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Abstract : A simple method for fi nding the optimal value of PI controller parameters among several stable PI parameters 
obtained from the global stability region using the stability boundary locus approach. A new optimization algorithm 
is introduced in this paper to compute the stabilized value of PI controller. The GSO based PI Controller satisfi es the 
conditions of the stable PI controller. The best value of the PI controller parameters will have the shortest settling 
time, rise time and reduced overshoot. Besides stability, the following requirements such as Robust performance, Set 
point tracking is included in the control system design. The simulation results for the class of stable FOPTD process 
model of the proposed optimization algorithm is then compared with the other optimization algorithms.
Keywords: Controller; Setpoint; Optimization; Tracking; Stability.

1. INTRODUCTION
For many decades, many researchers have contributed their fi ndings towards the design and development of PID 
control design. The PID controller is widely used in process control industries due to its simplicity, robustness 
and its principle is easier to understand than many other advanced controllers and makes it easy to regulate 
the process output. The general performance of PID controller is satisfactory in many applications and it is an 
attractive research area. The majority of controllers used in industry are PI/PID type. The controller designs are 
usually performed based on an approximate model, the nature of the process and the performance requirements. 
Many important results have been recently shown on computation of all stabilizing P, PI controllers followed by 
the publication of work by Ho et al[1][2]. An alternative fast approach to this problem is based on the Nyquist 
plot has been given in [3][4].A new approach is shown to compute the stabilizing PI controllers in the parameter 
plane, (Kp, Ki ) plane.The controller design will satisfy the time domain specifi cation, stability and robustness. 
For a well designed control system the following requirements needed besides stability are disturbance 
atttenuation, set point tracking and robust performance. It computes the stable PI controller parameter for a 
given SISO control system with reduced computational time. All the set of stabilizing values of the parameters 
of PI controller are obtained in the ( Kp, Ki) plane using the stability boundary locus approach. The GSO based 
PI Controller fi nds the optimal Kp, Ki value which satisfi es the requirements to obtain the shortest settling time, 
fastest rise time and reduced overshoot. The tuning rules utilized for the comparison are Firefl y Optimization 
Algorithm (FA) and Bacterial Foraging Optimization Algorithm (BF).
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2. DESIGN OF THE CONTROLLER

2.1. Computation of stabilizing PI controller parameters
Consider the Single-Input Single-Ouput (SISO) control system shown in fi g 1 where 

 G(s) = (X(S))/(Y(S)) (1)
G(s) is the plant being controlled and C(s) is a PI controller given in the form 
 C(s) = {KP + Ki / (s)}
   = [KpS + Ki] /S (2)

+
–
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Figure 1: A SISO control system

The stabilizing PI controllers are computed by Tan’s method published in [5] [6]. In this method stability 
boundary locus is plotted by substituting s = j in eqn (1) and decomposing the numerator and denominator 
polynomials into their even and odd parts which gives 

 G( j) = 
2 2
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2 2
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The expression of closed loop characteristic polynomial is obtained and equate the real and imaginary 
parts to zero for getting the proportional gain and integral gain.
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Where Z1() = –2X0 (–
2)

 Z2() = Xe (–
2)

 Z3() = Xe (–
2)

 Z4() = X0 (–
2)

 Z5() = 2Y0 (–
2)

 Z6() = –Ye (–
2) (6)

The stability boundary locus is plotted by solving the equations (4) & (5) simultaneously. Making Ki = 0 the 
(Kp, Ki) plane is divided into stable and unstable regions. The stabilizing Kp & Ki parameters will be available 
in the stable region and fi nding the best PI controller parameter is carried out using the optimization techniques.

Example 1: Consider a fi rst order plant with time delay given by transfer function 

 G(s) = –36.6
42 1

se
s +  (7)

The time delay is approximated by pade approximation technique

  = 
6.6 2 – 3
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The stabilized PI Controllers are computed by the Tan’s method by decomposing the even and odd parts in (3)

 Kp = 
2

2

–3385.8 26.4
–392.04 – 174.24

ω +
ω

 (8)

 Ki = 
4 2
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ω  (9)
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Figure 2: Stability Boundary Locus

Making = 0,  value will be calculated. Substituting  value in (8) & (9) solving these simultaneously 
the stability boundary locus will be easily plotted as shown in Fig (2). The set of Kp and Ki values are obtained 
and group search optimization algorithm is proposed to fi nd the optimal value to achieve reduced overshoot, 
shortest settling time and rise time.

2.2. Bacterial Foraging Optimization Algorithm
Bacterial Foraging Optimization Algorithm (BFOA) is proposed by Kim, Abraham and cho (2007) [7]. Bacteria 
fi nd for nutrients to maximize energy obtained per unit time. Individual bacterium too communicates with others 
by sending signals [8]. A bacterium takes foraging decisions by considering two factors. The process, in which 
a bacterium moves by taking small steps while searching for nutrients, is called chemotaxis. The main idea 
of BFOA is imitating the chemotactic movement of virtual bacteria in the problem search space [9]. Bacterial 
Foraging optimization theory is explained by Chemotaxis, Swarming, Reproduction & Eliminational-Dispersal.

Chemotaxis process personate the movement of an E.coli cell by swimming and plunging via fl agella. 
Biologically an E.coli bacterium can move in two different ways. It can swim for a period of time in the same 
direction or it may tumble between these two modes of operation for the entire lifetime.

Swarming is an process in which an interesting group behavior has been noticed for several motile species 
of bacteria containing E.coli and S. Typhimurium, where intricate and stable spatio-temporal patterns (swarms) 
are produced in semisolid nutrient medium[10]. A group of E.coli cells arrange themselves in a travelling ring 
by moving up the nutrient gradient and infuse a semisolid matrix with a single nutrient chemo-effecter. The 
cells are stimulated by a high level succinate, release an attractant aspertate, which helps them to aggregate into 
groups and  move as concentric patterns of swarms with high bacterial density.
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Reproduction involves the least healthy bacteria eventually die when each of the healthier bacteria (which 
yields lower value of the objective function) asexually split into two bacteria, which are then placed in the same 
location. This keeps the swarm size constant.

Eliminational-Dispersal process involves Gradual or sudden changes in the local environment make 
the bacterium population to live may occur due to various reasons. Events can occur such that all the bacteria 
in a region are killed or a group is dispersed into a new part of the environment. For example, a signifi cant 
local rise of temperature may kill a group of bacteria that are currently in a region with high concentration of 
nutrient gradients. Events can take place in such a fashion that all the bacteria in a region are killed or a group 
is dispersed into new location. During the long time period, these events spread various types of bacteria into 
all parts of the environment from our intestines to hot springs and underground environments. To stimulate 
this phenomenon in BFOA some bacteria are selected at random with a very small probability while the new 
replacements are randomly initialized over the search space. Elimination and dispersal events have the ability 
of possibly destroying chemotactic progress also they assist the chemotaxis process and dispersal may place the 
bacteria near good food sources. From a broad perspective, elimination and dispersal are parts of the population-
level long-distance motile behavior.

2.3. FireFly Optimization Algorithm
Firefl y is an insect that mostly produces short and rhythmic fl ashes that produced by a process of 
bioluminescence(11). The function of the fl ashing light is to attract partners (communication) or attract the prey 
and also a protective warning towards the predator.  This intensity of light is the factor of the other fi refl ies to 
move towards the other fi refl y. The light intensity is varied at the distance from the eyes of the beholder[12]. 
It is safe to say that the light intensity gets decreased when the distance increase. The light intensity have 
the infl uence towards air absorbed by the surroundings leads to  the less intensity as the distance increases 
(Yang, 2010[13]). Firefl y algorithm follows three idealize rules, 1) Firefl ies have attraction towards  each other 
regardless of gender. 2) The attractiveness of the fi refl y is correlated with the brightness of the fi refl y makes the 
less attractive fi refl y tend to move forward to the more attractive fi refl y. 3) The brightness of fi refl y depends on 
the objective function (Yang, 2010).

2.4. GSO based Stable PI Controller 
GSO is a resource searching inspired by group living theory which was developed by (S.He et al., 2009). The 
inhabitant of the GSO algorithm is called group and the singular number in the inhabitant is called a member. 
The head angle φi

K where i is the member and k is the searching iteration (drum) in the search space calculates 
the search direction. While starting with GSO, certain parameters need to be initialized. It includes lower bound 
value, upper bound value, population size, number of producers, number of scroungers, maximum turning 
angle, maximum pursuit angle and number of iterations. The population size is the number of Kp and Ki 
parameters and the number of dimension is two. All possible sets of controller parameter values are adjusted 
so as to minimize the objective function, it is the error criterion.  The number of such criteria are available and 
here controller’s performance is evaluated in terms of Integral Square Error(ISE) error criteria. The global 
best solution was selected having the minimum error.L = [min(kc) min(ki)] U = [max(kc) max(ki)] Where L 
is the lower bound value and U is the upper bound value containing minimum Kc, Ki values and maximum 
Kc, Ki values.

The initial head angle ° of apiece inhabitant is set to be /4. The maximum pursuit angle max is fi t to be 
/(a2). The maximum turning angle max is  fi t to be max ̸ 2. The maximum pursuit distance lmax is derived by 
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It is possible to obtain more accurate results by fi ne tuning the °, max , lmax and max. In GSO, a group 
contains three forms of members they are producer, scroungers and rangers. Producer and scroungers whose 
procedures are based on the PS model and dispersed members who support random walk motions. For simplicity 
a single producer is assumed at every searching drum and the rest are scroungers and dispersed members. All 
scroungers use the resources found by the producer. In the search process if the scrounger fi nds better resource 
then it will switch to be a producer and all the scroungers and the producer in the previous searching drum will 
perform scrounging strategies. Producer and scroungers don’t vary in their relevant phenotypic characteristics 
so they can switch between the two roles [14] [15]. At each iteration (drum) a group member present in the 
propitious area and the best fi tness value is selected as the producer. At each iteration (drum) a group member 
present in the propitious area and the best fi tness value is selected as the producer. In GSO, vision is the main 
scanning mechanism employed by producer and scanning strategies were characterized by maximum pursuit 
angle and maximum pursuit distance. First the producer will scan at zero degree and then fi rst point at zero 
degree[16][17].

 X2 = Xk
p + r1 lmax D

k
p(

k) (11)

The second point in the right hand side of the producer.
 Xr = Xk

p + r1 lmax D
k
p(

k + r2 max / 2) (12)

The third point in the left hand side of the producer.
 X1 = Xk

p + r1 lmax D
k
p(

k – r2 max / 2) (13)

Where r1 R1 is a normally distributed random number with mean 0 and standard deviation 1, r2  Rn-1 
is a uniformly distributed random sequence in the range (0,1) max is the maximum pursuit angle and lmax is the 
maximum puruit distance. Again producer will search for the better resource if it fi nds the best fi tness value it 
will move to that point otherwise it will stay in the existing position and turn its head to the new angle

 k + 1 = k + r2 max (14)
Where max  R1 is maximum turning angle.
If the producer is unable to fi nd the better area after a iterations then it will turn its head to zero degree.
 k + a = k

Where a  R1 is a constant. During every searching drum, a number of group members are selected as 
scroungers. The scroungers will search for opportunities to join the resources found by the producer.

During the Kth iteration resource searching behaviour of the ith scrounger walk towards the producer.

 li = a. r1 lmax

And move to the new point xi
k + 1 = xi

k  +  li D
k
i (

k + 1)
The fl owchart of the GSO algorithm is shown in Fig.3. A generic social foraging model, e.g., PS model, was 

employed as the framework to derive GSO. The producer of GSO is quite similar to the global best particle of 
PSO, the major difference is that the producer performs producing which  differs from the strategies performed 
by the scroungers and the dispersed member. while, in PSO each individual performs the same searching 
strategy. In GSO the producer remembers its head angle when it starts producing. In GSO, the search is simply 
conducted by turning the head to a new angle. The scanning procedure of GSO is like a simplifi ed direct search 
method. Various strategies are adopted to restrict their search and GSO algorithm employs bounded search 
space[18]. In this strategy when a member is outside the search space it will turn back to search space by setting 
the variables that violated the boundary criteria. Optimization is a process of seeking optima in a search space, 
is analogous to the resource searching process of animals in nature As long as the limit of time delay is from 0.1 
to 50, GSO works well for all the FOPTD models. 



6International Journal of Control Theory and Applications

T. Geetha and S. Somasundaram

Generate and evaluate initial members

Choose a member as producer

Producer performs producing

Choose scroungers

Scroungers perform scrounging

Dispersed the rest members to
perform ranging

Evaluate members

Termination
criterion satisfied ?

Terminate

Figure 3: Flowchart of the GSO Algorithm

3. SIMULATION RESULTS
The PI values obtained by the GSO are compared with the results derived from FA and BF algorithm in various 
perspectives, viz Servo Regulatory responses and Robust performances. All the simulations were implemented 
using MATLAB. 

1.  –101G(S) =
+1

se
s
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Figure 4: Response of the best Kp Ki values for td  = 10
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Figure 5:  Response of the Robustness for  + 20% in Kp Td  and -20% in τp



8International Journal of Control Theory and Applications

T. Geetha and S. Somasundaram

Table 1
 Comparison of Performance Index and Time Domain Specifi cations of GSO tuned,  FA tuned 

and BF tuned PI Controllers 

S.No Tuning Rule ISE IAE tr ts O.S
1. GSO 12.05 15.06 7 60 0.18
2. FA 12.4 17.42 6.5 80 0.23
3. BF 13.64 21.68 6 120 0.49
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Figure 6: Servo Response of the GSO tuned, FA tuned and BF tuned PI Controllers
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Figure 7: Regulatory response of the GSO tuned, FA tuned and BF tuned PI Controllers
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Figure 8: Regulatory response of the GSO tuned, FA tuned and BF tuned PI Controllers
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Figure 9: Response of the best KpKi values for td  = 1
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Table 2
 Comparison of Performance Index and Time Domain Specifi cations of GSO tuned, 

FA tuned and BF tuned PI Controllers

S.No Tuning Rule ISE IAE tr ts O.S

1. GSO 1.701 2.833 1 20 0.2

2. FA 1.768 3.282 0.6 25 0.6

3. BF 3.336 5.578 0.7 30 1
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Figure 10:  Response of the Robustness for + 20% in Kp Td  and -20% in τp

4. CONCLUSION

In the present work the design and implementation of GSO based PI controller PSO based PI controller and 
BF based PI controller for FOPTD models have been presented. Based on the simulation results it is concluded 
that, the performance of the GSO controller is most superior compared to the PSO based PI controller and 
BF based PI controller. The GSO based controller works well for FOPTD models having time delay upto 
50.  The simulation responses refl ect the effectiveness of the GSO based controller in terms of time domain 
specifi cations. The performance index under the various error criterions of the GSO based controller is always 
less than the FA and BF based PI controller.
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Figure 11: Servo Response of the GSO tuned, FA tuned and BF tuned PI Controllers
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Figure 12: Regulatory response of the GSO tuned, FA tuned and BF tuned PI Controllers
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Figure 13: Regulatory response of the GSO tuned, FA tuned and BF tuned PI Controllers
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