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Abstract 

In this paper, we study complex valued metric spaces and established some 

fixed point results for a pair of compatible mappings satisfying a rational 
inequality in complex valued metric spaces. We generalized the result given 

by Azam et al. [1], Rouzkard and Imdad [17]. 
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1. INTRODUCTION AND PRELIMINARIES. 

The Banach contraction principle [3] is considered to be the pioneering result of 

the fixed point theory, since its simplicity and usefulness, it became a very popular 

tool in solving many problems in mathematical analysis. Later, a number of articles 

in this field have been dedicated to the improvement and generalization of the 

Banach’s contraction mapping principle. Inspired from the impact of this natural 

idea to functional analysis, several researchers have been extended and generalized 

this principle for different kinds of contractions in various spaces such as 2-metric 

space, rectangular metric spaces, semi metric spaces, pseudo metric spaces, 

probabilistic metric spaces, fuzzy metric spaces, Quasi metric spaces, Quasi semi 

metric spaces, D-metric spaces, and cone metric spaces, one can see [1–12]. 

Recently, Azam et al. [1] first introduced the complex valued metric spaces 

which is more general than well-known metric spaces and also gave common fixed 

point theorems for mappings satisfying generalized contraction condition. In this 

paper, we study complex valued metric spaces and established some fixed point 
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results for a pair of compatible mappings satisfying a rational inequality in 

complex valued metric spaces. 

Let ℂ be the set of complex numbers and z1, z2 ℂ. Define a partial order “≾” 

on ℂ as follows: 

z1 ≾ z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).Consequently one can 

infer that z1 ≾ z2 if one of the following conditions is satisfied 

(i) Re(z1) = Re(z2) and Im(z1) = Im(z2), 

(ii) Re(z1) < Re(z2) and Im(z1) = Im(z2), 

(iii) Re(z1) = Re(z2) and Im(z1) < Im(z2), 

(iv) Re(z1) < Re(z2) and Im(z1) < Im(z2). 

We will write z1 ≤ z2 if z1 ≠ z2 and one of (ii), (iii), and (iv) is satisfied; also 

we will write z1 < z2 if only (iv) is satisfied. Note that 

0≼ 𝑧1 ⋨  𝑧2 ⟹ | 𝑧1| <  | 𝑧1| and 𝑧1 ≼  𝑧2, 𝑧2 ≺ 𝑧3 ⟹  𝑧1 ≺ 𝑧3 

Definition 1.1: Let X be a nonempty set whereas ℂ be the set of complex numbers. 

Suppose that the mapping d : X × X → ℂ, satisfies the following conditions 

(i) 0 ≼ d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y; 

(ii) d(x, y) = d(y, x) for all x, y ∈ X; 

(iii) d(x, y) ≼ d(x, z) + d(z, y), for all x, y, z ∈ X. 

Then d is called a complex valued metric on X, and (X, d) is called a complex 

valued metric space. 

Definition 1.2: A point x ∈ X is called interior point of a set A ⊆ X whenever there 

exists 

 0 ≺ r ∈ ℂ such that B(x, r) = {y  X : d(x, y) ≺ r}  A 

Definition 1.3: A point x ∈X is called a limit point of A whenever for every 

 0 ≺ r  ℂ, B(x, r) ∩ (A \ X)   i.e.{B(x, r) – x} ∩ A   

Definition 1.4: Asubset A ⊆ X is called open whenever each element of A is an 

interior point of A. 

Definition 1.5: A subset B ⊆ X is called closed whenever each limit point of B 

belongs to B. The family F = {B(x, r) : x  X, 0 ≺ r}is a sub-basis for a Hausdorff 

topology on X. 
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Definition 1.6: Let xn be a sequence in X and x ∈ X. If for every c  ℂ, with 0 < c 

there is n0  ℕsuch that for all n > n0, d(xn, x) ≺ c, then {𝑥𝑛} is said to be 

convergent, {𝑥𝑛} converges to x and x is the limit point of {𝑥𝑛}. We denote this by 

lim
𝑛

𝑥𝑛 = x, or xn → x, as n → ∞. 

Definition 1.7: If for every c ∈ ℂ with 0 ≺ c there is n0  ℕ such that for all n > n0, 

d(xn, xn + m) ≺ c, then {𝑥𝑛} is called a Cauchy sequence in (X, d). 

Definition 1.8: If every Cauchy sequence is convergent in (X, d), then (X, d) is 

called a complete complex valued metric space. 

Lemma 1.1: Let (X, d) be a complex valued metric space and let {𝑥𝑛} be a 

sequence in X. Then  converges to x if and only if |d(xn, x)| → 0 as 𝑛 → ∞. 

Lemma 1.2: Let (X, d) be a complex valued metric space and let {𝑥𝑛} be a 

sequence in X. Then {𝑥𝑛} is a Cauchy sequence if and only if | d(xn, xn + m)| → 0 as 

𝑛 → ∞. 

Here, we give some notions in fixed point theory. 

Definition 1.9: Let S and T be self-mappings of a nonempty set X. 

(i) A point x ∈ X is said to be a fixed point of T if Tx = x. 

(ii) A point x ∈ X is said to be a coincidence point of S and T if Sx = Tx and we 

shall called w = Sx = Tx, a point of coincidence of S and T. 

(iii) A point x ∈ X is said to be a common fixed point of S and T if x = Sx = Tx. 

In 1976, Jungck [12] introduced concept of commuting mappings as follows: 

Definition 1.10[12]: Let X be a non-empty set. The mappings S and T are 

commuting if TSx = STx for all x ∈ X. 

Afterward, Sessa [18] introduced concept of weakly commuting mappings 

which are more general than commuting mappings as follows: 

Definition 1.11[18]: Let S and T be mappings from a metric space (X, d) into 

itself. The mappings S and T are said to be weakly commuting if 

 d(STx, TSx) ≤ d(Sx, Tx) for all x ∈ X. 

In 1986, Jungck [13] introduced the more generalized commuting mappings 

in metric spaces, called compatible mappings, which also are more general than 

the concept of weakly commuting mappings as follows: 

Definition 1.12 [13]: Let S and T be mappings from a metric space (X, d) into 

itself. The mapping S and T are said to be compatible if 
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lim
𝑛

𝑑(𝑆𝑇𝑥𝑛, 𝑇𝑆𝑥𝑛) = 0, whenever {𝑥𝑛} is a sequence in X such that 

lim
𝑛

𝑆𝑥𝑛 = lim
𝑛

𝑇𝑥𝑛 = 𝑧 for some z ∈ X. 

Remark 1.1: In general, commuting mappings are weakly commuting and weakly 

commuting mappings are compatible, but the converses are not necessarily true . 

2. MAIN RESULT. 

Theorem 2.1: Let (X, d) be a complete complex valued metric space and let the 

mappings 

S, T : X → X are self-mappings satisfying the condition 

 d(Sx, Ty) ≤  
𝑑(𝑥,𝑆𝑥)𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑦)𝑑(𝑦,𝑆𝑥)

𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑆𝑥)
 +  d(x, y) (2.1) 

for all x, y ∈ X, where𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑆𝑥) ≠ 0, and ,  are nonnegative reals 

with  +  < 1. Also if one of S or T is continuous and the pair (S, T) is compatible. 

Then S and T have a unique common fixed point. 

Proof: Let x0 be an arbitrary point in X and we define 

 x2n + 1 = Sx2n, x2n + 2 = Tx2n + 1, for n = 0, 1, 2, 3 (2.2) 

Then using equations (2.1) and (2.2), 

d(x2n+1, x2n+2) = d(Sx2n, Tx2n+1) 

 ≤  
𝑑(𝑥2𝑛,𝑆𝑥2𝑛)𝑑(𝑥2𝑛,𝑇𝑥2𝑛+1)+𝑑(𝑥2𝑛+1,𝑇𝑥2𝑛+1)𝑑(𝑥2𝑛+1,𝑆𝑥2𝑛)

𝑑(𝑥2𝑛,𝑇𝑥2𝑛+1)+𝑑(𝑥2𝑛+1,𝑆𝑥2𝑛)
 

 +  d(𝑥2𝑛,𝑥2𝑛+1) 

 ≤  
𝑑(𝑥2𝑛,𝑥2𝑛+1)𝑑(𝑥2𝑛,𝑥2𝑛+2)+𝑑(𝑥2𝑛+1,𝑥2𝑛+2)𝑑(𝑥2𝑛+1,𝑥2𝑛+1)

𝑑(𝑥2𝑛,𝑥2𝑛+2)+𝑑(𝑥2𝑛+1,𝑥2𝑛+1)
 

 +  d(𝑥2𝑛,𝑥2𝑛+1) 

i.e.,  d(x2n+1, x2n+2) ≤ ( + ) 𝑑(𝑥2𝑛, 𝑥2𝑛+1) 

Similarly, 

d(x2n+2, x2n+3) = d(Sx2n+1, Tx2n+2) 

 ≤ 
𝑑(𝑥2𝑛+1,𝑆𝑥2𝑛+1)𝑑(𝑥2𝑛+1,𝑇𝑥2𝑛+2)+𝑑(𝑥2𝑛+2,𝑇𝑥2𝑛+2)𝑑(𝑥2𝑛+2,𝑆𝑥2𝑛+1)

𝑑(𝑥2𝑛+1,𝑇𝑥2𝑛+2)+𝑑(𝑥2𝑛+2,𝑆𝑥2𝑛+1)
 

 +  d(𝑥2𝑛+1,𝑥2𝑛+2) 

 ≤ 
𝑑(𝑥2𝑛+1,𝑥2𝑛+2)𝑑(𝑥2𝑛+1,𝑥2𝑛+3)+𝑑(𝑥2𝑛+2,𝑥2𝑛+3)𝑑(𝑥2𝑛+2,𝑥2𝑛+2)

𝑑(𝑥2𝑛+1,𝑥2𝑛+3)+𝑑(𝑥2𝑛+2,𝑥2𝑛+2)
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 +  d(𝑥2𝑛+1,𝑥2𝑛+2) 

i.e.,  d(x2n+2, x2n+3) ≤ ( + ) 𝑑(𝑥2𝑛+1, 𝑥2𝑛+2) 

Now with h =  + , we have 

 d(xn+1, xn+2) ≤ h 𝑑(𝑥𝑛, 𝑥𝑛+1) ≤ h2 𝑑(𝑥𝑛−1, 𝑥𝑛)≤ h3 𝑑(𝑥𝑛−2, 𝑥𝑛−1) …, 

   d(xn+1, xn+2) ≤ hn+1 𝑑(𝑥0, 𝑥1). 

So for any m > n, we have 

 d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ….. + d(xm-1, xm) 

   ≤ [hn + hn+1 + ……… + hm-1] d(x0, x1) 

              d(xn, xm) ≤ [
ℎ𝑛

1−ℎ
] d(x0, x1) 

And so |d(xm, xn)| ≤ [
ℎ𝑛

1−ℎ
] |d(x0, x1)|→ 0, as m, n  . 

This implies that {xn} is a Cauchy sequence. Since X is complete, there exists 

u ∈ X such that xn → u. Consequently, the sequences 𝑆𝑥2𝑛 𝑎𝑛𝑑 𝑇𝑥2𝑛+1 and its 

consequences also converges to u. 

Let S is continuous. Since S and T are compatible maps, 

then, lim
𝑛→∞

𝑑(𝑆𝑇𝑥2𝑛 , 𝑇𝑆𝑥2𝑛) = 0. 

Also since S is continuous, 𝑆𝑇𝑥2𝑛 → 𝑆𝑢. 

Consider 

 𝑑(𝑆𝑇𝑥2𝑛, 𝑇𝑥2𝑛+1) ≤ 
𝑑(𝑇𝑥2𝑛,𝑆𝑇𝑥2𝑛)𝑑(𝑇𝑥2𝑛,𝑇𝑥2𝑛+1)+𝑑(𝑥2𝑛+1,𝑇𝑥2𝑛+1)𝑑(𝑥2𝑛+1,𝑆𝑇𝑥2𝑛)

𝑑(𝑇𝑥2𝑛,𝑇𝑥2𝑛+1)+𝑑(𝑥2𝑛+1,𝑆𝑇𝑥2𝑛)
 

 +  d(𝑇𝑥2𝑛,𝑥2𝑛+1) 

Taking limit as 𝑛 → ∞, both sides we get 

 𝑑(𝑆𝑢, 𝑢) ≤  
𝑑(𝑢,𝑆𝑢)𝑑(𝑢,𝑢)+𝑑(𝑢,𝑢)𝑑(𝑢,𝑆𝑢)

𝑑(𝑢,𝑢)+𝑑(𝑢,𝑆𝑢)
 +  d(𝑢, 𝑢) 

Thus it follows that u = Su. 

Suppose if not, then d(u, Su) = z > 0, and we would then have 

z ≤ d(u, x2n+2) + d(x2n+2, Su) 

 ≤ d(u, x2n+2) + d(Su, Tx2n+1) 

 ≤ d(u, x2n+2) + 
𝑑(𝑢,𝑆𝑢)𝑑(𝑢,𝑇𝑥2𝑛+1)+𝑑(𝑥2𝑛+1,𝑇𝑥2𝑛+1)𝑑(𝑥2𝑛+1,𝑆𝑢)

𝑑(𝑢,𝑇𝑥2𝑛+1)+𝑑(𝑥2𝑛+1,𝑆𝑢)
 +  d(u,𝑥2𝑛+1) 
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Taking modulus and limit as 𝑛 → ∞ both sides, we get 

 |z| ≤ |d(u, x2n+2)| + 
|𝑑(𝑢,𝑆𝑢)||𝑑(𝑢,𝑥2𝑛+2)|+|𝑑(𝑥2𝑛+1,𝑥2𝑛+2)| |𝑑(𝑥2𝑛+1,𝑆𝑢)|

|𝑑(𝑢,𝑥2𝑛+2)|+|𝑑(𝑥2𝑛+1,𝑆𝑢)|
 

 +  |d(u,𝑥2𝑛+1)| 

Taking limit as 𝑛 → ∞ both sides, we get 

That is |z| ≤ 0, a contradiction of d(u, Su) = z > 0, and hence u = Su. 

One can easily prove that u = Tu, when the continuity of T is assumed. 

We now show that S and T have a unique common fixed point. 

For this, assume that u∗ in X is another common fixed point of S and T. 

Then by (2.1), we have 

 d(u, u∗) = d(Su, Tu∗) ≤ 
𝑑(𝑢,𝑆𝑢)𝑑(𝑢,𝑇𝑢∗)+𝑑(𝑢∗,𝑇𝑢∗)𝑑(𝑢∗,𝑆𝑢)

𝑑(𝑢,𝑇𝑢∗)+𝑑(𝑢∗,𝑆𝑢)
 +  d(u,𝑢∗) 

 ≤  d(u, 𝑢∗) 

 d(u, u∗) ≤  d(u, 𝑢∗). 

    1, which is a contradiction 

This implies that u∗ = u. This completes the proof of the theorem. 

Theorem 2.2: Let (X, d) be a complete complex valued metric space and let the 

mappings S, T : X → X are self-mappings satisfying the condition 

 d(Sx, Ty) ≤  
𝑑(𝑥,𝑆𝑥)𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑦)𝑑(𝑦,𝑆𝑥)

𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑆𝑥)
 +  d(x, y) 

for all x, y ∈ X, where 𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑆𝑥) ≠ 0,and ,  are nonnegative reals 

with  +  < 1. Then S and T have a unique common fixed point. 

Proof: The proof of the theorem 2.2 follows immediately from Theorem 2.1. 

Theorem 2.3: Let (X, d) be a complete complex valued metric space and let the 

mappings S, T : X → X are self-mappings satisfying the condition 

 d(Sx, Ty) ≤  
𝑑(𝑥,𝑆𝑥)𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑦)𝑑(𝑦,𝑆𝑥)

𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑆𝑥)
 (2.3) 

for all x, y ∈ X, where 𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑆𝑥) ≠ 0, and  is nonnegative real with 

 < 1. Also if one of S or T is continuous and the pair (S, T) is compatible. Then S 

and T have a unique common fixed point. 

Proof: The proof of the theorem 2.3 follows immediately by putting μ = 0 in 

condition (2.1) of Theorem 2.1. 

Corollary 2.1: Let (X, d) be a complete complex valued metric space and let the 

mapping 
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T : X → X satisfying the condition 

 d(Tx, Ty) ≤  
𝑑(𝑥,𝑇𝑥)𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑦)𝑑(𝑦,𝑇𝑥)

𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)
 +  d(x, y) (2.4) 

for all x, y ∈ X, where 𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥) ≠ 0, and ,  are nonnegative real 

numbers with  +  < 1. Then T has a unique fixed point. 

Proof: The proof of the corollary 2.1 follows immediately by putting S = T in 

Theorem 2.2. 

Corollary 2.2: Let (X, d) be a complete complex valued metric space and 

T : X → X satisfying the condition 

 d(Tnx, Tn y) ≤  
𝑑(𝑥,𝑇𝑛𝑥)𝑑(𝑥,𝑇𝑛𝑦)+𝑑(𝑦,𝑇𝑛𝑦)𝑑(𝑦,𝑇𝑛𝑥)

𝑑(𝑥,𝑇𝑛𝑦)+𝑑(𝑦,𝑇𝑛𝑥)
 +  d(x, y) (2.5) 

for all x, y ∈ X, where 𝑑(𝑥, 𝑇𝑛𝑦) + 𝑑(𝑦, 𝑇𝑛𝑥) ≠ 0, and ,  are nonnegative real 

numbers with  +  < 1. Then T has a unique fixed point. 

Proof: By Corollary 2.1, we obtain v ∈ X such that T nv = v. The result then follows 

from the fact that 

 d(Tv, v) = d(TTnv, Tnv) 

 = d(TnTv, Tnv) 

 ≤ 
𝑑(𝑇𝑣,𝑇𝑛𝑇𝑣)𝑑(𝑇𝑣,𝑇𝑛𝑣)+𝑑(𝑣,𝑇𝑛𝑣)𝑑(𝑣,𝑇𝑛𝑇𝑣)

𝑑(𝑇𝑣,𝑇𝑛𝑣)+𝑑(𝑣,𝑇𝑛𝑇𝑣)
 +  d(Tv, v) 

 ≤ 
𝑑(𝑇𝑣,𝑇𝑛𝑇𝑣)𝑑(𝑇𝑣,𝑣)+𝑑(𝑣,𝑣)𝑑(𝑣,𝑇𝑛𝑇𝑣)

𝑑(𝑇𝑣,𝑣)+𝑑(𝑣,𝑇𝑛𝑇𝑣)
 +  d(Tv, v) 

 ≤  d(Tv, v) 

 |d(Tv, v)| ≤  |d(Tv, v)| 

   1, which is a contradiction 

 d(Tv, v)  0  Tv = v. 

This implies that T has a fixed point. 

Uniqueness of fixed point follows directly from the inequality (2.5). Our main 

results in Theorems 2.1, 2.2, 23 and Corollaries 2.1, 2.2 which are generalization 

and extension of multitude of common fixed point theorems in the recent literature 

of complex valued metric spaces (see Azam et. al. [1], Rouzkard and Imdad [17]). 
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