆ subspace. Rotations among the subspaces of staggered signal and the relations altogether 
combined can be made use of the estimation of ∆. From the data matrix A’s SVD the matrices V1 and V2 are 
known from the procedure. Primarily solve Y by utilizing the technique of least squares.

	 Y = (V1
HV1)

-1V1
HV2	 (13)

Substituting V2 = V1Y, U2 = V2T = V1YT is aquired. In the same way, solve U2, utilizing the relation U2 = 
U1∆ and substituting U1 = V1T and U2 = V2T for U1, U2 = U1∆ = V1T∆. Hence, by equating both the right-hand 
sides of U2 = V2T = V1YT and U2 = U1∆ = V1T∆. The relation among the two subspaces rotations is

	 YT = T∆ or

Similarly,	    Y = T∆T-1	 (12)

Equations YT = T∆ and Y = T∆T-1 must be realized as the association among the matrix Y’s eigen 
vectors and eigen values. Hence, elements of the diagonal of ∆, ∆p for p = 1, 2, 3, …, P are commonly the Y’s 
eigenvalues. Finally, the frequency estimates are

	 f p
p =

–∆
2p

	 (13)

where the phase of ∆p is –∆p. Even though the utilization of rotational subspaces is the property of the ESPRIT 
algorithm is very easy. Pay heed that only matrix simple relationships are utilized by us. Primarily, provide an 
algorithm which has a version of total least squares, a best technique to utilize. Pay heed that V1 and V2 subspaces 
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are the original subspace’s only estimates that relate to U1 and U2, naturally acquired through the data matrix A. 
The subspace rotation’s estimate was acquired by solving V2 = V1Y utilizing the least square criterion.

	 Yls = (V1
HV1)

-1V1
HV2	 (14)

This least square result is acquired by reducing the errors in least square perception from the formulation 
as given below.

	 V2 + E2 = V1Y	 (15)

Since E2 is a matrix which has errors among V2 and the original subspace relating to U2. The least square 
formulation presumes that errors exist especially on V2 estimation and on the other side it presumes that there 
exist no errors among V1 and the original subspace that it is trying to estimate relating to U1 [5]. Hence, V1 is 
an estimated subspace too, an extremely accurate formulation is

	 V2 + E2 = (V1 + E1)Y	 (16)

Errors among V1 and the original subspace relating to U1 is expressed by the matrix E1. By minimizing 
the frobenius norm of the two error matrices can acquire the result to this problem, which is known as total least 
squares(TLS).

	 || E1  E2 || F	 (17)

As the properties of TLS are far away from the expectation, normally lend the process to acquire the TLS 
solution of Y. Primarily, prepare a matrix constructed by the staggered signal subspace matrices V1 and V2 
located adjacent to each other and execute an SVD.

	 [V1  V2] =   L VHS 	 (18)

Later we work on 2P ¥ 2P matrix V  of right singular vectors which are divided as P ¥ P quadrants.
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The subspace rotation matrix Y Total least square solution is Ytls = - - V V12 22
1.  The estimation of frequencies

is then acquired by Y = T∆T-1 and f p
p=

–∆
2p

 by utilizing Ytls from Ytls = - - V V12 22
1 .

SIMULATION AND RESULTS3.	
Step 1: The data utilized for the observation is acquired from Book_Seismic_Data.mat of east Texas [7] land 
line is the file name. We have taken the source as a dynamite blast which took place at a depth of around 100ft, 
one trace has 1501 samples of 0.002s sampling interval.

Step 2: The algorithm’s functioning is assessed with known synthetic signal and then ESPRIT algorithm is 
applied to calculate the seismic signal’s tonal.

Step 3: The normalized frequencies are 0.2p and 0.7p. The signal generated is shown in Figure 1.

Step 4: In Figure 2, PSD of the synthetic signal is shown. The Figure shows peaks are at 0.2 and 0.7 normalized 
frequencies. That means ESPRIT algorithm is working fine.

Step 5: In Figure 3, the seismic signal data is shown.

Step 6: In Figure 4 the detrended seismic signal data is shown.
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Step 7: ESPRIT algorithm is applied on detrended seismic signal and the PSD obtained is shown in Figure 5. 
The max peak is at 0.958 normalized frequency.

	 w =	 2pf
fs

 = 0.0958p

	 =	 2
500
pf

	 =	 2p
fs

f  = 0. 0958p

	 f =	 500
2

0 0958¥ .

	 =	250 ¥ 0.0958

	 =	25 ¥ 0.0958

	 =	23.950 Hz

Step 8: In the reference book, it is written that the data is band pass filtered in the range [15Hz, 60Hz]. For ensuring 
purpose, a BP filter with FIR order 8 is realized. The transfer function of the same is shown in Figure 6.

Step 9: The detrended seismic signal is convolved with FIR BPF and the output is shown in Figure 6.

Step 10: The same PSD, as shown in Figure 7. Is obtained. So, the seismic signal tonal is 23.95Hz.

Another insignificant tonal is w1 = 2Pf
fs

 = 0.119p
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	 Figure 1: Synthetic signal with and without noise	 Figure 2: PSD using ESPIRIT TLS Method for 
		  synthetic signal
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	 Figure 3: Raw seismic signal	 Figure 4: De-trended raw seismic signal
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	 Figure 5: FIR bandpass filtered frequency spectrum	 Figure 6: FFT of bandpass filtered seismic signal
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Figure 7: ESPRIT spectrum of BPF de-trended seismic signal

CONCLUSION4.	
In this paper Signal parameter estimation with high resolution is obtained using ESPRIT algorithm. Results 
obtained are accurate since the false peaks are removed and an error free signal can be plotted. From the results 
obtained it is concluded that the ESPRIT algorithm is the best technique for frequency estimation in seismic 
signal processing which requires less computation.
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