
A HULL AND WHITE FORMULA FOR A STOCHASTIC

VOLATILITY LÉVY MODEL WITH INFINITE ACTIVITY
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Abstract. In this short note, by using techniques of Malliavin calculus for
Lévy processes, we obtain an anticipating Itô formula for an infinite activity

Lévy process. As an application we derive a Hull and White formula for
an infinite activity stochastic volatility Lévy model. There are no assump-
tions on the Lévy measure and only basic Malliavin calculus assumptions are

considered on the stochastic volatility process.

1. Introduction

The main problem of the Black-Scholes formula for option pricing is the as-
sumption of constant volatility for the underlying price. The effort for explaining
the smile or skew shapped behavior of the implied volatility observed in markets
brought first to consider stochastic volatility models and later to add jumps to
these models. Examples of these models can be found in [7]. As it is known, and
it is shown in the literature, considering jumps is useful to describe better the
short time behaviour of the implied volatility with respect to the strike price (the
so called smile or skew of the volatility).

Most famous stochastic volatility models with jumps, as for example the model
due to Bates [6], assume a concrete dynamic for the volatility, but this dynamic
is difficult to model in practice because volatility is an unobservable parameter.
On other hand, as it was shown in [8], any generalization of Black-Scholes model,
from the case of deterministic volatility to different cases of stochastic volatility,
give a pricing formula, also called Hull and White formula, that depends not
on the current volatility but on the future average volatility. The fact that the
future average volatility is a non adapted process suggests the use of anticipative
calculus techniques as the natural tool to deal with anticipative processes as done
in [3] and [2]. In these papers, a general jump diffusion model with no precise
assumption on the dynamics of the volatility process is analyzed. In the first of
them, the volatility is assumed to be correlated only with the continuous part of
the price process whereas in the second one, the volatility is also allowed to be
correlated with price jumps. This dependence on jumps makes necessary the use of
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Malliavin calculus for Lévy processes to obtain a suitable Hull and White formula
that distinguishes clearly the effects of different correlations.

The goal of this kind of work is mainly to model the plain vanilla price sur-
face given by derivatives markets or the corresponding implied volatility surface,
in order to obtain a better comprehension of phenomena like the smile or skew
behaviour of the implied volatility with respect the strike price or its behaviour
with respect the time to expiry. This is the reason that justifies the assumption
of a risk neutral model, under a risk neutral probability measure chosen by the
derivative market of reference.

In [2] the jump part is modeled by a Compound Poisson process. Now, we
extend it to the case that the jump process is a pure jump Lévy process. More
technically we change the finite Lévy measure associated to the Compound Poisson
process by an infinite one and we obtain an extension of the Hull andWhite formula
for this more general case.

Our general model covers all cases treated in the literature: correlated sto-
chastic volatility models with jumps (as Bates model for example), uncorrelated
models with jumps (Heston-Kou model, see [10]), correlated and uncorrelated
models without jumps (Heston, Hull and White, Stein and Stein), or in the case
σ constant (but non zero), exponential Lévy models. Detailed presentations of all
these models can be shown in [7], [9] and [13], and in the references therein.

Section 2 is devoted to present the model and other preliminaries. Section 3 is
a fast summary of Malliavin Calculus for Lévy processes. In section 4 we obtain
an Itô formula, necessary for our purposes. In section 5 we obtain the Hull and
White formula in our case.

2. Description of the Model and Other Preliminaries

We assume the following model for the log-price process, under a risk neutral
measure chosen by the market:

Xt = x+ rt− 1

2

∫ t

0

σ2
sds+

∫ t

0

σs(ρdWs +
√
1− ρ2dBs) + J0

t , t ∈ [0, T ], (2.1)

where x0 is the current log price, r > 0 is the instantaneous interest rate, W
and B are independent standard Brownian motions, ρ ∈ (−1, 1) and J0

t is a pure
jump Levy process with possibly infinitely many jumps with triplet (γ0, 0, ν), with
γ0 ∈ R and independent of W and B. The volatility process σ is assumed to be
adapted to the filtration generated by W and J0 and its trajectories are assumed
to be a.s. square integrable, càdlàg and strictly positive a.e.

In order to e−rteXt be a martingale (see for example [7], Proposition 3.18) we
must assume ∫

|y|≥1

eyν(dy) < ∞ (2.2)

and

γ0 =

∫
R
(ey − 1− y1|y|<1)ν(dy). (2.3)
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Due to the well known Lévy-Itô decomposition we can write

J0
t =

∫ t

0

∫
{|y|>1}

yN(ds, dy) + lim
ε↓0

∫ t

0

∫
{ε<|y|≤1}

yÑ(ds, dy)

where N denotes the Poisson measure associated to Lévy process J , Ñ(ds, dy) :=
N(ds, dy)− ν(dy)ds is the compensated Poisson measure and the limit is a.s. and
uniformly on compacts.

We will consider the following constants, provided it exist:

ci :=
∞∑
k=i

∫
R

yk

k!
ν(dy).

Observe that in particular we have

c0 :=

∫
R
eyν(dy),

c1 :=

∫
R
(ey − 1)ν(dy)

and

c2 :=

∫
R
(ey − 1− y)ν(dy).

Condition (2.2) jointly with the fact that ν is a Lévy measure implies that ν
has moments of order k ≥ 2 and so ci exist for any i ≥ 2 but not necessarily for
i = 1 or i = 0. Moreover, the fact that

∫
{|y|>1} |y|ν(dy) < ∞ allows us to define

c2 := γ0 −
∫
{|y|>1}

|y|ν(dy)

and to write in all cases,

J0
t − γ0t =

∫ t

0

∫
R
yÑ(ds, dy)− c2t,

of course interpreting the integral as an a.s. limit uniformly on compacts.
In the case

∫
R |y|ν(dy) = ∞ the process has infinite activity and infinite varia-

tion. In this case c0 is infinite and c1 can be not defined or infinite.
If ν has first order moment the model has infinite activity but finite variation

and c1 is finite. In this case we have c2 = c1 −
∫
R yν(dy) and we can rewrite∫ t

0

∫
R
yÑ(ds, dy)− c2t =

∫ t

0

∫
R
yN(ds, dy)− c1t

and simplify the model accordingly.
Finally, if ν is finite, the model has finite activity and in fact it is a Compound

Poisson process with ν = λQ where Q is a probability measure and λ := ν(R) > 0.
In this case,

c1 =

∫
R
(ey − 1)ν(dy) = λk = c0 − λ,
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where k := EQ(e
V )− 1 and∫ t

0

∫
R
yN(ds, dy) =

Nt∑
i=1

Vi,

where N is a λ−Poisson process and Vi are independent and identically distributed
copies of V , the random variable, with law Q, that produce the jumps.

So, in the following we will assume, without loosing generality, the model

Xt = x+ (r − c2)t−
1

2

∫ t

0

σ2
sds+

∫ t

0

σs(ρdWs +
√

1− ρ2dBs) + Jt (2.4)

with

Jt :=

∫ t

0

∫
R
yÑ(ds, dy).

Remark 2.1. Observe that this is a very general stochastic volatility model. First
of all, being σ adapted to FW ∨ FJ , we are allowing jumps both in price and
volatility. We can consider the following particular cases:

• If we restrict our model to the case σ adapted only to FW we have a
generalization of the Bates model in a double sense. On one hand we do
not assume any concrete dynamics for the stochastic volatility process and
on other hand we are not assuming finite activity nor finite variation on
ν.

• If we assume no jumps, that is ν = 0, we have a generalization of the
well-known Heston model or other classical stochastic volatility models in
the same sense as before.

• If in addition ρ = 0 we have a generalization of different non correlated
stochastic volatility models as Hull - White, Scott, Stein - Stein or Ball -
Roma.

• If we assume no correlation but presence of jumps we cover for example
Heston-Kou model, or any uncorrelated model with the addition of Lévy
jumps on the price process with any Lévy measure ν

• If σ is constant and we have jumps, we cover the so called exponential
Lévy models.

• Finally if we have no jumps and σ is constant we have the classical
Osborne-Samuelson-Black-Scholes model.

The following facts define the notation that is going to be used in the paper:

• We denote by FW , FB and FN the filtrations generated by the indepen-
dent processes W , B and J respectively. Note that the filtration generated
by J is the same as the filtration by J0 because the difference of this two
processes is deterministic. Moreover, we define F = FW ∨ FB ∨ FN .

• Recall that the pricing formula for a plain vanilla call with strike price K
under a risk neutral measure is given by

Vt = e−r(T−t)Et

[
(eXT −K)+

]
,

where for simplicity we use the notation Et(·) := E(·|Ft).

4
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• The process vt :=
√

Yt

T−t , with Yt :=
∫ T

t
σ2
sds, denotes the future average

volatility.
• In the classical Black-Scholes model with constant volatility σ, current log
stock price x, time to maturity T − t, strike price K, and interest rate r,
the function BS(t, x, σ) can be written as

BS(t, x, σ) = exΦ(d+)−Ke−r(T−t)Φ(d−), (2.5)

where Φ denotes the cumulative probability function of the standard nor-
mal distribution and

d± =
x− logK + r(T − t)

σ
√
T − t

± σ

2

√
T − t.

Recall also that the function BS(t, x, σ) satisfies

LBS(σ)BS(·, ·, σ) = 0

where

LBS(σ) = ∂t +
1

2
σ2∂2

xx + (r − 1

2
σ2)∂x − r

is the Black-Scholes operator, in the log variable, with volatility σ.
• Finally we will writeG(t, x, σ) := (∂2

xx−∂x)BS(t, x, σ). Recall from Lemma
2 in [3] that for 0 ≤ t ≤ s ≤ T , Gt := Ft ∨ FW

T ∨ FN
T and n ≥ 0 there

exists a constant C := C(n, ρ) such that

|E(∂n
xG(s,Xs, vs)|Gt)| ≤ C(

∫ T

t

σ2
sds)

−n+1
2 .

3. A Fast Review of Elements of Malliavin-Skorohod Calculus

3.1. Malliavin calculus for the Wiener process. Nowadays, Malliavin calcu-
lus for the Wiener process is a classical topic and a lot of references are available.
We refer the reader to [11] and [12]. Here we simply recall some basic definitions
and facts necessary for our purpose.

Let W be the canonical Wiener process, that is, defined on the space of ΩW :=
C0([0, T ]) of continuous functions on [0, T ], null at the origin. We consider the
family of smooth functionals of type F = f(Wt1 , . . . ,Wtn) for any n ≥ 0, t1, . . . tn ∈
[0, T ] and f ∈ C∞

b (Rn). Given a smooth functional F we define its Mallavin
derivative DWF as the element of L2(ΩW × [0, T ]) given by

DtF =

n∑
i=1

∂if(Wt1 , . . . ,Wtn)11[0,ti](t).

The operator DW is closed and densely defined in L2(ΩW ), and its domain
DomDW is the closure of the smooth functionals with respect the norm

||F ||DomDW :=
(
EW (|F |2) + EW

∫ T

0

|DW
t F |2dt

) 1
2 .

5



326 HOSSEIN JAFARI AND JOSEP VIVES

We define δW as the dual operator of DW . Given u ∈ L2(ΩW × [0, T ]), δW (u)
is the element of L2(ΩW ) characterized by

EW (FδW (u)) = EW

∫ T

0

utD
W
t Fdt

for any F ∈ DomDW .
It is well known that DW can be interpreted as a directional derivative on the

Wiener space and δW is an extension of the classical Itô integral.
The following results will be helpful:

• If F,G and F · G belong to DomDW we have DW (F · G) = FDWG +
GDWF.

• If F ∈ DomDW , u ∈ DomδW and F · u ∈ DomδW then

δW (F · u) = FδW (u)−
∫ T

0

utD
W
t Fdt.

We define the space L1,2
W := L2([0, T ];DomDW ), that is the space of processes

u ∈ L2([0, T ]× ΩW ) such that ut ∈ DomDW for almost all t and Du ∈ L2(ΩW ×
[0, T ]2). It can be proved that L1,2

W ⊆ DomδW and

EW (δW (u)2) ≤ ||u||2L1,2
W

:= EW (||u||2L2([0,T ])) + EW (||DWu||2L2([0,T ]2)).

Finally we will denote δWt (u) := δW (u11[0,t]).

3.2. Malliavin calculus for a pure jump Lévy process. The literature on
Malliavin calculus for Lévy processes is more recent and less extended. Here we
follow closely [4] and [14]. We refer the reader to these references for proofs of
next results. Note that our point of view is slightly different as the point of view
of [2] and so, formulas are slightly different.

Let us denote R0 := R− {0}. Consider the canonical version of the pure jump
Lévy process J. It is defined on the space ΩN given by the finite or infinite sequences
of pairs (ti, xi) ∈ (0, T ]×R0 such that for every ε > 0 there is only a finite number
of (ti, xi) with |xi| > ε. Of course, ti denotes a jump instant and xi a jump size.

Consider ωN ∈ ΩN . Given (t, x) ∈ [0, T ]×R0 we can introduce a jump of size x
at instant t to ωN and call the new element ωN

t,x := ((t, x), (t1, x1)(t2, xs), ...). For

a random variable F ∈ L2(ΩN ), we define Tt,xF (ωN ) = F (ωN
t,x). This is a well

defined operator. See [14] for the details. Finally we define

DN
t,xF =

Tt,xF (ωN )− F (ωN )

x
, x 6= 0,

and denote by DomDN its domain.
The operator DN is closed and densely defined in L2(ΩN ) and its domain

DomDN can be characterized by the fact that F ∈ DomDN if and only if DF ∈
L2(Ω× [0, T ]× R0;P ⊗ ds⊗ x2ν(dx)).

We define δN as the dual operator of DN . Given u ∈ L2(ΩW × [0, T ]× R, P ⊗
ds⊗ x2ν(dx)), δN (u) is the element of L2(ΩN ) characterized by

EN (FδN (u)) = EN

∫ T

0

ut,xD
N
t,xFx2ν(dx)dt

6
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for any F ∈ DomDN .
Let’s denote δNt (u) := δN (u11[0,t]). As we have seen, DN is an increment quotient

operator and it is also known that δNt is an extension of Itô integral in the sense
that

δNt (u11R0) =

∫ t

0

∫
R
u(s, x)xÑ(ds, dx)

for predictable integrands u.
In this case, the following formulas will be helpful:

• If F,G and F · G belong to DomDN we have DN (F · G) = FDNG +
GDNF + xDNFDNG.

• If F ∈ DomDN , u ∈ DomδN and u · Tt,xF ∈ DomδN then

δN (F · u) = FδN (u)−
∫ T

0

∫
R
ut,xD

N
t,xFx2ν(dx)dt− δN (x · u ·DNF ).

As in the Wiener case we define the space L1,2
N := L2([0, T ]×R, DomDN ), that is

the space of processes u ∈ L2([0, T ]×R×ΩN ) such that ut,x ∈ DomDN for almost

all (t, x) and Du ∈ L2(ΩN × ([0, T ]× R)2). It can be proved that L1,2
N ⊆ DomδN

and EN (δN (u)2) ≤ ||u||2L1,2
N

:= EN (||u||2L2([0,T ]×R)) + EN (||DNu||2L2(([0,T ]×R)2)).

Definition 3.1. We define the space L1,2
N,− as the subspace of L1,2

N of processes u
such that the left-limits

u(s−, y) := lim
r↑s,x↑y

u(r, x)

and

DN,−
s,y u(s−, y) := lim

r↑s,x↑y
DN

s,yu(r, x)

exists PN ⊗ ds⊗ x2ν(dx)−a.s. and belong to L2(ΩN × [0, T ]× R).

Observe that this definition includes processes not depending on y. So Ys− and
DN,−

s,y Ys can be considered. On the other hand we can define

T−
s,yu(s−, y) := u(s−, y) + yDN,−

s,y u(s−, y).

The next proposition will be a key point in the paper

Proposition 3.2. Assume u ∈ L1,2
N,− and

∫ T

0

∫
R0

|u(s−, y)||y|N(ds, dy) ∈ L2(ΩN ).

Then, for any t ∈ [0, T ],

T−
s,yu(s−, y) ∈ DomδNt

and∫ t

0

∫
R
u(s−, y)yÑ(ds, dy) = δNt (T−

s,yu(s−, y)11R0)+

∫ t

0

∫
R
DN,−

s,y u(s−, y)y2ν(dy)ds.

Proof. The proof is analogous to Proposition 3.4 in [2] �

Remark 3.3.

(1) The space L1,2
N,− could be changed by an analogous one with right limits

with respect to the space variable y.

7
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(2) If u is adapted to the filtration generated by N we have

T−
s,yu(s−, y) = u(s−, y),

and

DN,−
s,y u(s−, y) = 0.

Hence, in this case,∫ t

0

∫
R
u(s−, y)yÑ(ds, dy) = δNt (u(s−, y)11R0).

3.3. A canonical space for our model. We will consider our price model
defined on the product of the canonical spaces of processes W , B and J. We will
write (Ω,F ,P) such that

Ω = ΩW × ΩB × ΩN ,

F = FW ×FB ×FN

and

P = PW × PB × PN .

If we write the canonical processes as W̄ , B̄ and J̄ and the elements of Ω as

ω := (ωW , ωB , ωN ),

processes W, B and J in the model have to be interpreted as

W (ω) := W̄ (ωW ), B(ω) := B̄(ωB), J(ω) := J̄(ωN ).

4. An Itô Formula for Lévy Process

Consider processes X and Y defined in the first section. Recall that X is an
adapted process with jumps and Y is a continuous and non adapted process. For
a suitable function F we introduce the following notation that will be used in the
rest of the paper:

•

∆xF (s,Xs−, Ys) := F (s,Xs− + x, Ys)− F (s,Xs−, Ys)

•

∆2
xxF (s,Xs−, Ys) := F (s,Xs− + x, Ys)− F (s,Xs−, Ys)− x∂xF (s,Xs−, Ys).

We have the following Itô formula that will be useful for our purposes:

8
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Theorem 4.1. Assume σ2 ∈ L1,2
W

⋂
L1,2
N . Let F ∈ C1,2,2

b ([0, T ]×R× [0,∞)). Then
we have

F (t,Xt, Yt) = F (0, X0, Y0) +

∫ t

0

∂sF (s,Xs, Ys)ds

+

∫ t

0

∂xF (s,Xs, Ys)(r −
σ2
s

2
− c2)ds+ δW,B

t (∂xF (s,Xs−, Ys)σs)

−
∫ t

0

∂yF (s,Xs, Ys)σ
2
sds+ ρ

∫ t

0

∂2
xyF (s,Xs, Ys)Λsds

+
1

2

∫ t

0

∂2
xxF (s,Xs, Ys)σ

2
sds

+

∫ t

0

∫
R
∆2

xxF (s,Xs−, Ys)ν(dx)ds

+ δNt

(
T−∆xF (s,Xs−, Ys)

x
11R0(x)

)

+

∫ t

0

∫
R
D−∆xF (s,Xs−, Ys)

x
x2ν(dx)ds

where δW,B is the Skorohod integral with respect to the Wiener process

ρWs +
√
1− ρ2Bs

and Λs =
(∫ T

s
DW

s σ2
rdr
)
σs.

Proof. Fix first of all ε > 0, and consider the process

Xε
t := x+ (r − c2)t−

1

2

∫ t

0

σ2
sds+

∫ t

0

σs(ρdWs +
√

1− ρ2dBs)

+

∫ t

0

∫
|x|>ε

xÑ(ds, dx)

This process has a finite number of jumps and converges a.s. and in L2 to Xt.
Denote by T ε

i the jump instants, and write T ε
0 := 0. Then

F (T ε
i+1, X

ε
T ε
i+1

, YT ε
i+1

)− F (T ε
i , X

ε
T ε
i
, YT ε

i
) =

∫ T ε
i+1−

T ε
i

dF (s,Xε
s , Ys)

+F (T ε
i+1, X

ε
T ε
i+1

, YT ε
i+1

)− F (T ε
i+1, X

ε
T ε
i+1−, YT ε

i+1
).

On the stochastic interval [T ε
j , T

ε
j+1[ we can apply the anticipative Itô formula for

continuous process presented in [5] and proceed as in [3]. Then we have that

∂xF (s,Xs− , Ys)σs11[0,t](s) ∈ DomδW,B

9
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and

F (t,Xε
t , Yt) = F (0, X0, Y0) +

∫ t

0

∂sF (s,Xε
s , Ys)ds

+

∫ t

0

∂xF (s,Xε
s , Ys)(r −

σ2
s

2
− c2)ds+ δW,B

t (∂xF (s,Xε
s− , Ys)σs)

−
∫ t

0

∫
{|x|>ε}

∂xF (s,Xε
s , Ys)xν(dx)ds−

∫ t

0

∂yF (s,Xε
s , Ys)σ

2
sds

+ ρ

∫ t

0

∂2
xyF (s,Xε

s , Ys)Λsds+
1

2

∫ t

0

∂2
xxF (s,Xε

s , Ys)σ
2
sds

+
∑
i

[F (T ε
i , X

ε
T ε
i
, YT ε

i
)− F (T ε

i , X
ε
T ε
i −, YT ε

i
)].

We can write∑
i

[F (T ε
i , X

ε
T ε
i
, YT ε

i
)− F (T ε

i , X
ε
T ε
i −, YT ε

i
)] =

∫ t

0

∫
|x|>ε

∆xF (s,Xs−, Ys)N(ds, dx).

Then∑
i

[F (T ε
i , X

ε
T ε
i
, YT ε

i
)− F (T ε

i , X
ε
T ε
i −, YT ε

i
)]−

∫ t

0

∫
|x|>ε

∂xF (s,Xε
s , Ys)xν(dx)ds

=

∫ t

0

∫
|x|>ε

∆xF (s,Xε
s−, Ys)Ñ(ds, dx) +

∫ t

0

∫
|x|>ε

∆2
xxF (s,Xε

s−, Ys)ν(dx)ds.

Observe that this equality is the crucial step of the proof. Only introducing
∆2

xxF (s,Xε
s−, Ys) we become able to apply succesfully the dominated convergence

theorem, even if Y has no jumps.
Using Proposition 3.2 we have∫ t

0

∫
|x|>ε

∆xF (s,Xε
s−, Ys)Ñ(ds, dx)

= δNt (T−
s,x

∆xF (s,Xε
s−, Ys)

x
11{|x|>ε})

+

∫ t

0

∫
|x|>ε

DN,−
s,x

∆xF (s,Xε
s−, Ys)

x
x2ν(dx)ds. (4.1)

Using mean value theorem and the fact that first and second derivatives of F
are bounded we have

|T−
s,x

∆xF (s,Xε
s−, Ys)

x
| = |

∆xF (s,Xε
s−, T

−
s,xYs)

x
| ≤ C,

|DN,−
r,y

∆xF (s,Xε
s−, T

−
s,xYs)

x
| ≤ C|DN,−

r,y T−
s,xYs| = C

∫ T

s

|DN,−
r,y T−

s,xσ
2
u|du

and

|DN,−
s,x

∆xF (s,Xε
s−, Ys)

x
| ≤ C|DN,−

s,x Ys| = C

∫ T

s

|DN,−
s,x σ2

r |dr,

for a generic constant C.

10
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So, using the norm of L1,2
N , the hypotheses on σ2 and the dominated convergence

theorem the right hand side of (4.1) converges when ε goes to 0.
The other terms converge also by the dominated convergence theorem, and the

Itô formula follows. �

5. The Hull and White Formula

In this section we use the anticipating Itô formula proved in the previous section
to find a Hull-White type formula for our general Lévy model.

Theorem 5.1. Assume σ2 ∈ L1,2
W

⋂
L1,2
N . We have

Vt = Et(BS(t,Xt, vt))

+
ρ

2
Et(

∫ T

t

e−r(s−t)∂xG(s,Xs, vs)Λsds)

− Et(

∫ T

t

∫
R
e−r(s−t)∂xBS(s,Xs, vs)(e

y − 1− y)ν(dy)ds)

+ Et(

∫ T

t

∫
R
e−r(s−t)∆2

yyBS(s,Xs−, vs)ν(dy)ds)

+ Et(

∫ T

t

∫
R
e−r(s−t)DN,−

s,y ∆yBS(s,Xs−, vs)yν(dy)ds).

Proof. We know that VT = (eXT −K)+ = BS(T,XT , vT ). So, we can write

e−rtVt = Et

(
e−rTBS(T,XT , vT )

)
.

We want to apply the previous Itô formula to the function e−rsBS(s,Xs, vs).
This function is not bounded and has no bounded derivatives. So we will use an
approximated version. Let

vδt :=

√
Yt + δ

T − t

for a fixed small δ > 0 and

BSn(t, x, σ) := BS(t, x, σ)φ(
x

n
)

where φ ∈ C2
b [0,∞) such that φ(x) = 1 for all x < 1 and φ(x) = 0 for all x > 2

and φ(x) ∈ [0, 1] for x ∈ [1, 2]. Now we can apply the previous Itô formula to the
function

Fn,δ(s, x, y) := e−rsBSn

(
s, x,

√
y + δ

T − s

)
,

11
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that belongs to C1,2,2
b ([0, T ]× R× [0,∞)), on the interval [t, T ]. We have

e−rTBSn(T,XT , v
δ
T ) = e−rtBSn(t,Xt, v

δ
t )

+

∫ T

t

e−rsLBS(σs)BSn(s,Xs, v
δ
s)ds

− 1

2

∫ T

t

e−rs∂σBSn(s,Xs, v
δ
s)
(σ2

s − (vδs)
2)

vδs(T − s)
ds

− c2

∫ T

t

e−rs∂xBSn(s,Xs, v
δ
s)ds

+ δW,B(e−rs∂xBSn(s,Xs, v
δ
s)σs11[t,T ](s))

+
ρ

2

∫ T

t

e−rs∂2
σxBSn(s,Xs, v

δ
s)

1

vδs(T − s)
Λsds

+

∫ T

t

∫
R
e−rs∆2

yyBSn(s,Xs− , v
δ
s)ν(dy)ds

+ δN
(
e−rsT−

s,y

∆yBSn(s,Xs− , v
δ
s)

y
11[0,T ]

)

+

∫ T

t

∫
R
e−rsDN,−

s,y

∆yBSn(s,Xs− , v
δ
s)

y
y2ν(dy)ds.

Notice that

LBS(σs)BSn(s,Xs, v
δ
s) = (LBS(σs)BS(s,Xs, v

δ
s))φ(

Xs

n
) +An(s),

where

An(s)

=
σ2
s

n

[
∂xBS(s,Xs, v

δ
s)φ

′
(
Xs

n
) +

1

2
BS(s,Xs, v

δ
s)(

1

n
φ

′′
(
Xs

n
)− φ

′
(
Xs

n
))

]
+

r

n
BS(s,Xs, v

δ
s)φ

′
(
Xs

n
).

We can use the following relations

∂σBS(s, x, σ)
1

σ(T − s)
= (∂2

xx − ∂x)BS(s, x, σ),

and

LBS(σs) = LBS(v
δ
s) + (1/2)(σ2

s − (vδs)
2)(∂2

xx − ∂x),

12
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then

e−rTBSn(T,XT , v
δ
T )

= e−rtBSn(t,Xt, v
δ
t ) +

∫ T

t

e−rsAn(s)ds

− c2

∫ T

t

e−rs∂xBSn(s,Xs, v
δ
s)ds

+ δW,B(e−rs∂xBSn(s,Xs, v
δ
s)σs1[t,T ](s))

+
ρ

2

∫ T

t

e−rs

[
∂xG(s,Xs, v

δ
s)φn(

Xs

n
) +G(s,Xs, v

δ
s)

1

n
φ

′
(
Xs

n
)

]
Λsds

+

∫ T

t

∫
R
e−rs∆2

yyBSn(s,Xs− , v
δ
s)ν(dy)ds

+ δN
(
e−rsT−

s,y

∆yBSn(s,Xs− , v
δ
s)

y
11R0(y)11[t,T ](s)

)
+

∫ T

t

∫
R
e−rsDN,−

s,y

∆yBSn(s,Xs− , v
δ
s)

y
y2ν(dy)ds.

Now taking conditional expectations with respect to t, and using the fact that
Skorohod integrals have zero expectation, we obtain

Et(e
−rTBSn(T,XT , v

δ
T ))

= Et(e
−rtBSn(t,Xt, v

δ
t )) + Et(

∫ T

t

e−rsAn(s)ds)

− c2Et(

∫ T

t

e−rs∂xBSn(s,Xs, v
δ
s)ds)

+
ρ

2
Et(

∫ T

t

e−rs(∂xG(s,Xs, v
δ
s)φn(

Xs

n
) +G(s,Xs, v

δ
s)

1

n
φ

′
(
Xs

n
))Λsds)

+Et(

∫ T

t

∫
R
e−rs∆2

yyBSn(s,Xs− , v
δ
s)ν(dy)ds)

+Et(

∫ T

t

∫
R
e−rsDN,−

s,y

∆yBSn(s,Xs− , v
δ
s)

y
y2ν(dy)ds).

Letting first n ↑ ∞, then δ ↓ 0 and using properties of function G and the
dominated convergence theorem we obtain the result �

Remark 5.2. Observe that in fact we can write

Vt = Et(BS(t,Xt, vt)) +
ρ

2
Et(

∫ T

t

e−r(s−t)∂xG(s,Xs, vs)Λsds)

+ Et

{∫ T

t

∫
R
e−r(s−t) [∆yBS(s,Xs− , vs)− (ey − 1)∂xBS(s,Xs− , vs)] ν(dy)ds

}

+ Et(

∫ T

t

∫
R
e−r(s−t)DN,−

s,y ∆yBS(s,Xs− , vs)yν(dy)ds)

13
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and all the terms are well defined.
Observe that we cannot split the third term in two terms because in the general

case

Et(

∫ T

t

∫
R
e−r(s−t)∆yBS(s,Xs− , vs)ν(dy)ds)

and

Et(

∫ T

t

∫
R
e−r(s−t)(ey − 1)∂xBS(s,Xs− , vs)ν(dy)ds)

are not convergent.
Moreover

∆xBS(s,Xs− , vs)− (ey − 1)∂xBS(s,Xs− , vs) =
∞∑
j=2

yj

j!
(∂j

x − ∂x)BS(s,Xs− , vs).

Remark 5.3. Observe that if in the previous theorem we assume
∫
R |y|ν(dy) < ∞,

that is, finite variation, we obtain

Vt = Et(BS(t,Xt, vt))

+
ρ

2
Et(

∫ T

t

e−r(s−t)∂xG(s,Xs, vs)Λsds)

− Et(

∫ T

t

∫
R
e−r(s−t)(ey − 1)∂xBS(s,Xs, vs)ν(dy)ds)

+ Et(

∫ T

t

∫
R
e−r(s−t)T−

s,y∆yBS(s,Xs− , vs)ν(dy)ds),

that is exactly the formula obtained in [2] for the finite activity case.
The key fact is that the third term on the right hand side of the formula of

the previous remark only can be splitted in the finite variation case, but not in
general. After splitting this third term in two terms, the first part is joined with
the last term via the operator T− and the second one becomes the third term of
the new finite variation version of the formula.

Observe that in particular we are showing that the formula obtained in [2] in
the finite activity case is also valid in the infinite activity and finite variation case.

Remark 5.4. If the volatility process is independent from price jumps, we have
DN,−

s,y u(s−, y) = 0 and we obtain

Vt = Et(BS(t,Xt, vt))

+
ρ

2
Et(

∫ T

t

e−r(s−t)∂xG(s,Xs, vs)Λsds)

+ Et

{∫ T

t

∫
R
e−r(s−t) [∆yBS(s,Xs− , vs)− (ey − 1)∂xBS(s,Xs− , vs)] ν(dy)ds

}
that generalizes the formula in [3]. As in the previous remark, only in the finite
variation case we can recuperate exactly the formula in [3].

This formula covers Bates model and any correlated model with any type of
Lévy jumps in the price process.

14
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Remark 5.5. If moreover, the volatility process is independent from the price
process, that is, ρ = 0, we obtain

Vt = Et(BS(t,Xt, vt))

+ Et

{∫ T

t

∫
R
e−r(s−t)[∆yBS(s,Xs− , vs)− (ey − 1)∂xBS(s,Xs− , vs)]ν(dy)ds

}
.

This covers all the so called uncorrelated models plus jumps (Heston-Kou model
for example) and in the particular case of constant volatility, the so called expo-
nential Lévy models. In the jump part we can consider infinite activity jumps as
CGMY model (for Y ≥ 0) or Meixner model for example.

Remark 5.6. All these formulas for the different mentioned particular cases, that
is for different concrete models for the stochastic volatility process and for different
selections of the Lévy measure, give detailed pricing formulas that can be useful
in practice. The Heston case is analyzed with detail in [1]. For the finite activity
jump case, some detailed formulas are obtained in [2]. The analysis of some infinite
activity particular cases and the development of other consequences of the formulas
presented here, for example for the short time behaviour of the implied volatility,
are in progress and will be part of a forthcoming paper.
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3. Alòs, E., León, J. A. and Vives, J.: On the short-time behavior of the implied volatility
for jump diffusion models with stochastic volatility, Finance and Stochastics 11 (4) (2007)
571–589.
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13. Schoutens, W.: Lévy Processes in Finance, Wiley, 2003.
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