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Abstract. Both Wick-Itô-Skorokhod and Stratonovich interpretations of
the Parabolic Anderson model (PAM) lead to solutions that are real analytic

as functions of the noise intensity ε, and, in the limit ε → 0, the difference
between the two solutions is of order ε2 and is non-random.

1. Introduction

Let W = W (x), x ∈ [0, π] be a standard Brownian motion on a complete prob-
ability space (Ω,F ,P). With no loss of generality, we assume that all realizations
of W are in C1/2−((0, π)), that is, Hölder continuous of every order less than 1/2.

Consider the equations

∂u⋄(t, x; ε)

∂t
=

∂2u⋄(t, x; ε)

∂x2
+ εu⋄(t, x; ε) ⋄ Ẇ (x), t > 0, 0 < x < π,

u⋄(t, 0; ε) = u⋄(t, π; ε) = 0, u⋄(0, x; ε) = φ(x),
(1.1)

and

∂u◦(t, x; ε)

∂t
=

∂2u◦(t, x; ε)

∂x2
+ εu◦(t, x; ε) ◦ Ẇ (x), t > 0, 0 < x < π,

u◦(t, 0; ε) = u◦(t, π; ε) = 0, u◦(0, x; ε) = φ(x).
(1.2)

Equation (1.1) is the Wick-Itô-Skorokhod formulation of the parabolic Anderson

model with potential εẆ ; equation (1.2) is the corresponding Stratonovich (or
geometric rough path) formulation. These equations, with ε = 1, are studied in
[1] and [2], respectively.

The objective of the paper is to show that

• The solutions of (1.1) and (1.2) are real-analytic functions of ε: with

suitable functions u
(n)
⋄ , and u

(n)
◦ , the equalities

u⋄(t, x; ε) = u⋄(t, x; 0) +

∞∑
n=1

εnu
(n)
⋄ (t, x) (1.3)

u◦(t, x; ε) = u◦(t, x; 0) +
∞∑

n=1

εnu
(n)
◦ (t, x) (1.4)
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hold for all t > 0, x ∈ [0, π], ε > 0, and every realization of W ;
• The first two terms in (1.3) and (1.4) are the same so that

|u⋄(t, x; ε)− u◦(t, x; ε)| = O(ε2), ε → 0, (1.5)

for all t > 0 and x ∈ [0, π], and every realization of W .

Equalities (1.3) and (1.4) are in the spirit of [5]. Equality (1.5) is similar to [9,
Proposition 4.1]; see also [8].

The precise statement of the main result is in Section 2, and the proof is in
Sections 3, 4, and 5.

2. The Main Result

Denote by p = p(t, x, y) the heat semigroup on [0, π] with zero boundary con-
ditions:

p(t, x, y) =
2

π

∞∑
k=1

e−k2t sin(kx) sin(ky), t > 0, x, y ∈ [0, π]. (2.1)

Let φ = φ(x) be a continuous function on [0, π], and let u = u(t, x) be the solution
of the heat equation

∂u(t, x)

∂t
=

∂2u(t, x)

∂x2
, t > 0, 0 < x < π,

u(t, 0) = u(t, π) = 0, u(0, x) = φ(x),
(2.2)

that is,

u(t, x) =

∫ π

0

p(t, x, y)φ(y)dy. (2.3)

Next, define the function u = u(t, x) by

u(t, x) =

∫ t

0

∫ π

0

p(t− s, x, y)u(s, y) dW (y) ds. (2.4)

That is, u is the mild solution of

∂u(t, x)

∂t
=

∂2u(t, x)

∂x2
+ u(t, x)Ẇ (x), t > 0, 0 < x < π,

u(t, 0) = u(t, π) = u(0, x) = 0.
(2.5)

Because u is non-random, no stochastic integral is required to define u.

Proposition 2.1. If φ ∈ C((0, π)), then u is a continuous function of t and x for
all t > 0 and x ∈ [0, π].

Proof. This follows by the Kolmogorov continuity criterion: u is a Gaussian ran-
dom field and direct computations show

E
(
u(t+ τ, x+ h)− u(t, x)

)2 ≤ C(t)
(
τ2 + h2

)1/4
max

x∈[0,π]
|φ(x)|;

cf. [1, Sections 6 and 7]. □
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Next, define the functions u
(n)
⋄ = u

(n)
⋄ (t, x), n = 0, 1, 2 . . ., t ≥ 0, x ∈ [0, π], by

u
(0)
⋄ (t, x) = u(t, x), and, for n ≥ 1, u

(n)
⋄ is the mild solution of

∂u
(n)
⋄ (t, x)

∂t
=

∂2u
(n)
⋄ (t, x)

∂x2
+ u

(n−1)
⋄ (t, x) ⋄ Ẇ (x), t > 0, 0 < x < π,

u
(n)
⋄ (t, 0) = u

(n)
⋄ (t, π) = u

(n)
⋄ (0, x) = 0.

(2.6)

In other words,

u
(n)
⋄ (t, x) =

∫ t

0

∫ π

0

p(t− s, x, y)u
(n−1)
⋄ (s, y) ⋄ dW (y) ds, n ≥ 1, (2.7)

and, in particular, u
(1)
⋄ = u.

Similarly, define the functions u
(n)
◦ = u

(n)
◦ (t, x), n = 0, 1, 2 . . ., t ≥ 0, x ∈ [0, π],

by u
(0)
◦ (t, x) = u(t, x), and, for n ≥ 1, u

(n)
◦ is the mild solution of

∂u
(n)
◦ (t, x)

∂t
=

∂2u
(n)
◦ (t, x)

∂x2
+ u

(n−1)
◦ (t, x) ◦ Ẇ (x), t > 0, 0 < x < π,

u
(n)
◦ (t, 0) = u

(n)
◦ (t, π) = u

(n)
◦ (0, x) = 0.

(2.8)

In other words,

u
(n)
◦ (t, x) =

∫ t

0

∫ π

0

p(t− s, x, y)u
(n−1)
◦ (s, y) ◦ dW (y) ds, n ≥ 1, (2.9)

and, in particular, u
(1)
◦ = u.

The main result of the paper can now be stated as follows.

Theorem 2.2. Let φ ∈ C((0, π)). Then

(1) Equality (1.3) holds with u
(n)
⋄ from (2.7).

(2) Equality (1.4) holds with u
(n)
◦ from (2.9).

(3) Equality (1.5) holds and

lim
ε→0

ε−2
(
u◦(t, x; ε)− u⋄(t, x; ε)

)
=

∫ π

0

p(3)(t, x, z)φ(z)dz, (2.10)

where

p(3)(t, x, z) =

∫ π

0

∫ t

0

∫ s

0

p(t− s, x, y)p(s− r, y, y)p(r, y, z) dr ds dy.

The proof is carried out in the following three sections.

3. The Wick-Itô-Skorokhod Case

The objective of this section is the proof of (1.3).
The solution of (1.1) is defined as a chaos solution (cf. [6, Theorems 3.10]). It is

a continuous in (t, x) function (cf. [1, Sections 6 and 7]) and has a representation
as a series

u⋄(t, x; ε) =
∑
α∈J

uα(t, x; ε)ξα, (3.1)
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where

J =

{
α = (αk, k ≥ 1) : αk ∈ {0, 1, 2, . . .},

∑
k

αk < ∞

}
,

ξα =
∏
k

(
Hαk

(ξk)√
αk!

)
, Hn(x) = (−1)nex

2/2 dn

dxn
e−x2/2,

ξk =

∫ π

0

mk(x) dW (x), mk(x) =
√
2/π sin(kx),

and, with |α| =
∑

k αk, |(0)| = 0, |ϵ(k)| = 1,

u(0)(t, x; ε) = u(t, x),

uα(t, x; ε) = ε
∑
k

√
αk

t∫
0

π∫
0

p(t− s, x, y)uα−ϵ(k)(s, y; ε)mk(y) dyds;

see [1, Section 3] for details. In particular,

∑
|α|=n

uα(t, x; 1)ξα =
∑

|α|=n−1

∫ t

0

∫ π

0

p(t− s, x, y)uα(s, y; 1)ξα ⋄ dW (y) ds. (3.2)

Comparing (2.7) with (3.2) shows that

u
(n)
⋄ (t, x) =

∑
|α|=n

uα(t, x; 1)ξα. (3.3)

In other words, (1.3) is equivalent to (3.1).
Next,

E|u(n)
⋄ (t, x)| = E

∣∣∣∣∣∣
∑

|α|=n

uα(t, x; 1)ξα

∣∣∣∣∣∣ ≤
E

 ∑
|α|=n

uα(t, x; 1)ξα

2


1/2

=

 ∑
|α|=n

|uα(t, x; 1)|2
1/2

≤ Cn(t)n−n/4 sup
x∈(0,π)

|φ(x)|1/2,

where the last inequality follows by [1, Theorem 4.1]. As a result,∑
n≥0

εnE
∣∣u(n)

⋄ (t, x)
∣∣ < ∞,

that is, the series converges absolutely with probability one for all t > 0, x ∈ [0, π],
and ε ∈ R.

This concludes the proof of (1.3).
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4. The Stratonovich Case

The objective of this section is to prove (1.4). To simplify the presentation, we
use the following notations:

Λ = (−∆)1/2, Hθ = Λ−θ
(
L2((0, π)

)
, ∥ · ∥θ = ∥Λθ · ∥L2((0,π)), θ ∈ R,

p ∗ g(t, s, x) =
∫ π

0

p(t− s, x, y)g(s, y) dy,

where ∆ is the Laplace operator on (0, π) with zero boundary conditions and p is
the heat kernel (2.1).

By direct computation,

∥p ∗ g∥γ(t, s) ≤ CT,θ (t− s)−θ/2∥g∥γ−θ(s), θ > 0, γ ∈ R, t ∈ (s, T ]; (4.1)

cf. [3, Lemma 7.3].
Consider the equation

∂v(t, x)

∂t
=

∂2v(t, x)

∂x2
+ v(t, x) ◦ Ẇ (x) + f(t, x) ◦ Ẇ (x), t > 0, (4.2)

which includes (1.2) as a particular case. By definition, a solution (classical, mild,
generalized, etc.) of (4.2) is a suitable limit, as ϵ → 0, of the corresponding
solutions of

∂vϵ(t, x)

∂t
=

∂2vϵ(t, x)

∂x2
+ vϵ(t, x)Vϵ(x) + f(t, x)Vϵ(x), t > 0, (4.3)

where Vϵ, ϵ > 0 are smooth functions on [0, π] such that

sup
ϵ

∥∥∥∥∫ Vϵ

∥∥∥∥
C1/2

< ∞, lim
ϵ→0

sup
x∈[0,π]

∣∣∣∣∫ x

0

Vϵ(y)dy −W (x)

∣∣∣∣ = 0.

By [2, Theorem 3.5],

• The generalized solution of (4.2) is the same as the generalized solution of
the equation

vt =
(
vx +W (x)v +W (x)f

)
x
−W (x)vx −W (x)fx; (4.4)

the subscripts t and x, as in fx, denote the corresponding partial deriva-
tives;

• The mild solution of (4.2) is the solution of the integral equation

v(t, x) =

∫ t

0

p ∗
(
(f + v)W

)
x
(t, s, x) ds−

∫ t

0

p ∗
(
(f + v)xW

)
(t, s, x) ds

+

∫ π

0

p(t, x, y)φ(y)dy.

(4.5)

On the one hand, mild and generalized solutions of (4.2) are the same: just use
mk as the test functions. On the other hand, different definitions of the solution
lead to different regularity results.
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By standard parabolic regularity, if φ ∈ H0 and f ∈ L2

(
(0, T );Hγ

)
, γ ∈

(1/2, 1], then there is a unique generalized solution of (4.4) in the normal triple
(H1,H0,H−1) and

v ∈ L2

(
(0, T );H1

)∩
C
(
(0, T );H0

)
(4.6)

for every realization of W ; cf. [4, Theorem 3.4.1]. Note that we cannot claim
v ∈ C

(
(0, T );Hγ

)
even if φ ∈ Hγ . In fact, because W ∈ C1/2− is a point-

wise multiplier in Hγ for γ ∈ (−1/2, 1/2) [3, Lemma 5.2], an attempt to find a
traditional regularity result for equation (4.4) in a normal triple (Hr+1,Hr,Hr−1)
leads to an irreconcilable pair of restrictions on r: to have Wf ∈ L2((0, T );H

r)
we need r < 1/2, whereas to have Wfx ∈ L2((0, T );H

r−1) we need r − 1 > −1/2
or r > 1/2.

Accordingly, to derive a bound on ∥v∥γ(t) for t > 0, we use the mild formulation
(4.5).

Proposition 4.1. Let γ ∈ (1/2, 1), f ∈ L2

(
(0, T );Hγ

)
, φ ∈ H0, and let v be the

mild solution of (4.2) with v|t=0 = φ. Then, for every T > 0 and every realization
of W , there exists a number C◦ such that

∥v∥γ(t) ≤ C◦

(
t−γ/2∥φ∥0 +

∫ t

0

(t− s)−γ∥f∥γ(s) ds
)
. (4.7)

Proof. Throughout the proof, C denotes a number depending on γ, T , and the
norm of W in the space C1−γ . The value of C can change from one instance to
another. With no loss of generality, we assume that φ and f are smooth functions
with compact support.

To begin, let us show that if V is the mild solution of

∂V (t, x)

∂t
=

∂2V (t, x)

∂x2
+ f(t, x) ◦ Ẇ (x), t > 0,

V (t, 0) = V (t, π) = 0, V |t=0 = φ, then

∥V ∥γ(t) ≤ Ct−γ/2∥φ∥0 + C

∫ t

0

(t− s)−γ∥f∥γ(s) ds. (4.8)

Indeed, by (4.5),

V (t, x) =

∫ t

0

p ∗ (fW )x(t, s, x) ds−
∫ t

0

p ∗
(
fxW

)
(t, s, x) ds+

∫ π

0

p(t, x, y)φ(y)dy.

Using (4.1) with θ = γ,∥∥∥∥∫ π

0

p(t, ·, y)φ(y)dy
∥∥∥∥
γ

≤ Ct−γ/2∥φ∥0.

Then

∥V ∥γ(t) ≤
∫ t

0

∥p∗(fW )x∥γ(t, s) ds+
∫ t

0

∥p∗
(
fxW

)
∥γ(t, s) ds+Ct−γ/2∥φ∥0. (4.9)

To estimate the first term on the right hand side of (4.9), we use (4.1) with
θ = 2γ. Then

∥p ∗ (fW )x∥γ(t, s) ≤ C(t− s)−γ∥(fW )x∥−γ(s) ≤ C(t− s)−γ∥fW∥1−γ(s),
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and, because W ∈ C1/2−((0, π)) is a (point-wise) multiplier in H1−γ ,

∥fW∥1−γ(s) ≤ CW ∥f∥1−γ(s);

recall that 0 < 1− γ < 1/2. Finally, as 1− γ < γ,

∥p ∗ (fW )x∥γ(t, s) ≤ C(t− s)−γ∥f∥γ(s). (4.10)

To estimate the second term on the right hand side of (4.9), we use (4.1) with
θ = 1. Then

∥p ∗
(
fxW )∥γ(t, s) ≤

C√
t− s

∥fxW∥γ−1(s) ≤
C√
t− s

∥fx∥γ−1(s),

that is,

∥p ∗
(
fxW

)
∥γ(t, s) ≤ C(t− s)−1/2∥f∥γ(s). (4.11)

To establish (4.8), we now combine (4.9), (4.10), and (4.11), keeping in mind that
(t− s)−1/2 ≤ C(t− s)−γ because γ > 1/2.

Next, (4.8) applied to (4.2) implies

∥v∥γ(t) ≤ C

∫ t

0

(t− s)−γ∥v∥γ(s) ds+ C

∫ t

0

(t− s)−γ∥f∥γ(s) ds+ Ct−γ/2∥φ∥0,

and then a generalization of the Gronwall inequality (e.g. [10, Corollary 2]) leads
to (4.7). □

Corollary 4.2. If φ ∈ H0 and γ ∈ (1/2, 1), then, for every T > 0, a > 0, and

every realization of W , there exists a number C̃◦ such that the mild solution of
(1.2) satisfies

sup
|ε|<a

∥u◦(t, ·, ε)∥γ ≤ C̃◦ t
−γ/2∥φ∥0, t ∈ (0, T ]. (4.12)

Next, define the functions u
(n),ε
◦ = u

(n),ε
◦ (t, x), n = 0, 1, 2 . . . , t ≥ 0, x ∈ [0, 1],

ε ∈ R, by u
(0),ε
◦ (t, x) = u◦(t, x; ε) and, for n ≥ 1,

∂u
(n),ε
◦ (t, x)

∂t
=

∂2u
(n),ε
◦ (t, x)

∂x2
+ εu

(n),ε
◦ (t, x) ◦ Ẇ (x) + u

(n−1),ε
◦ (t, x) ◦ Ẇ (x),

u
(n),ε
◦ (t, 0) = u

(n),ε
◦ (t, π) = 0, u

(n),ε
◦ (0, x) = 0.

(4.13)

In particular,

u
(n),0
◦ (t, x) = u

(n)
◦ (t, x).

Note that all equations in (4.13) are of the form (4.2).

Proposition 4.3. If φ ∈ H0, then, for every γ ∈ (1/2, 2/3) and every realization
of W ,

lim
ε→ε0

1

(ε− ε0)n

∥∥∥u◦(t, ·; ε)−
n∑

k=0

(ε− ε0)
ku

(k),ε0
◦ (t, ·)

∥∥∥
γ
= 0, (4.14)

n ≥ 0, ε0 ∈ R, t ≥ 0.
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Proof. Throughout the proof, C denotes a number depending on γ, T , ε0, and the
norm of W in the space C1−γ . Define

v(n)ε (t, x) =
1

(ε− ε0)n

(
u◦(t, x; ε)−

n∑
k=0

(ε− ε0)
ku

(k),ε0
◦ (t, x)

)
. (4.15)

By (1.2),

n∑
k=0

(ε− ε0)
k ∂u

(k),ε0
◦ (t, x)

∂t
=

n∑
k=0

(ε− ε0)
k ∂

2u
(k),ε0
◦ (t, x)

∂x2

+ ε0

n∑
k=0

(ε− ε0)
ku

(k),ε0
◦ (t, x) ◦ Ẇ (x)

+ (ε− ε0)

n∑
k=1

(ε− ε0)
k−1u

(k−1),ε0
◦ (t, x) ◦ Ẇ (x),

(4.16)

so that

∂v
(0)
ε (t, x)

∂t
=

∂2v
(0)
ε (t, x)

∂x2
+ ε0v

(0)
ε (t, x) ◦ Ẇ (x) + (ε− ε0)u◦(t, x; ε) ◦ Ẇ (x),

∂v
(n)
ε (t, x)

∂t
=

∂2v
(n)
ε (t, x)

∂x2
+ ε0v

(n)
ε (t, x) ◦ Ẇ (x) + v(n−1)

ε (t, x) ◦ Ẇ (x), n ≥ 1,

(4.17)

v
(n)
ε (0, x) = 0, n ≥ 0, and (4.14) becomes

lim
ε→ε0

∥v(n)ε ∥γ(t) = 0, n ≥ 0, t ≥ 0, ε0 ∈ R. (4.18)

Note that all equations in (4.17) are of the form (4.2), and (4.18) trivially holds
for t = 0. Accordingly, combining the second equation in (4.17) with (4.7),

∥v(n)ε ∥γ(t) ≤ C

∫ t

0

(t− s)−γ∥v(n−1)
ε ∥γ(s) ds,

n ≥ 1, and then, for t > 0, (4.18) follows by induction: for n = 0, (4.12) yields

∥v(0)ε ∥γ(t) ≤ |ε− ε0|C
∫ t

0

(t− s)−γ∥u◦(s, ·, ε)∥γ ds

≤ C|ε− ε0| ∥φ∥0
∫ t

0

(t− s)−γs−γ/2 ds ≤ C|ε− ε0| ∥φ∥0t1−(3/2)γ → 0, ε → ε0;

similarly, for n ≥ 1,

∥v(n)ε ∥γ(t) ≤ C(n)|ε− ε0| ∥φ∥0,
because 1− (3/2)γ > 0. □

Proposition 4.4. If φ ∈ H0 and γ ∈ (1/2, 1), then

lim
n→∞

cn sup
|ε|<a

∥u(n),ε
◦ ∥γ(t) = 0, t ≥ 0, (4.19)

for all c > 0, a > 0, and every realization of W .
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Proof. Throughout this proof, C denotes a number depending on γ, T , a, and the
norm of W in the space C1−γ .

Combining (4.13) and (4.7),

∥u(n),ε
◦ ]∥γ(t) ≤ C

∫ t

0

(t− s)r−1∥u(n−1),ε
◦ ∥γ(s) ds.

By iteration and (4.12), with r = 1− γ > 0,

sup
|ε|<a

∥u(n),ε
◦ ∥γ(t) ≤ Cn∥φ∥0

×
∫ t

0

∫ sn−1

0

. . .

∫ s2

0

(t− sn)
r−1(sn − sn−1)

r−1 · · · (s2 − s1)
r−1s

−γ/2
1 ds1 · · · dsn

= Cn∥φ∥0
(
Γ(r)

)n
Γ(1− (γ/2))

Γ
(
nr + 1

) tnr−(γ/2),

where Γ is the Gamma function

Γ(y) =

∫ ∞

0

ty−1e−tdt.

Then (4.19) follows by the Stirling formula. □

Equality (1.4) now follows:

• By the Sobolev embedding theorem, every element, or equivalence, class
from Hγ , γ > 1/2, has a representative that is a continuous function on
[0, π];

• By Proposition 4.3 and the Taylor formula,

u◦(t, x) = u(t, x) +
n∑

k=1

u
(k),0
◦ (t, x)εk +Rn(t, x);

• By Proposition 4.4,

lim
n→∞

Rn(t, x) = 0.

This concludes the proof of (1.4).

5. The Correction Term

The objective of this section is the proof of (2.10).

Using (1.3) and (1.4), and remembering that u
(1)
◦ = u

(1)
⋄ = u,

lim
ε→0

ε−2
(
u◦(t, x; ε)− u⋄(t, x; ε)

)
= u

(2)
◦ (t, x)− u

(2)
⋄ (t, x)

=

∫ t

0

∫ π

0

p(t− s, x, y)
(
u(s, y) ◦ dW (y)− u(s, y) ⋄ dW (y)

)
ds.

(5.1)

By definition,

ξk ⋄ ξn =

{
ξkξn, k ̸= n,

ξ2n − 1, k = n,
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and therefore

ξkξn − ξk ⋄ ξn =

{
0 k ̸= n,

1, k = n,
(5.2)

Then (5.2) and [7, Theorem 3.1.2] imply that, for a function f = f(x) of the form

f(x) =
∞∑
k=1

fk(x)ξk,

with fk non-random and satisfying∑
k

∫ π

0

|fk(x)| dx < ∞, (5.3)

the following equality holds:∫ π

0

f(x) ◦ dW (x)−
∫ π

0

f(x) ⋄ dW (x) =

∞∑
k=1

(∫ π

0

fk(x)mk(x) dx

)
. (5.4)

Condition (5.3) ensures that the sum on the right-hand side of (5.4) converges
absolutely.

Next, recall that, by (2.4),

u(s, y) =
∞∑
k=1

(∫ π

0

∫ s

0

p(s− r, y, z)u(r, z)mk(z) dr dz

)
ξk.

For fixed s ∈ [0, T ] and y ∈ [0, π], define

g(z) =

∫ s

0

p(s− r, y, z)u(r, z)dr, gk =

∫ π

0

g(z)mk(z) dz.

Then

u =

∞∑
k=1

gkξk,

and (5.3) in this case will follow from uniform, in (s, y) convergence of

∞∑
k=1

|gk|,

which, by Bernstein’s theorem [11, Theorem VI.3-1], will, in turn, follow from

|g(z + h)− g(z)| ≤ Chδ (5.5)

with δ ∈ (1/2, 1) and C independent of s, y, z.
Recall that

u(r, z) =
∞∑
k=1

φke
−k2r mk(z), φk =

∫ π

0

φ(x)mk(x) dx,

and, by integral comparison,
∞∑
k=1

kpe−k2 t ≤ C(p)

t(1+p)/2
, p ≥ 0.
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Also,

| sin(k(z + h))− sin(kz)| ≤ kδhδ, δ ∈ (0, 1),

and the maximum principle implies |u(r, z)| ≤ C. Then

p(s− r, y, z) ≤ C√
s− r

, |p(s− r, y, z + h)− p(s− r, y, z)| ≤ Chδ

(s− r)(1+δ)/2
,

|u(r, z + h)− u(r, z)| ≤ Chδ

r(1+δ)/2
,

and (5.5) follows because ∫ s

0

dr(
r(s− r)

)(1+δ)/2
< ∞

for δ ∈ (1/2, 1).
We now apply (5.4) to (5.1):∫ t

0

∫ π

0

p(t− s, x, y)
(
u(s, y) ◦ dW (y)− u(s, y) ⋄ dW (y)

)
ds

=

∫ t

0

∫ π

0

∞∑
n=1

(∫ π

0

(∫ s

0

p(s− r, y, z)u(r, z) dr

)
mn(z) dz

)
mn(y)p(t− s, x, y) dy ds

=

∫ π

0

∫ t

0

∫ s

0

p(t− s, x, y)p(s− r, y, y)u(r, y) dr ds dy,

which, in view of (2.3) and the Fubini theorem, is the same as (2.10).
This concludes the proof of (2.10).
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