Indian Journal of Mathematics and Mathematical Sciences Vol. 12, No. 1, (January. 2016)

CHARACTERIZATION OF DISTRIBUTIVE LATTICE IN A SPACE 'X'

K. V. R. Srinivas^{*}

ABSTRACT

The concept of codistributive pair was introduced by Repritskii (2) in a general lattice. He also introduces the concept of d-prime ideal. K.V.R. Srinivas (5) obtained a characterization for a lattice to be distributive interms of d-prime ideals. In this paper, a characterization for a lattice to be distributive in a space 'X' of d-prime ideals together with the well known topology $\{X_a: a \in L\}$. where $X_a = \{P \in X: a \notin P\}$ as an open sub-base is obtained.

Key words: Codistributive pair, d-prime Ideal, T₁, Space,

INTRODUCTION

In his paper entitled "Representation of lattices by sub semi-group lattice of bands" Repritskii (1995) had described those finite lattices which are embeddable in subsemi group lattices of a rectangular band. "On distributive prime ideals of a lattice", K.V.R. Srinivas obtained a characterization for a lattice to be distributive in terms of d-prime ideals (4). In this paper we obtained a characterization for a lattice to be a distributive in a space X, of d-prime Ideals together with the well known topology $\{X_a: a \in L\}$ Where $X_a = \{P \in X: a \notin P\}$ as an open sub-base. It is also obtained in this paper that "Every d-prime ideal of a bounded lattice 'L' is maximal iff'X' is T_1 -Space". An interesting example that if every d-prime ideal of a lattice 'L' is maximal, then the lattice need not even be modular is also obtained.

First we start with the following preliminaries.

1.1. Definition (2): Let 'L', be a lattice. We call a pair (a,b) of elements form 'L' codistributive if, for any element $z \in L$,

 $(a\Lambda b) \lor z = (a \lor z) \land (b \lor z)$. Otherwise we call (a, b) as non–codistributive.

1.2 Definition (2): An ideal 'P' of lattice 'L' is called a distributively prime (or briefly d-prime) if for any codistributive pair (a, b) $\in L^2$ the condition $a\Lambda b \in P$ implies $a \in P$ or $b \in P$.

1.3 Definition (3): Let (L, \lor, Λ) be a lattice. An ideal 'M' of lattice 'L' is called a maximal ideal if 'M' is maximal among the proper ideals of L, equivalently to say that $M \neq L$ and if 'N' is an ideal of 'L' such that $M \subseteq N$ then N=M or N=L.

G.V.P. College of Engineering, Visakhapatnam-41.

1.4 Definition (6): A Lattice (L, \lor , Λ) is said to be a distributive lattice if it satisfy the following conditions.

(1) For any triplet of elements a, b, c of the lattice a Λ (b \vee c) = (a Λ b) \vee (a Λ c).

(2) For any triplet of elements a, b, c of the lattice $a \lor (b \land c) = (a \lor b) \land (a \lor c)$.

1.5 Definition (6): A Lattice (L, \lor, Λ) is said to be a modular lattice, if for any triplet of elements a, b, c of a Lattice satisfying a \lor c, the identity

$$a \lor (b \land c) = (a \lor b) \land c$$
 holds.

1.6 Definition (6): A Topological space 'X' is called a T_1 -space if and only if every single element subset of 'X' is closed.

1.7 Definition (1): The topological space 'A' is called compact iff every family F_1 of closed sets $\cap F_1 \neq \emptyset$, for all finite $F_1 \subseteq F$ then $\cap F \neq \emptyset$.

Theorem 1.8: $\{x_a: a \in L\}$ form base for some topology on X iff every d-prime ideal is prime iff 'L' is distributive.

Proof: Suppose $\{x_a: a \in L\}$ form a base for some topology on X. Let 'P', be any d-prime ideal of 'L' such that $a \notin p$ and $b \notin p$ so that $p \in X_a$ and $P \in X_b$ and hence $P \in X_a \cap X_b$ therefore there exists $c \in L$ such that $p \in X_c \subseteq X_a \cap X_b$. Hence $X_c \subseteq X_a$ and $X_c \subseteq X_b$. So that $c \le a$ and $c \le b$ as $a \le b$ iff $X_a \subseteq X_b$ (4). Therefore $c \le a \land b$. If $a \land b \in P$, then $c \in P$ (since 'P' is an ideal of L) which is a contradiction as $P \in X_c$ and hence $a \land b \notin p$. Therefore 'P' is a prime ideal of 'L'.

Conversely if every d-prime ideal of a lattice 'L' is prime, then obviously $\{X_a: a \in L\}$ form base for some topology on X. But by using theorem (4) 'L' is distributive.

If 'L' is a lattice with '0' and '1'. In the following theorem. We have obtained a necessary and sufficient condition for a bounded lattice to be maximal is X is T_1 -Space.

Theorem 1.9: Every d-prime ideal of a bounded lattice 'L' is maximal if and only if 'X' is T_1 -Space.

Proof: Assume that every d-prime ideal of 'L' is maximal. Let 'P', be any d-prime ideal of lattice 'L'. Suppose $Q \in X$ -{P} so that $Q \neq P$ and since $P \not\subseteq Q$, and P, Q are maximal ideals of L, there exists $a \in P$ and $a \in Q$. Hence $Q \in X_a \subseteq X$ -{P} (since $a \in P$) so that X-{P} is open and hence {P} is closed. Therefore 'X' is T₁-Space.

Conversely suppose 'X' is $T_1 - Space$ and let 'L', be a lattice with '0' and '1'. By using zorn's lemma, every proper ideal of 'L' is contained in a maximal ideal. Let $P \in X$ be a d-prime ideal of 'L' such that $P \subseteq M$, where 'M' is a maximal ideal of 'L'. It remains to show that P = M. Let $M \in X_{a1} \cap X = a_2 \cap ... \cap X_{an}$ be a basic neighbourhood of M, so that $a_1 \notin M$, $a_2 \notin M$... an $\notin M$ and hence $a_1 \notin P$, $a_2 \notin P$... $a_n \notin P$ (since $P \subseteq M$). Therefore $P \in X_{a1} \cap X_{a2} \cap ... \cap x_{an}$, so that every basic neighbourhood of 'M' contains P. Hence $M \in \{\overline{P}\} = \{P\}$ and hence M = P, therefore 'P' is a maximal ideal.

The following is an Interesting example that if every d-prime I deal of a lattice 'L' is maximal, then the lattice need not even be modular.

Ex 1.10:

In this {0} is not d-prime Ideal as (a,b) is Codistributive

{0,a} is not d-prime ideal as (c,d) is codistributive.

{0,b} is not d-prime ideal as (d,e) is codistributive.

 $\{0,a,c\}, \{0,b,e\}, \{0,b,d\}, \{0,a,d\}$ are d-prime ideals which are all maximal, but the lattice is not even modular.

The following is a necessary sufficient condition for a space 'X' to be compact is hat the lattice 'L' has greatest element '1' and $X = X_1$

Theorem 1.11

Suppose 'L' is a lattice and X, be the set o all proper d-prime Ideals of L. Then a space 'X' is compact if and only if 'L' has greatest element '1' and $X = X_1$

Proof: Let 'L' has greatest element '1', then $\cup X_a = X$. Since, $X_a \subseteq X$ so that $a \ni L$

 $\cup X_a \subseteq X$, and for $P \in X$, there exists $a \in L$ such that $a \notin P$. Hence $P \in X_a$, so $a \in L$

that $X \subseteq \bigcup X_a$ there fore $\bigcup X_a = X = X_1$. Now, suppose 'X' is compact, so that $a \in L$

 X_a compact open, We have $X = X_{a1} \cup X_{a2} \cup \dots \cup X_{an} = X_{a1} \vee_{a2} \vee \dots \vee \vee_{an}$ (by using Lemma (3.45) (5)). It remains to show that $a_1 \vee a_2 \vee \dots \vee a_n$ is the greatest element of L. For this Let $a \in L$, so that $X_a \subseteq X$, but $X = X_{a1} \vee \dots \vee a_n$ and hence $X_a \subseteq X_{a1 \vee \dots \vee a_n}$ Therefore $a \leq a_1 \vee \dots \vee a_n$ (by lemma 3.39) (5) for any $a \in L$. Hence $a_1 \vee \dots \vee a_n$ is the greatest element of L. If '1' is the greatest element of L, then $X_1 \subseteq X \to (1)$. If $P \in X$, then $P \in X_1$, otherwise $1 \in P$, but 'P' is a proper d-prime ideal of L and hence $X \subseteq X_1 \to (2)$ From (1) & (2), we have $X = X_1$.

REFERENCES

- [1] Gratzer, G., General Lattice theory, Academic press, New York, Sanfrancisco (1975).
- [2] Repritskii V. B., On the representation of lattices by subsemigroup lattices of bands, semigroup form, Vol. 51, 379-389, (1995).

- [3] Sankappanavar, A course in universal Algebra, springer Verlag (1981).
- [4] Srinivas K. V. R., On distributive prime ideals of a lattice Bulletein of Calcutta Mathematical Society 97(1) 79-94, (2005).
- [5] Srinivas K. V. R., On characterization of partial orders on regular semigroups and dprime ideals in lattices Ph.D. thesis, Dept. of Maths, A.U. Visakhapatnam (2004).
- [6] SZA SZG: Introduction to lattice theory, academic press, New York and London 1963.

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/