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ABSTRACT

Data gathering is one of the most important functions provided by WSNs. As we know the WSNs networks are used
to check the surrounding condition and monitor those without any direct human interface and without any failure of
this network. Normally, all other data gathering algorithm of WSNs network will lead to loss of high energy as they
have to follow the total path, and this directly affect the communication cost of the networks. In this paper; we are
going to use random walk algorithm for data gathering in WSNs. Random walk algorithm nearly reduced all energy
and cost constrain in WSN networks efficiently and give a non-uniform measurement. We describe compressive
sensing mathematically and form random walk path detection. We obtain the random matrix which we can use for
recovery of the signal in the compressive sensing and also this matrix will give connection of nodes by forming
expander graph form the matrix and for reconstructing the original signal with the use of compressive sensing
technique. In this paper, we discuss about sparctiy and its effect on path selection for networks and also find the
probability for random walk theory. We also show simulation for our scheme. Our simulation results show that
probability for our algorithm will be high as compare to normally used an algorithm with less path of connection
between nodes. This leads to the reduction in communication cost for the network. Also result shows low recovery
error with compressive sensing.
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1. INTRODUCTION
1The use of wireless sensor networks (WSNs) has been increase because of its advantage and application
benefits like any type of surveillance. The main future application of Wireless sensor network will be
Internet of things (IoT’S) based application which will make life much easier.

On the other side, compressive sensing is one of the most used techniques in the field of signal and
image processing. As per the conventional approach i.e., sampling signals: the sampling rate must be at
least the twice the maximum frequency present in the signal so-called Nyquist rate.

R>=2F

For some signals such as a signal that are not actually band limited, the Shannon theorem is not applicable
as they won’t work at that sampling rate. In this conditions compressive sensing work efficiently. As in
sampling theorem, where we have to consider the entire sampling signal for recovery, this will be not
necessary in the case of compressive sensing. Only a few sample signals do this work. Another disadvantage
of sampling theorem is that few missing signals lead to the wrong recovery. This disadvantage will overcome
in the case of compressive sensing technique which will work effectively with only few, or little-sampled
signal which are may be less than sampling frequency also. So in the case of low or very weak range of
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signals this will be advantageous.

In 2L. Lovasz et al. investigated the problems of graph theory and random walk. In his survey, explained
the basic concept and important concept about the probability of random walk and random walk based on
dimension of the networks and establishing the probability from the graph. Similarly, in 3Peter. G. Doyle et
al. Also gives information about basic concepts of random walk. Author has given network solution for the
model of graph G(n,p) in which an edge exist between two nodes with probability p in the network with
node n and p depend on the dimension of the network. Here we will investigate the application of CS with
random walk approach for collecting the data in Wireless Sensor Networks. 1Compressive sensing will
applicable to the non-uniform selection of measurement and data, different than uniform sampling in the
traditional compressive sensing (CS) theory and hence for this CS will be appropriate and this will again
show that this approach can be used to recover sparse signals in WSN scenario.

2. BASIC CONCEPTS

2.1. Compressive sensing basics
4According to the compressive sensing technique we can reconstruct the sparse or compressible input
signal with high probability from far smaller measurement, than the length of the input signal used to
produce output.

Let’s consider an n-dimensional signal vector x (x
1
 ... . . xn)T) This vector x is perfectly k-sparse if it has

at most k(k<<n) nonzero entries. Further, suppose that x can be represented as 1
n
iX i i�� � � �  in some

domain ��= (�1.......�n). Generally, we say that the vector x is also k-sparse (in domain �) if there are at
most k nonzero entries in the vector � = (�1 ... �n)T. The theory of CS states that the k-sparse signal x can
be recovered from m (m< n) linear combinations of measurements with high probability, which can be
obtained through an m x n measurement matrix A, i.e., y = Ax. Each element of y is called a projection.
Cand»s et al. have shown that recovering the signal x from y can be solved with an l1-minimization problem:

^min || || 1 . ,x N x l s t y Ax�� � (1)

Or

^min || || 1 . ,x N l s t y A x�� � � �� � �� (2)

The above l1-minimaization problem can be solved using linear programming techniques. The recovery
of the input signal will be possible with this technique [4].

2.2. Connection of nodes

As simply for random walk algorithm, the path detection is important to find an actual connection of all
connected nodes in the networks. These we can do with the use of pictorial graph called of expander graph
.this graph gives us random matrix and vice versa. For example, we can take the random matrix which we
will get from our simulation for the path detection in following section and we can say this matrix as matrix
A. Shown follows.

0 1 0 1 1 0

1 0 1 1 0 0

1 1 1 0 0 1

1 0 0 0 1 1

A

� �
� �
� ��
� �
� �� �
� �
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Based on this measurement matrix or sensing matrix we can plot the expander graph. As shown in
following figure [1]

Figure 1: Illustration of expander graph Corresponding to the measurement matrix ‘A’5.

From matrix, we can observe, how we got it from the graph and we can do this process vice versa.
Another way is to find a path by simulation which we are going to do. This matrix will give us important
factor about the random walk that is the probability of random walk algorithm.

2.3. Theory on Random Walk
3From random walk and electric networks, Let’s G = (V, E) be a connected graph with n nodes and m edges.
If we used random walk for connecting different nodes corresponding to its edges, we would find the
following probability

Pt(i) = Prob(vt = i):

So

pij = 1/d(i) ; if ij � E,
      = 0 ; otherwise.

The random walk and electric networks will give us detail information about random walk in one, two
dimension in finite networks

3. PROBLEM STATEMENT

For formation of the network we consider ‘m’ sensor nodes for initializing ‘m’ independent Random Walk.
As in simulation, we will do the same process we will going to follow as here describe. We simply follow
the linear addition of information node to its neighbour node and so on, As explain bellow:

Step (1): at the beginning, ‘i’ nodes let’s say ni which is uniform and randomly selected. This will be our
sink node.
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Step (2): after selecting our first node we will use the standard random walk algorithm to connect next
node. After detecting the next node, it will connect to that node and at same time it will add the information

nj(1)= ni(0) + nj(0)

At the same time, the node vi decrements the length t.

Step (3): Repeat the above steps up to t =0 i.e. length become 0 and at the end the final constructed
signal equation will be:

np(t’) = nk(t’-1) + np(t’-1).

For y last node and x previous node in the random walk. This way we can form the overall network, that
final signal will collect by sink and after getting all information matrix, we will use compressive sensing
for signal compression purpose.

4. NUMERICAL SIMULATION
6,7,8In this section, we will show the probability of random walk. For basic concept we will take help of
Lemma 1:

Lemma 1. Let Bt(v) be the event that the random walk W starting at u visits v by time t(t >=T). Then the

probability Pr (Bt(v)) will be between 
(1 )

2( 2)

t

cn

��
��  and  

(1 )

cn

��
 where e 

1

(1 )k
� �

��  and c is a constant

The above lemma shows that the upper bound and the lower bound of the probability that a random
walk will visit their nodes.

This lemma will give us an idea about the probability. We will find the overall performance for our
proposed technique through simulation. We use MATLAB tools for performing simulation we consider ‘n’
nodes which are connected randomly. We took 100 nodes with in the square area and perform random walk
with the sparse signal.

Figure 2: Probability of the random walk for 100 nodes
covers 1 unit square area

Figure 3: Exact probability with both Gaussian and
binomial distributions
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In simulation, we specify the length of ‘T’ which will be time step and ‘N’ total number of nodes used
along with this value we specify the length of space step and length of time step for plotting the graph by
following the random walk flowchart approach. We will able to find the exact probability of random walk.
Both the Gaussian and binomial function used to find the exact probability of random walk.

(A) Random walk simulation in two dimension area

Here we will simulate the path finding in random walk algorithm. The position coordinates in 2- dimensions
will specify while simulation and this dimension will be considered as the dimension of the starting node.
As per the algorithm function we stated in section Iv we must add the node information to the next node to
which it is connecting and goes increasing with the connection to the nodes in WSNs networks. We assume
our node start at the co-ordinates of (1,1). The path will have four directions to go with coordinates (1,1)as
+x-direction, (1,0) as –x-direction, (0,1) as +y- direction and last (0,0) as –y-direction . This can be changed
as per the understanding of the application and its use. We are specifying the separate matrix to store the
information of the node as it goes finding the respective nodes. We are taking N=100 nodes and specifying
the sparcity k=20. For selecting the neighbouring node, we will check the Euclidian distance between those
nodes. For our simulation we take this distance less than 0.5.

Figure 4: Random walks the path with 100 nodes and having 0.5 distances to connect next nodes.
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(B) Number of Random Walks depend on sparcity (K)

In this section, we have proved that if we take O(K log(n/k)) )independent random walks with length in
t=O(n/k) a random geometric network, we can recover k-sparse signals from m random projections generated
from random walks. To recover k-sparse signals, the approached which employ dense Gaussian or Bernoulli
random matrices need to take m =O(k log(n/k)) random projections with each other from a linear combination
of O(n) measurements. In addition, the scheme using uniform sparse random matrices such as expander
based compressive sensing need to take m=O(k log(n/k))) random projections with each uniformly and
randomly selecting O(n/k) nodes. However, such a scheme needs a precise routing to generate random
projections. Therefore, our scheme has the significant advantage over the conventional approaches regarding
communication cost. On the other hand, it should be noted that the length of each random walk t should be
larger than the mixing time T. This is because a vertex can be visited by a random walk with a certain
probability when the path reaches its stationary distribution. It has been shown that the mixing time of a
random geometric graph is O(n/logn). Hence, it implies that the length of each random walk t should be
larger than O(n/log n) even though k >=O(log n). It is also interesting to

We can also plot the theoretical curve for a number of the random walk as m=2klog(n/k). Form graph
we can say that the both values for a number of the random walks are same within the range of difference.
This shows that the number of steps that random walk need to take for successful recovery is much less
than the actual node n. Here we take ‘n’ values i.e. the number of random walk for n= 500, 1000 and 2000
respectively for simulation.

(C) Performance of compressive sensing
9,10As fig 6 shown, the path for random walk algorithm, it will give us the random information matrix ‘A’
which is our randomly generated matrix for the compressive sensing and we can recover the original signal
with the use of this matrix and original signal matrix. We assume that the signal matrix has 256 elements,

Figure 6: Compressive sensing for input signal with mixing
with random k value and its recovery with l1 minimization

theorem
Figure 5: Sparcity K versus numbers of random walks in

random walk algorithm
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and the random matrix has only 64 elements. With the use of compressive sensing, acquisition of the signal
can be easily done and we can recover the original signal by using the l1 minimization theorem fig 9 shows
that the only 64 no. of the signal are sufficient to recover the signal with 256 elements. This gives us the
compression ratio of 75% which is more than Sufficient for our recovery for an input signal or information
signal.

Figure 7: Compressive sensing in the frequency domain for the same input but with FFT and IFFT function.

5. CONCLUSION

This result shows the after considering all the problems in WSNs network our proposed algorithm is working
properly. While doing simulation we consider those problems discuss above and we consider this all constrain
while implementing random walk algorithm for an Actual formation of the network. The figure [3] shown
exact probability up to 90% which will be well as consider to another algorithm gives information about
the network form by random walk algorithm will be good as this leads to low energy requirement which
solves the major problem in WSNs networks. The RMS values between nodes also shown and mean value
to give extra information about the probability of random walk algorithm.

The simulation of path selection in figure [4] give us the sensing matrix as discuss earlier which will be
important to find the expander graph to show the connection of nodes. Along with this, simulation also
shows the connection for 100 nodes leads to an actual number of the random walk for our algorithm which
is considerably 1/4th of total nodes. This gives the better result with less connection in networks which is an
advantage as compare to another algorithm for WSNs networks.
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 The sparcity (K) factor also plays an important role in network formation and its cost. The result shows
that, readings are bounded with simulation readings and analytical readings which is also an advantage for
our algorithm as all the result satisfying and improving the quality of the network. This directly leads to
reduction of communication cost. Result of the compressive sensing also for both time domain and frequency
domain input and showing the recovery as we getting exactly same signal as input which will show the
network is lossless and gives low recovery error as for our simulation it is almost null and low for increment
of signal number.
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