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Abstract. In this article we study the existence and uniqueness of strong

solutions of a class of parameterized family of SDEs driven by Lévy noise.

These SDEs occurs in connection with a class of stochastic PDEs, which
take values in the space of tempered distributions S′. These results extend a

correspondence for diffusion processes, which had been proved earlier in the

literature.

1. Introduction

Given a complete filtered probability space
(
Ω,F , {Ft}t≥0, P

)
satisfying the

usual conditions, consider a class of stochastic differential equations (SDEs) in Rd,
viz.

dUt = b̄(Ut−; ξ)dt+ σ̄(Ut−; ξ) · dBt +

∫
(0<|x|<1)

F̄ (Ut−, x; ξ) Ñ(dtdx)

+

∫
(|x|≥1)

Ḡ(Ut−, x; ξ)N(dtdx), t ≥ 0

U0 = κ,

(1.1)

and associated stochastic PDEs in the space of tempered distributions S ′ (more
specifically, in the Hermite-Sobolev spaces Sp, p ∈ R, which are real separable
Hilbert spaces, see Section 2), viz.

dYt = A(Yt−) · dBt + L̃(Yt−) dt+

∫
(0<|x|<1)

(
τF (Yt−,x) − Id

)
Yt− Ñ(dtdx)

+

∫
(|x|≥1)

(
τG(Yt−,x) − Id

)
Yt−N(dtdx), t ≥ 0

Y0 = ξ,

(1.2)

where

(i) {Bt} denotes an Rd-valued standard Brownian motion (with components
B1
t , B

2
t , · · · , Bdt ) and N a Poisson random measure driven by a Lévy mea-

sure ν. Ñ denotes the corresponding compensated random measure.
(ii) The initial conditions κ and ξ are F0-measurable random variables taking

values in Rd and Sp respectively.
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(iii) ξ, κ,B and N are independent of each other and the filtration (Ft) is
generated by these random variables.

(iv) τx, x ∈ Rd denote the translation operators (see Section 2).
(v) The coefficients σ̄, b̄, F̄ and Ḡ in (1.1) are defined in terms of σ, b, F and G

which are the coefficients in (1.2). Note that the coefficients are allowed
to be F0 measurable. The notations and hypotheses on these coefficients
are described in Section 3.

(vi) The operator L̃ is a second order differential operator together with an
integro-differential operator. The operator A is a first order differential
operator. These operators are defined using certain coefficients σ, b and F
(see [5] for details).

Special cases of these stochastic PDEs have already been investigated in [3, p.
524], [4, p. 170], [13, p. 237] and [2]. In particular, this model includes the
well-known weak formulation of the Itô formula, viz.

δBt = τBtδ0 = δ0 −
d∑
i=1

∫ t

0

∂iδBs dB
i
s +

1

2

d∑
i=1

∫ t

0

∂2
i δBs ds.

We do not consider these stochastic PDEs in the present article and as such, we

skip the explicit definitions of the operators A and L̃.
In this article, we consider the existence and uniqueness of strong solutions of the

SDEs (1.1). In [5], we use these results of the present article to prove existence and
uniqueness results for the associated stochastic PDEs (1.2). In fact, we show that
if {Ut} solves (1.1) with initial condition κ = 0, then Yt := τUtξ solves (1.2). One
may study the ergodicity/stationarity properties of the stochastic PDEs (1.2) via
the corresponding finite dimensional SDEs (1.1). This problem was investigated
for the Gaussian noise case in [4].

Observe that the transformation Yt = τUtξ reformulates the SDEs (1.1) into
the stochastic PDEs (1.2). However, this allows us to study evolution systems
involving a larger class of initial conditions than originally given in the SDE. For
example, the stochastic PDEs (1.2) may model a multi-particle system where ξ
represents the initial configuration of the system.

1.1. Main results. As already mentioned, in this article we consider the exis-
tence and uniqueness of strong solutions of the SDEs (1.1). A standard approach
in proving the existence and uniqueness results for SDEs is to assume that the
coefficients are Lipschitz (see [1, 6–8, 10–12] and the references therein). The goal
of this article is to describe hypotheses, which include appropriate parameterized
versions of Lipschitz regularity of the coefficients and prove in detail the existence
and uniqueness results.

If κ and ξ are deterministic, then the problem is reduced to the usual existence
and uniqueness problem for SDEs driven by a Lévy noise. As such, a method in ob-
taining the result for random κ and ξ would be through a ‘conditioning’ argument.
However, such an approach would require checking the continuity properties of the
process with respect to the initial parameters (κ, ξ) and the proof would need to
be separated into steps where the parameter is bounded or square integrable in
norm and the general case, as in our case (see, for example, Theorem 3.4). Indeed,
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we separate our argument into such steps, but take the usual approach of Picard
iteration in proving the existence and a Gronwall inequality argument in proving
the uniqueness. Another point to note is the notion of solution that we use. We
only require the solution to be an adapted process with rcll path that satisfy the
corresponding integral equation of (1.1). In the diffusion case, it is known via
Ikeda-Watanabe argument (see [8, Chapter IV]), that the solution is a measurable
function of the initial condition and the Brownian motion. In such a case unique-
ness for the equation with random initial condition would follow from the case
of fixed initial condition by a ‘conditioning’ argument. The extension to the case
when the equation depends on an additional parameter ξ seems to be open and
a ‘conditioning’ argument is one possible approach to uniqueness. In this paper,
however we use a more direct approach as mentioned above.

1.2. Layout of the paper. We now describe the layout of the paper. In Section
2, we define the space of Schwartz class functions S and its dual, the space of
tempered distributions S ′. We also recall definitions of the Hermite-Sobolev spaces
Sp, p ∈ R.

In Section 3, we state the notation and hypotheses followed in the rest of the
article. In Theorem 3.4, the existence and uniqueness result is proved for the
reduced equation with ‘global Lipschitz’ coefficients and then in Theorem 3.5 the
same is proved for the general case (i.e. involving the large jumps) by an interlacing
technique. In Theorem 3.6, we prove the result for ‘local Lipschitz’ coefficients.

2. Topology on Schwartz Space

Let S be the space of rapidly decreasing smooth functions on Rd with dual
S ′, the space of tempered distributions (see [9]). Let Zd+ := {n = (n1, · · · , nd) :

ni non-negative integers}. If n ∈ Zd+, we define |n| := n1 + · · ·+ nd.
For p ∈ R, consider the increasing norms ‖ · ‖p, defined by the inner products

〈f, g〉p :=
∑
n∈Zd+

(2|n|+ d)2p〈f, hn〉〈g, hn〉, f, g ∈ S. (2.1)

In the above equation, {hn : n ∈ Zd+} is an orthonormal basis for L2(Rd, dx)

given by the Hermite functions and 〈·, ·〉 is the usual inner product in L2(Rd, dx).
For d = 1, hn(t) := (2nn!

√
π)−1/2 exp{−t2/2}Hn(t), where Hn, t ∈ R are the

Hermite polynomials (see [9]). For d > 1, hn(x1, · · · , xd) := hn1(x1) · · ·hnd(xd)
for all (x1, · · · , xd) ∈ Rd, n ∈ Zd+, where the Hermite functions on the right hand
side are one-dimensional. We define the Hermite-Sobolev spaces Sp, p ∈ R as the
completion of S in ‖ · ‖p. Note that the dual space S ′p is isometrically isomorphic
with S−p for p ≥ 0. We also have S =

⋂
p(Sp, ‖ · ‖p),S ′ =

⋃
p>0(S−p, ‖ · ‖−p) and

S0 = L2(Rd).
For x ∈ Rd, let τx denote the translation operators on S defined by (τxφ)(y) :=

φ(y − x), ∀y ∈ Rd. These operators can be extended to τx : S ′ → S ′ by

〈τxφ , ψ〉 := 〈φ , τ−xψ〉 , ∀ψ ∈ S.

Proposition 2.1. The translation operators τx, x ∈ Rd have the following prop-
erties:
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(a) ([14, Theorem 2.1]) For x ∈ Rd and any p ∈ R, τx : Sp → Sp is a
bounded linear map. In particular, there exists a real polynomial Pk of
degree k = 2(b|p|c+ 1) such that

‖τxφ‖p ≤ Pk(|x|)‖φ‖p, ∀φ ∈ Sp,
where |x| denotes the Euclidean norm of x.

(b) ([15, Proposition 3.1]) Fix φ ∈ Sp for some p ∈ R. The map x ∈ Rd 7→
τxφ ∈ Sp is continuous.

3. Main Results

3.1. Notations and hypotheses. We use the following notations throughout
the paper.

• The set of positive integers will be denoted by N. Recall that for x ∈ Rn,
|x| denotes its Euclidean norm. The transpose of any element x ∈ Rn×m
will be denoted by xt.

• For any r > 0, define O(0, r) := {x ∈ Rd : |x| < r}. Then O(0, r) = {x ∈
Rd : |x| ≤ r} and O(0, r)c = {x ∈ Rd : |x| ≥ r}.
• Let

(
Ω,F , {Ft}t≥0, P

)
be a filtered complete probability space satisfying

the usual conditions viz. F0 contains all A ∈ F , s.t. P (A) = 0 and
Ft =

⋂
s>t Fs, t ≥ 0.

• Let p > 0. Let σ = (σij)d×d, b = (b1, · · · , bd)t be such that σij , bi : Ω→ Sp
are F0 measurable and

β := sup{‖σij(ω)‖p, ‖bi(ω)‖p : ω ∈ Ω, 1 ≤ i, j ≤ d} <∞. (σb)

• Define σ̄ : Ω×Rd×S−p → Rd×d and b̄ : Ω×Rd×S−p → Rd by σ̄(ω, z; y) :=
〈σ(ω) , τzy〉 and b̄(ω, z; y) := 〈b(ω) , τzy〉, where

(〈σ(ω) , τzy〉)ij := 〈σij(ω) , τzy〉 , (〈b(ω) , τzy〉)i := 〈bi(ω) , τzy〉 .
• Let F : Ω × S−p × O(0, 1) → Rd and G : Ω × S−p × O(0, 1)c → Rd

be F0 ⊗ B(Sp) ⊗ B(O(0, 1))/B(Rd) and F0 ⊗ B(Sp) ⊗ B(O(0, 1)c)/B(Rd)
measurable respectively. Here B(K) denotes the Borel σ-field of set K.
• Define F̄ : Ω×Rd×O(0, 1)×S−p → Rd, Ḡ : Ω×Rd×O(0, 1)c×S−p → Rd

by F̄ (ω, z, x; y) := F (ω, τzy, x), Ḡ(ω, z, x; y) := G(ω, τzy, x).
• Let {Bt} denote a standard Brownian motion and let N denote a Poisson

random measure driven by a Lévy measure ν. Ñ will denote the corre-
sponding compensated random measure.

Consider the following SDE in Rd,

dUt = b̄(Ut−; ξ)dt+ σ̄(Ut−; ξ) · dBt +

∫
(0<|x|<1)

F̄ (Ut−, x; ξ) Ñ(dtdx)

+

∫
(|x|≥1)

Ḡ(Ut−, x; ξ)N(dtdx), t ≥ 0

U0 = κ,

(3.1)

where ξ is an S−p-valued F0-measurable random variable and κ is an Rd-valued
F0-measurable random variable. We also assume that ξ, κ,B and N are inde-
pendent of each other and that the filtration (Ft) is generated by these random
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variables. In particular, F0 is generated by κ and ξ. Note that the i-th component

of
∫ t

0
σ̄(Us−; ξ) · dBs is

∑d
j=1

∫ t
0
σ̄ij(Us−; ξ) dBjs . We list some hypotheses.

(F1) For all ω ∈ Ω and x ∈ O(0, 1) there exists a constant Cx ≥ 0 s.t.

|F (ω, y1, x)− F (ω, y2, x)| ≤ Cx‖y1 − y2‖−p− 1
2
,∀y1, y2 ∈ S−p. (3.2)

We assume Cx to depend only on x and independent of ω. Since ‖y‖−p− 1
2
≤

‖y‖−p,∀y ∈ S−p, we have

|F (ω, y1, x)− F (ω, y2, x)| ≤ Cx‖y1 − y2‖−p,∀y1, y2 ∈ S−p.

(F2) The constant Cx mentioned above has the following properties, viz.

sup
|x|<1

Cx <∞,
∫

(0<|x|<1)

C2
x ν(dx) <∞.

(F3) supω∈Ω,|x|<1 |F (ω, 0, x)| < ∞ and supω∈Ω

∫
(0<|x|<1)

|F (ω, 0, x)|2 ν(dx) <
∞.

(G1) The mapping y → G(ω, y, x) is continuous for all x ∈ O(0, 1)c and ω ∈ Ω.

Remark 3.1. Examples of coefficients F and G satisfying the above hypotheses
can be constructed. See [5, Example 3.1].

Lemma 3.2 ([5, Lemma 3.2]). Assume (F1), (F2) and (F3). Then, for any
bounded set K in S−p the following are true.

(i) supω∈Ω,y∈K,|x|<1 |F (ω, y, x)| <∞.

(ii) supω∈Ω,y∈K
∫

(0<|x|<1)
|F (ω, y, x)|2ν(dx) =: α(K) <∞.

(iii) supω∈Ω,y∈K
∫ t

0

∫
(0<|x|<1)

|F (ω, y, x)|4ν(dx)ds <∞ for all 0 ≤ t <∞.

Using the continuity result in Proposition 2.1 the next result follows.

Lemma 3.3 ([5, Lemma 3.3]). Suppose (G1) holds. Then the map z ∈ Rd →
Ḡ(ω, z, x; ξ(ω)) = G(ω, τzξ(ω), x) ∈ Rd is continuous for all x ∈ O(0, 1)c and
ω ∈ Ω.

3.2. Global Lipschitz coefficients. In this subsection, we establish the exis-
tence and uniqueness of strong solutions of (3.1) under ‘global Lipschitz’ coeffi-
cients σ̄, b̄, F̄ . To do this we first study the same problem for the corresponding
reduced equation, viz.

dUt = b̄(Ut−; ξ)dt+ σ̄(Ut−; ξ) · dBt +

∫
(0<|x|<1)

F̄ (Ut−, x; ξ) Ñ(dtdx), t ≥ 0

U0 = κ;

(3.3)

with ξ and κ as in (3.1). Later, in Theorem 3.5 we prove the result for equation
(3.1).

Theorem 3.4. Let (σb), (F1), (F2) and (F3) hold. Suppose the following
conditions are satisfied.

(i) κ, ξ are F0 measurable, as stated in (3.1).
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(ii) (Global Lipschitz in z, locally in y) For every bounded set K in S−p, there
exists a constant C(K) > 0 such that for all z1, z2 ∈ Rd, y ∈ K and ω ∈ Ω

|b̄(ω, z1; y)− b̄(ω, z2; y)|2 + |σ̄(ω, z1; y)− σ̄(ω, z2; y)|2

+

∫
(0<|x|<1)

|F̄ (ω, z1, x; y)− F̄ (ω, z2, x; y)|2 ν(dx) ≤ C(K) |z1 − z2|2.
(3.4)

Then (3.3) has an (Ft) adapted strong solution {Xt} with rcll paths. Pathwise
uniqueness of solutions also holds, i.e. if {X1

t } is another such solution, then
P (Xt = X1

t , t ≥ 0) = 1.

Proof. We split the proof in the following three steps, depending on assumptions
on the random variables κ and ξ.

Step 1: κ, ξ are F0 measurable with E|κ|2 <∞ and supω∈Ω ‖ξ(ω)‖−p <∞.
Step 2: κ, ξ are F0 measurable with E|κ|2 <∞.
Step 3: κ, ξ are F0 measurable.

Positive constants appearing in our computations may be written as γ and may
change its values from line to line.

Step 1: The existence is established by Picard iterations and the uniqueness
by Gronwall inequality arguments. This follows the standard approach as in [11,
Theorem 5.2.1], where SDEs driven by Brownian motion were considered. In the
present case, we get the linear growth of the coefficients directly from the structure
of the coefficients, see (3.9) below.

First we prove the uniqueness. Let {U1
t } and {U2

t } be two solutions of (3.3).
Define, for ω ∈ Ω

Θ(t, ω) := b̄(ω,U1
t−(ω); ξ(ω))− b̄(ω,U2

t−(ω); ξ(ω)),

Ξ(t, ω) := σ̄(ω,U1
t−(ω); ξ(ω))− σ̄(ω,U2

t−(ω); ξ(ω)),

Ψ(t, x, ω) := F̄ (ω,U1
t−(ω), x; ξ(ω))− F̄ (ω,U2

t−(ω), x; ξ(ω)).

Note that

E
(

sup
0≤s≤t

|U1
s − U2

s |2
)

= E

 sup
0≤s≤t

∣∣∣∣∣
∫ s

0

Θ(u)du+

∫ s

0

Ξ(u) · dBu +

∫ s

0

∫
(0<|x|<1)

Ψ(u, x) Ñ(dudx)

∣∣∣∣∣
2


≤ E

(
sup

0≤s≤t

[
3

∣∣∣∣∫ s

0

Θ(u)du

∣∣∣∣2 + 3

∣∣∣∣∫ s

0

Ξ(u) · dBu
∣∣∣∣2

+3

∣∣∣∣∣
∫ s

0

∫
(0<|x|<1)

Ψ(u, x) Ñ(dudx)

∣∣∣∣∣
2
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Using Doob’s L2 maximal inequality and Itô isometry, we have for some positive
constant γ,

E
(

sup
0≤s≤t

|U1
s − U2

s |2
)

≤ 3t E
∫ t

0

|Θ(s)|2ds+ 12E
∫ t

0

|Ξ(s)|2ds+ 12E
∫ t

0

∫
(0<|x|<1)

|Ψ(s, x)|2ν(dx)ds.

Using (3.4), we have

E
(

sup
0≤s≤t

|U1
s − U2

s |2
)
≤ 3γ(t+ 8)E

∫ t

0

|U1
s− − U2

s−|2ds

≤ 3γ(t+ 8)

∫ t

0

E
(

sup
0≤u≤s

|U1
u − U2

u |2
)
ds.

(3.5)

We then obtain the uniqueness of the solutions by a Gronwall inequality argument.

To show the existence of a strong solution, we use Picard iteration. Set U
(0)
t = κ

and define

U
(k+1)
t := κ+

∫ t

0

b̄(U
(k)
s− ; ξ)ds+

∫ t

0

σ̄(U
(k)
s− ; ξ) · dBs

+

∫ t

0

∫
(0<|x|<1)

F̄ (U
(k)
s− , x; ξ) Ñ(dsdx),

(3.6)

for all k ≥ 0. Fix M ∈ N. For k ≥ 1, t ∈ [0,M ] we have

E
(

sup
0≤s≤t

|U (k+1)
s − U (k)

s |2
)
≤ 3γ(M + 8)

∫ t

0

E
(

sup
0≤u≤s

|U (k)
u − U (k−1)

u |2
)
ds.

(3.7)
By (3.4), there exists a constant C = C(Range(ξ)) such that for z ∈ Rd, y ∈
Range(ξ)

|b̄(ω, z; y)− b̄(ω, 0; y)|2 + |σ̄(ω, z; y)− σ̄(ω, 0; y)|2

+

∫
(0<|x|<1)

|F̄ (ω, z, x; y)− F̄ (ω, 0, x; y)|2 ν(dx) ≤ C |z|2.
(3.8)

Using (σb)), we have |b̄(ω, 0; y)| = |〈b(ω), y〉| ≤ β
√
d‖y‖−p and |σ̄(ω, 0; y)| =

|〈σ(ω), y〉| ≤ βd‖y‖−p. From (F1), we have

|F̄ (ω, 0, x; y)| = |F (ω, y, x)| ≤ Cx‖y‖−p + |F (ω, 0, x)|.

Therefore, using (3.8), (F2) and (F3), there exists a positive constant D =
D(Range(ξ)) such that

|b̄(ω, z; y)|2 + |σ̄(ω, z; y)|2 +

∫
(0<|x|<1)

|F̄ (ω, z, x; y)|2 ν(dx) ≤ D (1 + |z|2). (3.9)

As in (3.5), using (3.6), Doob’s L2 maximal inequality and Itô isometry and (3.9)
we get

E
(

sup
0≤s≤t

|U (1)
s − U (0)

s |2
)
≤ (3t2 + 24t)D E(1 + |κ|2). (3.10)
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Therefore by induction from (3.7), there exists a positive constant C̃ s.t.

E
(

sup
0≤s≤t

|U (k+1)
s − U (k)

s |2
)
≤ (C̃t)k+1

(k + 1)!
, ∀k ≥ 0, t ∈ [0,M ]. (3.11)

For positive integers m, n with m > n, we have

lim
m,n→∞

E sup
0≤t≤M

|U (m)
t − U (n)

t |2

= lim
m,n→∞

E sup
0≤t≤M

∣∣∣∣∣
m−1∑
k=n

(
U

(k+1)
t − U (k)

t

)∣∣∣∣∣
2

≤ lim
m,n→∞

E

(
m−1∑
k=n

sup
0≤t≤M

∣∣U (k+1)
t − U (k)

t

∣∣)2

= lim
m,n→∞

E

(
m−1∑
k=n

sup
0≤t≤M

∣∣U (k+1)
t − U (k)

t

∣∣k 1

k

)2

≤ lim
n→∞

( ∞∑
k=n

E sup
0≤t≤M

∣∣U (k+1)
t − U (k)

t

∣∣2k2

)( ∞∑
k=n

k−2

)
.

(3.12)

The second series on the right hand side above converges. By (3.11), the first series

is bounded, since
∑∞
k=n

(C̃M)k+1

(k+1)! k2 → 0 as n → ∞. Therefore {U (m)
t : m ∈ N} is

Cauchy and hence converges to some {Xt}t∈[0,M ] in L2(λ × P ), where λ denotes
the Lebesgue measure on [0,M ].

Applying the Chebyshev-Markov inequality in (3.11), we get

P

(
sup

0≤s≤t
|U (k+1)
s − U (k)

s | ≥
1

2k+1

)
≤ (4C̃t)k+1

(k + 1)!
.

By Borel-Cantelli lemma

P

(
lim sup
k→∞

sup
0≤s≤t

|U (k+1)
s − U (k)

s | ≥
1

2k+1

)
= 0.

Therefore, we conclude that {U (k)} is almost surely uniformly convergent on [0,M ]
to {Xt}, which is adapted and rcll. Using (3.9) and the fact that a.s. {Xt} has at
most countably many jumps, we have

E
∫ M

0

∫
(0<|x|<1)

|F̄ (Xs−, x; ξ)|2ν(dx)ds ≤ E
∫ M

0

D(1 + |Xs−|2)ds

≤ D
[
M + ‖X‖2L2(λ×P )

]
<∞.

Therefore {
∫ t

0

∫
(0<|x|<1)

F̄ (Xs−, x; ξ) Ñ(dsdx)}t∈[0,M ] exists. Similarly, we can

show the existence of {
∫ t

0
σ̄(Xs−; ξ) · dBs}t∈[0,M ] and {

∫ t
0
b̄(Xs−; ξ)ds}t∈[0,M ].

By Itô isometry and (3.4), we have the following convergence in L2(P ), viz.∫ t

0

∫
(0<|x|<1)

F̄ (U
(k)
s− , x; ξ) Ñ(dsdx)

k→∞−−−−→
∫ t

0

∫
(0<|x|<1)

F̄ (Xs−, x; ξ) Ñ(dsdx),
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for each t ∈ [0,M ]. Similarly, we conclude that
∫ t

0
σ̄(U

(k)
s− ; ξ) ·dBs →

∫ t
0
σ̄(Xs−; ξ) ·

dBs and
∫ t

0
b̄(U

(k)
s− ; ξ)ds→

∫ t
0
b̄(Xs−; ξ)ds in L2(P ) as k →∞, for each t ∈ [0,M ].

Since {Xt} is rcll, from (3.6), we have a.s. ∀t ∈ [0,M ],

Xt = κ+

∫ t

0

b̄(Xs−; ξ)ds+

∫ t

0

σ̄(Xs−; ξ)·dBs+

∫ t

0

∫
(0<|x|<1)

F̄ (Xs−, x; ξ) Ñ(dsdx).

Suppose {X(M)
t } and {X(M+1)

t } denote the solutions up to time M and M + 1

respectively. Then, by the uniqueness, {X(M+1)
t }t∈[0,M ] is indistinguishable from

{X(M)
t } on [0,M ]. Using this consistency, we obtain the solution of (3.3) on the

time interval [0,∞). This concludes the proof for Step 1.

Step 2: We follow the technique given in [7, Theorem 3.3], where SDEs driven
by Brownian motion were considered. For k ∈ N, define χk := 1{‖ξ‖−p≤k} and

let ξ(k) := χk ξ. Let U (k) be the solution of (3.3) with the initial condition

ξ(k). Our aim is to show that χkU
(k) = χkU

(k+1). Let U
(k)
n and U

(k+1)
n be the

approximations of U (k) and U (k+1) obtained in Step 1 above. Now,

U
(k)
0 (t) = κ, U

(k+1)
0 (t) = κ and χkU

(k)
0 (t) = χkU

(k+1)
0 (t).

Observe that, for ω ∈ Ω

χk(ω)b̄(ω,U
(k)
0 (s−)(ω); ξ(k)(ω)) = χk(ω)b̄(ω,U

(k+1)
0 (s−)(ω); ξ(k+1)(ω)).

Similar equalities hold for coefficients σ̄ and F̄ . Using (3.6) and these equalities,
we have a.s. t ≥ 0,

χkU
(k)
1 (t) = χk κ+

∫ t

0

χk b̄(U
(k)
0 (s−); ξ(k))ds+

∫ t

0

χkσ̄(U
(k)
0 (s−); ξ(k)) · dBs

+

∫ t

0

∫
(0<|x|<1)

χkF̄ (U
(k)
0 (s−), x; ξ(k)) Ñ(dsdx)

= χk κ+

∫ t

0

χk b̄(U
(k+1)
0 (s−); ξ(k+1))ds

+

∫ t

0

χkσ̄(U
(k+1)
0 (s−); ξ(k+1)) · dBs

+

∫ t

0

∫
(0<|x|<1)

χkF̄ (U
(k+1)
0 (s−), x; ξ(k+1)) Ñ(dsdx)

= χkU
(k+1)
1 (t).

By induction a.s. t ≥ 0, χkU
(k)
n (t) = χkU

(k+1)
n (t).

Letting n go to infinity and using the generalized Lebesgue DCT (see [7, The-
orem 3.4]), we have, a.s. ∀t ∈ [0, T ], χkU

(k)(t) = χkU
(k+1)(t). Note that

P
(⋃

k{χk = 1}
)

= 1. Now define

Xt(ω) := U (k)(t)(ω), if ‖ξ(ω)‖−p ≤ k.

Observe that, a.s. ∀t ∈ [0, T ], χkU
(k)(t) = χkXt. It is easy to check that {Xt}

satisfies (3.3).
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To prove the uniqueness, let {Xt} and {Yt} be two solutions of (3.3). Define

F̃ (ω, z, x; y) := 1{ỹ:‖ỹ‖−p≤k}(y)F̄ (ω, z, x; 1{ỹ:‖ỹ‖−p≤k}(y)y),

and Xk
t := χkXt, for ω ∈ Ω, k ∈ N. Similarly define {Y kt } for k ∈ N. Observe that

F̃ (ω, z, x; ξ(ω)) = 1{ỹ:‖ỹ‖−p≤k}(ξ(ω))F̄
(
ω, z, x; 1{ỹ:‖ỹ‖−p≤k}(ξ(ω))ξ(ω)

)
= 1{ω̃:‖ξ(ω̃)‖−p≤k}(ω)F̄

(
ω, z, x; 1{ω̃:‖ξ(ω̃)‖−p≤k}(ω)ξ(ω)

)
,

and

χk(ω)b̄(ω,Xs−(ω); ξ(ω)) = b̄(ω,Xk
s−(ω); ξk(ω)),

χk(ω)σ̄(ω,Xs−(ω); ξ(ω)) = σ̄(ω,Xk
s−(ω); ξk(ω)),

χk(ω)F̄ (ω,Xs−(ω), x; ξ(ω)) = χk(ω)F̄ (ω,Xk
s−(ω), x;χk(ω)ξk(ω))

= F̃ (ω,Xk
s−(ω), x; ξk(ω)).

Therefore, a.s.

Xk
t = χkXt

= χk κ+

∫ t

0

b̄(Xk
s−; ξk)ds+

∫ t

0

σ̄(Xk
s−; ξk) · dBs

+

∫ t

0

∫
(0<|x|<1)

F̃ (Xk
s−, x; ξk) Ñ(dsdx).

(3.13)

Now, in (3.13) ξk is norm bounded. Observe that∫
(0<|x|<1)

|F̃ (ω, z2, x; y)− F̃ (ω, z1, x; y)|2ν(dx)

= 1{ỹ:‖ỹ‖−p≤k}(y)

×
∫

(0<|x|<1)

|F̄ (ω, z1, x; 1{ỹ:‖ỹ‖−p≤k}(y)y)− F̄ (ω, z2, x; 1{ỹ:‖ỹ‖−p≤k}(y)y)|2ν(dx)

= 1{ỹ:‖ỹ‖−p≤k}(y)

∫
(0<|x|<1)

|F̄ (ω, z1, x; y)− F̄ (ω, z2, x; y)|2ν(dx)

≤ C({ỹ : ‖ỹ‖−p ≤ k})|z1 − z2|2,

for any bounded set K in S−p and y ∈ K. Since (3.4) holds for b̄, σ̄ and F̄ , it also

holds for b̄, σ̄ and F̃ . By the uniqueness in Step 1, we conclude that {Xk
t } is the

unique solution of (3.3) with initial condition χk κ and in particular,

χk(ω)Xt = Xk
t = Y kt = χk(ω)Yt.

Since k is arbitrary, therefore, a.s. ∀t ∈ [0, T ], Xt = Yt. This completes the proof
for Step 2.

Step 3: We follow the argument given in [1, Theorem 6.2.3]. Define ΩM := {ω ∈
Ω : |κ| ≤ M} for each M ∈ N. Then Ω =

⋃
M∈N ΩM and ΩL ⊆ ΩM whenever

L ≤M .
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Let κM (ω) := 1{|κ|≤M}(ω)κ(ω). Note that κM ∈ L2. By Step 2, there exists a

unique solution, say {XκM

t }, of the reduced equation (3.3) for the initial condition
κM , i.e. a.s. t ≥ 0

XκM

t = κM +

∫ t

0

b̄(XκM

s− ; ξ)ds+

∫ t

0

σ̄(XκM

s− ; ξ) · dBs

+

∫ t

0

∫
(0<|x|<1)

F̄ (XκM

s− , x; ξ) Ñ(dsdx).

We first show a.s. 1{|κ|≤L}(ω)XκL

t (ω) = 1{|κ|≤L}(ω)XκM

t (ω), t ≥ 0 for all M ≥ L.
Define

F̃ (ω, z, x; y) := 1{|κ|≤L}(ω)F̄ (ω, z, x; y).

Now, {1{|κ|≤L}XκL

t } and {1{|κ|≤L}XκM

t } both satisfy the reduced equation

dXt = b̄(Xt−; 1{|κ|≤L}ξ)dt+ σ̄(Xt−; 1{|κ|≤L}ξ) · dBt

+

∫
(0<|x|<1)

F̃ (Xt−, x; 1{|κ|≤L}ξ) Ñ(dtdx),

X0 = κL.

(3.14)

It is easy to check that b̄, σ̄, F̃ satisfy (3.4). Then by the uniqueness in Step 2 for
all M ≥ L a.s.

1{|κ|≤L}X
κL

t = 1{|κ|≤L}X
κM

t , t ≥ 0.

Since ΩM increases to Ω, for all ε > 0, there exists M ∈ N, such that P (Ωn) >
1− ε,∀n > M . Hence,

P

(
sup
t≥0
|Xκm

t −Xκn

t | > δ

)
< ε, ∀δ > 0,∀m,n > M.

Therefore the sequence of processes {Xκn}n∈N is uniformly Cauchy in probability
and so is uniformly convergent in probability to a process, say {Xt}. We extract
a subsequence for which the convergence holds uniformly and almost surely. This
convergence implies that {Xt} has rcll paths and solves (3.3).

To prove the uniqueness, we consider the solution {Xt} constructed above and
compare it with any arbitrary solution {X ′t}t≥0 of (3.3). We claim that for all

M ≥ L, X ′t(ω) = XκM

t (ω) for all t ≥ 0 and almost all ω ∈ ΩL. Suppose for some
M ≥ L, it doesn’t hold. Define

X ′′κ
M

t (ω) :=

{
X ′t(ω) for ω ∈ ΩL,

XκM

t (ω), for ω ∈ ΩcL.

Then X ′′κ
M

and XκM are two distinct solutions of (3.3) with the same initial
condition κM , which is a contradiction. This proves our claim. Next by applying
a limiting argument we conclude that P (Xt = X ′t,∀t ≥ 0) = 1. This completes
the proof of Step 3 as well as the theorem. �

We now consider the SDE (3.1). The next result follows by the interlacing
technique (see [1, Example 1.3.13, pp. 50-51]).
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Theorem 3.5. Suppose all the assumptions of Theorem 3.4 hold. In addition,
assume that (G1) holds. Then there exists a unique rcll adapted solution to (3.1).

Proof. We follow the proof of [1, Theorem 6.2.9]. We have already proved the
existence and uniqueness of the reduced equation in Theorem 3.4. Now, we use
the interlacing technique to complete the proof.

Let {ηn}n∈N denote the arrival times for the jumps of the compound Poisson
process {Pt}t≥0, where each Pt =

∫
(|x|≥1)

xN(t, dx). By Theorem 3.4 there exists

a unique solution {Ũ (1)
t } to the reduced equation (3.3). Define

Ut :=



Ũ
(1)
t ; for 0 ≤ t < η1

Ũ
(1)
η1− + Ḡ(Ũ

(1)
η1−,4Pη1 ; ξ); for t = η1

Uη1 + Ũ
(2)
t − Ũ (2)

η1 ; for η1 < t < η2

Uη2− + Ḡ(Uη2−,4Pη2 ; ξ); for t = η2

· · ·

Here {Ũ (2)
t } denotes the unique solution to (3.3) with initial condition Uη1 . Then

{Ut} is an adapted rcll process and solves (3.1).

We show that the uniqueness follows by the interlacing structure. Let {Ût} be
another solution of (3.1). Then by the uniqueness of the reduced equation, a.s.

Ût = Ũt = Ut; for 0 ≤ t < η1.

Since, a.s. Ûη1− = Ũη1− = Uη1−, we have a.s.

Ûη1 = Ûη1− + Ḡ(Ûη1−,4Pη1 ; ξ) = Ũη1− + Ḡ(Ũη1−,4Pη1 ; ξ) = Uη1 .

Since {Ût} has no large jump in the time interval (η1, η2) we have, a.s. for t ∈
(η1, η2)

Ût = κ+

∫ t

0

b̄(Ûs−; ξ)ds+

∫ t

0

σ̄(Ûs−; ξ) · dBs

+

∫ t

0

∫
(0<|x|<1)

F̄ (Ûs−, x; ξ) Ñ(dsdx) +

∫ t

0

∫
(|x|≥1)

Ḡ(Ûs−, x; ξ)N(dsdx)

= Ûη1 +

∫ t

η1

b̄(Ûs−; ξ)ds+

∫ t

η1

σ̄(Ûs−; ξ) · dBs

+

∫ t

η1

∫
(0<|x|<1)

F̄ (Ûs−, x; ξ) Ñ(dsdx)

= Ûη1 +

∫ t−η1

0

b̄(Ûη1+s−; ξ)ds+

∫ t−η1

0

σ̄(Ûη1+s−; ξ) · dBη1+s

+

∫ t−η1

0

∫
(0<|x|<1)

F̄ (Ûη1+s−, x; ξ) Ñη1
s (dsdx).

(3.15)

We now describe {Nη1
s }, which appeared in the last term of (3.15). For any set

H ⊂ Rd, which is bounded away from 0, i.e. 0 /∈ H̄ and for any stopping time η,
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define

Nη
t (H) := (Nt+η(H)−Nη(H)) 1(η<∞).

By strong Markov property [1, Theorem 2.2.11], we have E[eiλN
η
t (H)] = E[eiλNt(H)],

{Nη
t } is independent of Fη, has rcll paths and is (Fη+t) adapted. Furthermore,

E[Nη
t (H)] = tν(H) = E[Nt(H)].

Note that the last equality of (3.15) is written in the reduced equation form.

Since {Ut} also solves the same reduced equation, by Theorem 3.4 a.s. Ût = Ut
for η1 < t < η2. In particular, a.s. Ûη2− = Uη2− and hence, a.s.

Ûη2 = Ûη2− + Ḡ(Ûη2−,4Pη2 ; ξ) = Uη2− + Ḡ(Uη2−,4Pη2 ; ξ) = Uη2 .

Continuing this way, we show that a.s. Ut = Ût, t ≥ 0. This completes the
proof. �

3.3. Local Lipschitz coefficients. In the previous subsection, we have estab-
lished the existence and uniqueness results under ‘global Lipschitz’ which we now
extend for ‘local Lipschitz’ coefficients.

Let R̂d := Rd ∪ {∞} be the one point compactification of Rd.

Theorem 3.6. Let (σb), (F1), (F2), (F3) and (G1) hold. Suppose the follow-
ing conditions are satisfied.

(i) κ, ξ are F0-measurable.
(ii) (Locally Lipschitz in z, locally in y) For every bounded set K in S−p and

positive integer n there exists a constant C(K, n) > 0 s.t. for all z1, z2 ∈
O(0, n), y ∈ K and ω ∈ Ω

|b̄(ω, z1; y)− b̄(ω, z2; y)|2 + |σ̄(ω, z1; y)− σ̄(ω, z2; y)|2

+

∫
(0<|x|<1)

|F̄ (ω, z1, x; y)− F̄ (ω, z2, x; y)|2 ν(dx) ≤ C(K, n) |z1 − z2|2.
(3.16)

Then there exists an (Ft) stopping time η and an (Ft) adapted R̂d-valued process
{Xt} with rcll paths such that {Xt} solves (3.1) upto time η and Xt =∞ for t ≥ η.
Further η can be identified as follows: η = limm θm where {θm} are (Ft) stopping
times defined by θm := inf{t ≥ 0 : |Xt| ≥ m}. This is also pathwise unique in this
sense: if ({X ′t}, η′) is another such solution, then P (Xt = X ′t, 0 ≤ t < η ∧ η′) = 1.

Proof. To prove the existence result, we first obtain a version of the ‘global Lips-
chitz’ condition (3.4) for b̄(ω, z; y), σ̄(ω, z; y), F̄ (ω, z, x; y) from our assumption on
‘local Lipschitz’ condition (3.16).

Let n,m ∈ N and let R be a positive real number. Let h : Rn → Rm satisfy
|h(x)−h(y)| ≤ C|x−y| for all x, y with |x|, |y| ≤ R, where C is a positive constant.
Define

hR(x) :=


h(x), if |x| ≤ R
2R−|x|
R · h(Rx/|x|), if R ≤ |x| ≤ 2R

0, if |x| ≥ 2R.
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By [6, Chapter 5, Exercise 3.1], hR is Lipschitz continuous on Rn. For every fixed
y and ω, we construct σ̄R(ω, ·; y) for σ̄(ω, ·; y) in the same way viz.,

σ̄R(ω, z; y) :=


σ̄(ω, z; y), for |z| ≤ R;
2R−|z|
R · σ̄

(
ω, Rz|z| ; y

)
, for R ≤ |z| ≤ 2R,

0, for |z| ≥ 2R.

Similarly define b̄R(ω, ·; y) and F̄R(ω, ·, x; y) for every fixed x, y and ω. Then using
(3.16) and applying the above exercise, we conclude that b̄R(ω, z; y) and σ̄R(ω, z; y)
are globally Lipschitz in z as in (3.4). We now show (3.4) holds for F̄R(ω, z, x; y).

By (3.16) and Lemma 3.2, for any z ∈ Rd with |z| ≤ R and any bounded set K
in S−p, we have∫

(0<|x|<1)

∣∣F̄ (ω, z, x; y)
∣∣2 ν(dx) ≤ 2

∫
(0<|x|<1)

∣∣F̄ (ω, z, x; y)− F̄ (ω, 0, x; y)
∣∣2 ν(dx)

+ 2

∫
(0<|x|<1)

∣∣F̄ (ω, 0, x; y)
∣∣2 ν(dx)

≤ 2C(K, R)R2 + 2α(K), ∀y ∈ K.
(3.17)

Fix z1, z2 ∈ Rd, with |z1| ≤ R and R ≤ |z2| ≤ 2R. Then∫
(0<|x|<1)

|F̄R(ω, z1, x; y)− F̄R(ω, z2, x; y)|2ν(dx)

=

∫
(0<|x|<1)

∣∣∣∣F̄ (ω, z1, x; y)− 2R− |z2|
R

· F̄
(
ω,
Rz2

|z2|
, x; y

)∣∣∣∣2 ν(dx)

≤ 2

∫
(0<|x|<1)

∣∣∣∣F̄ (ω, z1, x; y)− F̄
(
ω,
Rz2

|z2|
, x; y

)∣∣∣∣2 ν(dx)

+ 2
||z2| −R|2

R2

∫
(0<|x|<1)

∣∣∣∣F̄ (ω, Rz2

|z2|
, x; y

)∣∣∣∣2 ν(dx)

≤ 2C(K, R)

∣∣∣∣z1 −
Rz2

|z2|

∣∣∣∣2 + 2
||z2| −R|2

R2

[
2C(K, R)R2 + 2α(K)

]
= |z1 − z2|2

[
6C(K, R) +

4

R2
α(K)

]
.

In the above calculation, we have used (3.17) and two inequalities, viz.∣∣∣∣z1 −
Rz2

|z2|

∣∣∣∣2 ≤ |z1 − z2|2, ||z2| −R|2 ≤ |z1 − z2|2.

We indicate a proof of the first inequality. We have∣∣∣∣z1 −
Rz2

|z2|

∣∣∣∣2 ≤ |z1 − z2|2 ⇐⇒ |z1|2 +R2 − 2
R

|z2|
(z1)tz2 ≤ |z1|2 + |z2|2 − 2(z1)tz2

⇐⇒ 2(|z2| −R) (z1)tz2 ≤ |z2|(|z2|2 −R2)

⇐⇒ 2(z1)tz2 ≤ (|z2|+R)|z2|.
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Of course, the last statement holds true, since 2(z1)tz2 ≤ 2|z1||z2| ≤ (|z2|+R)|z2|.
The inequality ||z2|−R|2 ≤ |z1−z2|2 follows from the observation that z1 ∈ O(0, R)

and that the distance between O(0, R) and z2 is ||z2| − R|, which is achieved by
the point Rz2

|z2| .

Similar arguments show that (3.4) holds for F̄R for all z1, z2 ∈ Rd. This
shows that the ‘global Lipschitz’ regularity (3.4) holds for b̄R, σ̄R and F̄R. Since
b̄R(ω, 0; y) = b̄(ω, 0; y), σ̄R(ω, 0; y) = σ̄(ω, 0; y) and F̄R(ω, 0, x; y) = F̄ (ω, 0, x; y)
for all |x| < 1, y ∈ S−p, the growth condition (3.9) can be established for b̄R, σ̄R

and F̄R as done in Step 1 of Theorem 3.4. Then arguing as in Theorem 3.4 (Steps
1, 2 and 3) and Theorem 3.5, for R ∈ N, we have the existence of a unique process
{XR

t } satisfying a.s. for every t ≥ 0

XR
t = κ+

∫ t

0

b̄R(XR
s−; ξ)ds+

∫ t

0

σ̄R(XR
s−; ξ) · dBs

+

∫ t

0

∫
(0<|x|<1)

F̄R(XR
s−, x; ξ) Ñ(dsdx) +

∫ t

0

∫
(|x|≥1)

Ḡ(XR
s−, x; ξ)N(dsdx).

(3.18)

Let πi, i = 1, 2, · · · denote the arrival times for the jumps of the compound Poisson
process {Pt}t≥0, where each Pt =

∫
(|x|≥1)

xN(t, dx). Let m,n ∈ N and m < n.

Consider the stopping times

θnm,i := inf{t ≥ 0 : |Xm
t | Or |Xn

t | ≥ m} ∧ πi.

Take i = 1. Then {Xm
t } and {Xn

t } both satisfy the same reduced equation

dXt = b̄m(Xt−; ξ)dt+ σ̄m(Xt−; ξ) · dBt

+

∫
(0<|x|<1)

F̄m(Xt−, x; ξ) Ñ(dtdx), t < θnm,1,

X0 = κ;

(3.19)

First assume ξ is norm bounded and consider the stopped processes {Xm
t∧θnm,1

} and

{Xn
t∧θnm,1

}. Then arguing as in the uniqueness proof of Step 1 in Theorem 3.4, we

conclude a.s. Xm
t = Xn

t , t < θnm,1. In particular, a.s. Xm
t− = Xn

t− for t = θnm,1.
Further, for almost all ω such that π1(ω) = θnm,1(ω), we have

Xm
t (ω) = Xm

t−(ω) + Ḡ(Xm
t−(ω),4Nt, ; ξ) = Xn

t (ω), t = π1(ω).

We extend this result for F0 measurable ξ by arguing as in Step 2 in Theorem 3.4.
Take i = 2. Note that the contribution of the term involving Ḡ in Xm

t∧θnm,2
and

Xn
t∧θnm,2

for the large jump at t = π1 are the same. Arguing as in the case i = 1,

we conclude a.s Xm
t = Xn

t , t < θnm,2.
Repeating the arguments, we have a.s. for all i,m, n with m < n,Xm

t =
Xn
t , t < θnm,i. Since a.s. πi ↑ ∞ as i → ∞, a.s. for all m,n with m < n we have

Xm
t = Xn

t , t < θnm, where

θnm := inf{t ≥ 0 : |Xm
t | Or |Xn

t | ≥ m}.
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In particular, θnm = inf{t ≥ 0 : |Xm
t | ≥ m} = inf{t ≥ 0 : |Xn

t | ≥ m}. As such,
θnm is independent of n(> m). Define θm := inf{t ≥ 0 : |Xm

t | ≥ m} and set

Xt :=

{
Xm
t for t ≤ θm,
∞, for t ≥ η,

so that ({Xt}, η) is a solution of (3.1) for t < η := limm↑∞ θm.
To prove the uniqueness, we consider the solution ({Xt}, η) constructed above

and compare it with any arbitrary solution ({X ′t}, η′) of (3.1). In the proof of
existence of solutions, we had compared {Xm

t } and {Xn
t }. We follow the same

approach and define

θR := inf{t ≥ 0 : |Xt| Or |X ′t| ≥ R} ∧ η ∧ η′,∀R ∈ N.
We then conclude a.s. Xt = X ′t, t < θR,∀R ∈ N. Letting R go to infinity concludes
the proof. �

Remark 3.7. In Theorem 3.6, it is easy to see that a.s. η > 0, where η is as in
the proof of existence. Since the processes {Xm

t } are right continuous at 0, it
follows that a.s. θm > 0 for all m. Moreover, θm are increasing in m. As such a.s.
η = supm θm > 0.

Remark 3.8. The ‘local Lipschitz’ condition (3.16) follows from regularity assump-
tions on σ, b and F , provided other hypotheses are satisfied (see [5, Proposition
3.7]). As mentioned in Section 1, the class of SDEs (3.1) considered above are
related to a class of stochastic PDEs taking values in S ′. The existence and
uniqueness problems for these stochastic PDEs are studied in [5].

Acknowledgment. The first author would like to acknowledge the fact that he
was partially supported by the NBHM (National Board for Higher Mathematics,
under Department of Atomic Energy, Government of India) Post Doctoral Fel-
lowship and a part of the work has been done as a Post Doctoral Fellow at Tata
Institute of Fundamental Research, Centre For Applicable Mathematics, Banga-
lore 560065, India. The second author would like to acknowledge the fact that he
was partially supported by the ISF-UGC research grant. The authors would like
to thank Prof. B. Rajeev, Indian Statistical Institute, Bangalore Centre, India for
valuable suggestions during the work.

References
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