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Position Control of Two-link Flexible 
Manipulator using Low Chattering SMC 
Techniques
K. Lochana, and B. K. Royb 

Abstract: In this paper an attempt is made to control a angular position of the two-link flexible manipulator with 
slowly varying parameter uncertainties.The lumped parameter model is used throughout the work for obtaining the 
manipulator dynamics. The problem of controlling the positrion is achieved by using two low chattering sliding mode 
control (SMC) techniques. The techniques are: Proportional integral (PI) SMC and asymptotic SMC. The importance 
of these techniques is that chattering is attenuated even in first order SMC and in presence of bounded unknown 
disturbances including uncertainties associated with the plant. The proposed technique are examined under bounded 
unknown disturbances and slowly time varying uncertainties in system parameters. Comparison of the performances 
of the two control techniques are also highlighted. 
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1.	 INTRODUCTION 
Flexible manipulator (FM) has many advantages over rigid manipulators [1] though it has many inherent 
complexities and nonlinearities. Modeling and control of such manipulators is the main focal area of 
research. The objective of this paper is to control the FM in presence of disturbances and uncertainties. 

Finite element method (FEM) [2], assumed modes method (AMM) [3], lumped parameter method [4] 
are the most widely used modeling techniques of FM. Position control [5] and trajectory tracking [6] are the 
main control problem for controlling the manipulators. Many control techniques are available for FM like 
PID [7], feedback control [8], observer based control [9], SMC [10], H∞ [11], intelligent control [12], etc. 

SMC is the most useful control method because of many inherent advantages like finite time 
convergence and insensitive to parameter uncertainties and/or disturbances [13]. However, SMC technique 
has its own main drawback which is the phenomena of chattering. Several SMC techniques are proposed in 
literature for the reduction in chattering like Adaptive SMC [14], observer-based [15], state dependent gain 
method [16], use of hysteresis loop [17], using low pass filter [18], second order SMC [19], backstepping 
smc [22], terminal SMC [23, 24] etc. SMC techniques have been in use by some researchers for different 
control problems of two-link flexible manipulators (TLFM) [6, 10, 20, 23]. But controlling the position 
of TLFM in the presence of unknown disturbances and uncertainties with time varying parameters is a 
challenging task.

In this paper, two different SMC techniques are considered for the position control of two-link flexible 
manipulator. The proposed techniques worked satisfactorily in presence of unknown disturbances and 
uncertainties resulting in low chattering. PI and asymptotic sliding surfaces are designed in PI SMC and 
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asymptotic SMC, respectively. The Lyapunov stability theory is used to prove the stability of the sliding 
surfaces. Comparison on the working performances of the techniques are highlighted in terms of settling 
time, links deflection, reaching time of the sliding surface, Integral square error and control input 
energies. The manipulator dynamics are designed by using the lumped parameter method. Controlling the 
position of the TLFM in the presence of bounded unknown disturbance and the time varying parameters 
using low chattering SMC techniques is the novelty of this paper. 

The paper is organised as follows. Firstly, the dynamic modeling of the TLFM is presented in Section 
II. The description of PI SMC and asymptotic SMC are given in Section III and IV respectively. Section 
V deals with the results and discussions. Finally, conclusions are presented in Section VI.  

2. SYSTEM DYNAMICS 
Consider a planar two-link flexible manipulator with bending deformation in the plane of motion. Fig. 1 
shows the two-link flexible manipulator. The coordinates frames are given as (𝑋��,𝑌��), the moving rigid 
body frame for link i as (𝑋� ,𝑌�) and the moving flexible body frame of ith link as (𝑋�� ,𝑌��). The hub is 
attached to the motor shaft which drives the link to reach the desired position.  
The dynamic equations of the system is found by the Euler-Lagrange formulation is first obtained. The 
kinetic energy (KE) and potential energy (PE) of each link and hub are calculated from the given system.  
The total KE is given as the combination of the links KE and hubs KE. 

            KEtotal = KEL1+KEL2+KEH1+KEH2 = �
�
𝐽��	𝜃̇�� + �

�
𝐽��	𝜃̇�� + �

�
𝐽��(𝜃̇� + 𝛼̇�)� + �

�
𝐽��(𝜃̇� + 𝛼̇�)�       (1) 

                                                                  PEtotal = �
�
𝑘�𝛼�                                                                          (2) 

The Euler-Lagrange equation is given as  

                                             �
��
���
��̇
� − ���

��
� = 𝑇 − 𝐵��𝜃̇                                                                     (3) 

                                                   �
��
���
��̇
� − ���

��
� = 0                                                                            (4) 

where α and 𝜃 are the two generalized coordinates and  

                                               𝐿 = 𝐾𝐸����� − 𝑃𝐸                                                                                (5) 

 

Solving the equations (4) and (5), we get 

                                                 𝜃̈� = −𝑝�𝜃̇� + 𝑝�𝛼� + 𝑝�𝑉�                                                             (6) 

                                                 𝜃̈� = −𝑝�𝜃̇� + 𝑝�𝛼� + 𝑝�𝑉�                                                              (7) 

                                                 𝛼̈� = 𝑝�𝜃̇� − 𝑝�𝛼� − 𝑝�𝑉�                                                                 (8) 

                                                 𝛼̈� = 𝑝�𝜃̇� − 𝑝�𝛼� − 𝑝�𝑉�                                                                  (9) 

where 

Figure 1: Schematic diagram of two-link flexible manipulator.

Solving the equations (4) and (5), we get
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Table 1 

Parameters of The System  (3, 4) [21]. 

Mass of link 1, 𝑚� =
0.065 𝐾𝑔 

Coefficient of viscous 
damping, 𝐵�� = 1.99  

Link M. I,    𝐽���� =
0.00195 𝐾𝑔𝑚�  

Mass of link 2, 𝑚� =
0.070 𝐾𝑔  

Efficiency of gear box, 
𝜂� = 0.9 

Link M. I,    𝐽���� =
0.000933 𝐾𝑔𝑚�  

Length of link 1, 𝐿� = 0.3 𝑚  Efficiency of motor, 
𝜂� = 0.69 

Load Torque = T 

Length of link 2, 𝐿� = 0.2 𝑚 Constant of back e. m. f, 
𝐾� = 0.  00767  

Motor voltage= Vm 

Resistance of Armature, 
𝑅� = 2.6 𝛺 

Gear ratio, 𝐾� = 70  

Equivalent M. I at load, 
𝐽��� = 0.099 𝐾𝑔𝑚�  

Natural frequency, 𝑓� =
3.2 𝐻� 

 

Equivalent M. I at load, 
𝐽��� = 0.092 𝐾𝑔𝑚�  

Stiffness of the link, 
𝐾� = 2𝜋𝑓�  

 

 

Defining,	x� = 𝜃�,	x� = 𝜃�,	x� = 𝛼�, x� = 𝛼� x� = 𝜃̇�,	x� = 𝜃̇�,	x� = 𝛼̇�, x� = 𝛼̇�, 𝑢 = 𝑉� and 
using the above equations (6) to (9), manipulator dynamics can be represented as [21]: 

 

𝑥̇� = 𝑥� 
𝑥̇� = 𝑥� 
𝑥̇� = 𝑥� 
𝑥̇� = 𝑥� 

                                                  𝑥̇� = −𝑏�𝑥� + 𝑏�𝑥� + 𝑏�𝑢 + 𝑑                                          (11) 
ẋ� = −b�x� − b�x� + b�u 
𝑥̇� = 𝑏�𝑥� − 𝑏�𝑥� − 𝑏�𝑢 
ẋ� = b�x� − b�x� − b�u 

where 𝑏�(𝑡) = 𝑝� + 𝑑�(𝑡), 𝑏�(𝑡) = 𝑝� + 𝑑�(𝑡),	𝑏�(𝑡) = 𝑝� + 𝑑�(𝑡), 𝑏�(𝑡) = 𝑝� + 𝑑�(𝑡), 𝑏�(𝑡) =
𝑝� + 𝑑�(𝑡), 𝑏�(𝑡) = 𝑝� + 𝑑�(𝑡), and 𝑑�(𝑡), 𝑑�(𝑡), 	𝑑�(𝑡), 	𝑑�(𝑡), 	𝑑�(𝑡), 𝑑�(𝑡) are uncertainties in the 
plant parameters 𝑝�, 𝑝�, 𝑝�, 	𝑝�, 	𝑝�, 	𝑝�, respectively, i.e. slowly time varying parameters are considered. 
𝑑 is the plant disturbance. Numerical values  of these parameters are given in the results and discussions 
section. Position control using PI SMC is discussed in the next section. 

3. POSITION CONTROL OF TLFM USING PI SMC  
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ẋ� = b�x� − b�x� − b�u 

where 𝑏�(𝑡) = 𝑝� + 𝑑�(𝑡), 𝑏�(𝑡) = 𝑝� + 𝑑�(𝑡),	𝑏�(𝑡) = 𝑝� + 𝑑�(𝑡), 𝑏�(𝑡) = 𝑝� + 𝑑�(𝑡), 𝑏�(𝑡) = 𝑝� +
𝑑�(𝑡), 𝑏�(𝑡) = 𝑝� + 𝑑�(𝑡), and 𝑑�(𝑡), 𝑑�(𝑡), 	𝑑�(𝑡), 	𝑑�(𝑡), 	𝑑�(𝑡),𝑑�(𝑡) are uncertainties in the plant 
parameters 𝑝�, 𝑝�,𝑝�, 	𝑝�, 	𝑝�, 	𝑝�, respectively, i.e. slowly time varying parameters are considered. 𝑑 is 
the plant disturbance. Numerical values  of these parameters are given in the results and discussions 
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3. POSITION CONTROL OF TLFM USING PI SMC  
This section describes the use of PI SMC technique for the position control of TLFM. The objective is to 
design a controller in such a manner that it causes the manipulator dynamics to follow the desired 
position. Thus, by considering the desired position 𝑥� for the links, the error is defined as; 

                                                      𝑒� = 𝑥� − 𝑥��,		𝑒� = 𝑥� − 𝑥��                                              (12) 

Here, a unit step angular position is considered as desired for 𝑥�� and 𝑥��. Designing of a SMC 
technique involves two steps. First is the design of sliding surface and in second step, we design the 
control law [13]. The objective of the first step is to bring the dynamics on the sliding surface and the 
second step is to maintain the trajectory on the sliding surface [13].  The PI sliding surface is considered 
as: 

                                                     𝑠� = 𝑒̇� + 𝑐� ∫ 𝑒�(𝜏)�
� 𝑑𝜏  

                                                     𝑠� = 𝑒̇� + 𝑐� ∫ 𝑒�(𝜏)�
� 𝑑𝜏   
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Now, the equivalent sliding surface is considered as 

                                                𝑠� = 𝑠� + 𝑎�𝑠� + 𝑎�𝑠� + 𝑎�𝑠�                                              (14) 

where 𝑎�(𝑖 = 1, 2, 3), 𝑐�(𝑖 = 1, 2, 3, 4) are positive constants whose values depend on the choice of 
designer. The system operates on the sliding surface when it satisfies: 

                                                𝑠� = 0,	𝑠̇� = 0                                                                        (15) 

To ensure the occurrence of sliding mode, control law (using (11), (12) and (15)) is proposed as; 

      𝑢� = �− �
�
� [𝑥�(−𝑏�𝑎� + 𝑏� + 𝑐�𝑎�) + 𝑥�(𝑏�𝑎� − 𝑏�) + 𝑥�(−𝑏�𝑎� − 𝑏�𝑎�) + 𝑥�(−𝑏�𝑎� + 𝑐�𝑎� +
+𝑐�𝑎�) + 𝑐�𝑒� + 𝑎�𝑐�𝑒�] − 𝜌	𝑠𝑔𝑛(𝑠�)                                                    (16) 

where 	𝑘 = 𝑏�𝑎� − 𝑎�𝑏� − 𝑏�𝑎� + 𝑎�, 𝜌	are positive constants.  

Remark 1: The control law 𝑢�	 in (16) causes the system trajectories (11) to follow the desired 
position in presence of unknown disturbance and slow time varying parameters and to maintain on the 
sliding surface	𝑠�(𝑡).  

In the next section we shall discuss the performance of the system using asymptotic SMC. 

4. POSITION CONTROL OF TLFM USING ASYMPTOTIC SMC 
In this section, asymptotic SMC is designed for describing the  position control of manipulator dynamics 
in equation (17). The sliding surface is also designed in terms of control function derivative. In this case 
control input is the integral of high frequency switching function. So, the manipulator dynamics is 
modified and is described as 

𝑥̇� = 𝑥� 
𝑥̇� = 𝑥� 
𝑥̇� = 𝑥� 
𝑥̇� = 𝑥� 

𝑥̇� = −𝑏�𝑥� + 𝑏�𝑥� + 𝑏�𝑢 
                                                ẋ� = −b�x� − b�x� + b�u                                                   (17) 

𝑥̇� = 𝑏�𝑥� − 𝑏�𝑥� − 𝑏�𝑢 
ẋ� = b�x� − b�x� − b�u 
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where 𝑎��(𝑖 = 1, 2, 3), 𝑐��(𝑖 = 1, 2, 3, 4) are positive constants whose values are defined by the user.  
For low chattering, the auxiliary sliding variable is defined as 

                                               𝜎 = 𝑠�̇ + 𝑐̅	𝑠�                                                                         (20) 

Now our aim is to design 𝑣 that provides finite time convergence of		𝜎 → 0, and an ideal sliding 
mode to occur in the sliding surface 𝜎 = 0	as 

                                                𝜎 = 𝑠�̇ + 𝑐̅	𝑠� = 0                                                                 (21) 

Control law 𝑣 that derives the 𝜎 to zero in finite time is defined as 

𝑣 = �− �
�
� [𝐴𝑥� + 𝐵𝑥� + 𝐶𝐶� + 𝐷𝐷� + 𝐸𝐸� + 𝐹𝐹� + 𝑐̅	(𝑐�𝑥� + 𝑎�𝑐�𝑥�)] − 𝜌	𝑠𝑔𝑛(𝜎)    (22) 

where		𝐴 = −𝑏�𝑎� + 𝑏� + 𝑐�𝑎�𝑐̅	, 𝐵 = −𝑏�𝑎� + 𝑐�𝑎�𝑐̅+ +𝑐�𝑎� + 𝑐�𝑎�𝑐̅	, 𝐶 = 𝑏�𝑎� − 𝑏� + 𝑐� + 𝑐̅, 
𝐷 = −𝑎�𝑏� + 𝑎�𝑐� + 𝑎�𝑏� + 𝑎�𝑐,̅ 𝐸 = 	𝑎�𝑐� + 𝑎�𝑐 ̅ , 𝐹 = 𝑎�𝑐� + 𝑎�𝑐̅, 𝐺 = 𝑏� + 𝑎�𝑏� − 𝑎�𝑏� − 𝑎�𝑏�, 
𝐶� = −𝑏�𝑥� + 𝑏�𝑥� + 𝑏�𝑢, 𝐷� = −𝑏�𝑥� + 𝑏�𝑥� + 𝑏�𝑢, 𝐸� = 𝑏�𝑥� − 𝑏�𝑥� − 𝑏�𝑢, 𝐹� = 𝑏�𝑥� − 𝑏�𝑥� −
𝑏�𝑢 

Remark 2: The control law	𝑣 in (22) of asymptotic sliding mode makes both  𝜎	𝑎𝑛𝑑	𝜎̇ → 0 together 
with convergence of states to desired position as time increases, even in presence of unknown 
disturbance and slowly time varying parameters.  

5. RESULTS AND DISCUSSIONS 
We used the  fourth order Runga Kutta method for solving the dynamics of (11),  (17) and simulating 

the results with step time h=10�� in MATLAB. The parameter values are: p� = 2.0796, p� = 7.955, 
p� = 1.29, p� = 2.237, p� = 4.09, p� = 1.39, p� = 412, p� = 408. The values of  parameter 
uncertainties are: 𝑑� = 0.2 sin(5𝑡) 𝑑� = 0.7 sin(5𝑡), 𝑑� = 0.2(5𝑡), 𝑑� = 0.4 sin(5𝑡), 𝑑� =
41.2 sin(5𝑡),	𝑑� = 40.8 sin(5𝑡) and 
d = 0.1 sin(x�) 	sin(x�) sin(x�) sin(x�) sin(x�) sin(x�) sin(x�) sin	(x�). The initial conditions for the 
analysis with PI SMC are chosen as	𝑥(0) = (0, 0, 0, 0, 0, 0, 0, 0)�, and the value of different 
constants are: c� = 7, c� = 2, ρ =5, c� = 3, c� = 0.5, a� = 0.6, a� = 0.3, a� = 0.25. The initial 
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𝑠� = 𝑒̇� + 𝑐��𝑒� 
𝑠� = 𝑒̇� + 𝑐��𝑒� 

                                                         𝑠� = 𝑥̇� + 𝑐��𝑥�                                                           (18) 
𝑠� = 𝑥̇� + 𝑐��𝑥� 

Here, the equivalent sliding surface is considered as 

                                          𝑠� = 𝑠� + 𝑎��𝑠� + 𝑎��𝑠� + 𝑎��𝑠�                                        (19) 

where 𝑎��(𝑖 = 1, 2, 3), 𝑐��(𝑖 = 1, 2, 3, 4) are positive constants whose values are defined by the user.  
For low chattering, the auxiliary sliding variable is defined as 

                                               𝜎 = 𝑠�̇ + 𝑐̅	𝑠�                                                                         (20) 

Now our aim is to design 𝑣 that provides finite time convergence of		𝜎 → 0, and an ideal sliding 
mode to occur in the sliding surface 𝜎 = 0	as 

                                                𝜎 = 𝑠�̇ + 𝑐̅	𝑠� = 0                                                                 (21) 

Control law 𝑣 that derives the 𝜎 to zero in finite time is defined as 

𝑣 = �− �
�
� [𝐴𝑥� + 𝐵𝑥� + 𝐶𝐶� + 𝐷𝐷� + 𝐸𝐸� + 𝐹𝐹� + 𝑐̅	(𝑐�𝑥� + 𝑎�𝑐�𝑥�)] − 𝜌	𝑠𝑔𝑛(𝜎)    (22) 

where		𝐴 = −𝑏�𝑎� + 𝑏� + 𝑐�𝑎�𝑐̅	, 𝐵 = −𝑏�𝑎� + 𝑐�𝑎�𝑐̅ + +𝑐�𝑎� + 𝑐�𝑎�𝑐̅	, 𝐶 = 𝑏�𝑎� − 𝑏� + 𝑐� + 𝑐̅, 𝐷 =
−𝑎�𝑏� + 𝑎�𝑐� + 𝑎�𝑏� + 𝑎�𝑐̅, 𝐸 = 	𝑎�𝑐� + 𝑎�𝑐̅ , 𝐹 = 𝑎�𝑐� + 𝑎�𝑐̅, 𝐺 = 𝑏� + 𝑎�𝑏� − 𝑎�𝑏� − 𝑎�𝑏�, 𝐶� =
−𝑏�𝑥� + 𝑏�𝑥� + 𝑏�𝑢, 𝐷� = −𝑏�𝑥� + 𝑏�𝑥� + 𝑏�𝑢, 𝐸� = 𝑏�𝑥� − 𝑏�𝑥� − 𝑏�𝑢, 𝐹� = 𝑏�𝑥� − 𝑏�𝑥� − 𝑏�𝑢 

Remark 2: The control law	𝑣 in (22) of asymptotic sliding mode makes both  𝜎	𝑎𝑛𝑑	𝜎̇ → 0 together 
with convergence of states to desired position as time increases, even in presence of unknown 
disturbance and slowly time varying parameters.  

5. RESULTS AND DISCUSSIONS 
We used the  fourth order Runga Kutta method for solving the dynamics of (11),  (17) and simulating 

the results with step time h=10�� in MATLAB. The parameter values are: p� = 2.0796, p� = 7.955, 
p� = 1.29, p� = 2.237, p� = 4.09, p� = 1.39, p� = 412, p� = 408. The values of  parameter 
uncertainties are: 𝑑� = 0.2 sin(5𝑡) 𝑑� = 0.7 sin(5𝑡), 𝑑� = 0.2(5𝑡), 𝑑� = 0.4 sin(5𝑡), 𝑑� =
41.2 sin(5𝑡),	𝑑� = 40.8 sin(5𝑡) and 
d = 0.1 sin(x�) 	sin(x�) sin(x�) sin(x�) sin(x�) sin(x�) sin(x�) sin	(x�). The initial conditions for the 
analysis with PI SMC are chosen as	𝑥(0) = (0, 0, 0, 0, 0, 0, 0, 0)�, and the value of different 
constants are: c� = 7, c� = 2, ρ =5, c� = 3, c� = 0.5, a� = 0.6, a� = 0.3, a� = 0.25. The initial 
conditions for the analysis with asymptotic SMC are chosen as	𝑥(0) = (0, 0, 0, 0, 0, 0, 0, 0, 0)�and 
the value of different constants are: c�� = 7, c�� = 2, ρ =7, c�� = 3, c�� = 3, a�� = 0.6, a�� = 0.3, 
a�� = 0.25, c� = 2.21.	 

5.1 POSITION CONTROL WITH PI SMC  
Fig.2 (a, b) shows the position of states (𝑥�,𝑥�) i.e angle of the first joint and second joint. Fig. 2 (c, d) 
shows the position of states (𝑥�,𝑥�) i.e deflection of the first and second  link. The velocities of the joints 
angle and links deflection are shown in Fig. 3 (a, b) and Fig. 3 (c, d), respectively. The time responses of 
the sliding surface and control input are shown in Fig. 4 (a)  and Fig.  4 (b), respectively. It is observed 
from Fig. 2 (a, b) that first and second joint angles reached  the desired position in 1.33 s and 1.28 s, 
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Figure 2: Link position with PI SMC (a) of first link (b) of second link. Link deflection (c) of the first link (d) of the 
second link with PI SMC.
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Figure 3: Velocity with PI SMC (a) of the first joint (b) of the second joint. Velocity of the (c) first link deflection (d) 
second link deflection with PI SMC.
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Figure 4: Time response of sliding surface with PI SMC. (b) Time response of control input required with PI SMC.

Sliding surface in Fig. 4 (a) reaches zero (converge) in s but the required control input in this case (PI 
SMC) is comparatively high. The next subsection deals with the results and discussions of position control 
using asymptotic SMC. 
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5.2	 Position Control With Asymptotic SMC 
The angular position of the first link and second link with settling time 3.05 s with their deflections are 
given in Fig. 5 (a, b) and Fig. 5 (c, d), respectively, which tends to zero. Their respective velocities are also 
shown in Fig. 6 (a,b) and Fig. 6 (c, d). Fig. 7 (a) and Fig. 7 (b) gives the sliding surface and control input 
of the controller with asymptotic SMC.

5.3	 Comparisons between PI-SMC and Asymptotic SMC 
It is clear that the joints with PI SMC reaches the desired position in less time as compared to the 
asymptotic SMC. Similarly, comparison of the states i.e. deflection of both the links showed that the 
deflection of the links with asymptotic SMC is small as compared to PI SMC. The performance indices of 
the flexible manipulator are given in Table 2. Moreover, to check the control input required, the energies 
are also calculated and compared.
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Figure 5: Links position (a) of first link (b) of second link with asymptotic SMC. (c) deflection of first link (d) 
deflection of second link with asymptotic SMC.
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Table 2 
Comparisons on The Performance of PI SMC and Asymtotic SMC.

S. L. Performance 
Indices

PISMC Asymptotic SMC S.L Performance 
Indices

PISMC Asymptotic 
SMC

1. Settling time 
of θ1

1.33s 3.15s 3. Sliding surface 
reaching time

1.3s 1.8s

Settling time 
of θ2

1.28s 3.05s 4. Integral Square 
Error (ISE)

0.531 1.1732

2. α1 High deflection 
magnitudes

Small deflection 
magnitudes

5. Control input 
energy

1.083X105 1.29X103

α2 Large deflection 
magnitudes

Small deflection 
magnitudes

6.	 CONCLUSIONS
Two low chattering SMC control techniques for position tracking and tip deflection control of a two-
link flexible manipulator are presented. The control techniques are been developed on the basis of low 
chattering in sliding surfaces and in control input. The techniques are implemented within the simulation 
environment with bounded unknown disturbances and slowly time varying uncertainties in parameter of 
TLFM. The performances of the control techniques are evaluated. A comparative analysis of the two control 
techniques reveal that PI SMC technique results in better performance than asymptotic SMC in respect of 
settling time of hub angular position, sliding surface reaching time and in intergral square error. However, 
the links deflection and control input energy are less in case as of asymptotic SMC. 
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