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Abstract: The quantum Schrödinger-Newton equation is solved for a self-gravitating 
Bose gas at zero temperature. It is derived that the density is non-uniform and 
a central hollow cavity exists. On the other hand, the radial distribution of the 
particle momentum is uniform. The temperature effect is accounted for via the 
Schrödinger- Poisson-Boltzmann equation, where low and high temperature solutions 
are obtained. Via the Schrödinger-Yukawa equation, the analysis is extended to a 
strong self-interacting gas, showing that the atomic nuclei are also hollow. Hollow 
self-gravitating Fermi gases are described by the Thomas-Fermi equation.

Let us consider a gas of N identical point particles with mass m . The Poisson 
equation describes the gravitational potential generated by the radial-
symmetric local mass density 

	 (1)

where r  is the radial nabla operator. Equation (1) requires further 
knowledge for  or its fundamental3relationship to . In the classical case, the 
self-gravitating gas, cooled to zero temperature, collapses in a mass point with 
mass M  Nm, since the gravity is an attractive force and no other interactions 
are considered. In this state, the mass density is a Dirac delta-function and the 
corresponding solution of Eq. (1) is the classical potential GM / r of Newton. 
Since the Schwarzschild radius 2 2 / s r  GM c is always larger than the zero 
radius of a mass point, the latter is a black hole.

Obviously, quantum mechanics will disturb the classical delta-function 
distribution with zero dispersion. The quantum mass distribution will be 
scattered and the corresponding gravitational potential will be weaker. The 
stationary Schrödinger equation for a single particle of the quantum gas reads

	 (2)

where  is a real wave function and  is the particle energy. One can express 
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from Eq. (2) the gravitational energy mQ , where  is the 
Bohm1 quantum potential. Assuming uncorrelated bosons, condensed on the 
ground state, the local mass density  M2 is a product of the mass of the gas 
and the probability density to find a particle at a given place. Substituting m 
and  in Eq. (1) yields the self-consistent Schrödinger-Newton (or Schrödinger- 
Poisson) equation for the wave function of the self-gravitating Bose gas2-4

 	 (3)

Although Eq. (3) is fundamentally nonlinear, it possesses is a very simple 
solution3

	 (4)

where  is the gravitational Bohr radius. Compare the latter to 
expressions from the theory of atom, one can see the electrostatic parallel: 1/ 40 
 G, e  m and Z N / 2 . Thus, the gravitational fine-structure constant  m2/ 
m2

p , where mP   is the Planck mass. Knowing the wave function  in 
the coordinate space allows derivation of the wave function  in the momentum 
space via a standard Fourier transformation

	 (5)

where  The particle radial distribution density on absolute momenta 
acquires the form

	 (6)

where the Heaviside step function H is introduce for normalization. 
This uniform distribution shows equal number of particles in any spherical 
momentum layer up to the maximal possible momentum  , which 
is proportional to the number of particles in the gas.

Expressing the mass density from Eq. (4), substituting it in Eq. (1) and 
integrating twice along the distance yields the quantum gravitational potential 
of the condensed bosonic gas

	 (7)

As expected,  tends to the classical Newton potential at large distance. 
At short distance, however, a quantum repulsion appears to compensate the 
quantum potential. It looks like an effective centrifugal potential with azimuthal 
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quantum number l 1 and describes gravitation in the Kerr5 metric. However, this 
is not orbital rotation of the particles, since the used Laplace operator is radial 
and no angular momentum operator exists. Maybe some collective superfluid 
rotons appear in the Bose-Einstein condensate. The competition between the 
two terms in Eq. (7) leads to a potential minimum at 0 r . Introducing the depth 

 of the potential well, being half of the Newton potential there, 
Eq. (7) can be rewritten in the dimensionless form , which is 
presented in Fig. 1

Fig. 1. The dimensionless potential /0 as a function of the dimensionless x r / r0

Since the force is repulsive inside the central sphere with radius r0, it is 
straightforward to recognize that this cavity is empty, i.e. . This is 
also evident from the fact that the probability density of the self-gravitating 
gas is entirely distributed outside the cavity, since

	 (8)

Hence, the radial distribution density in the coordinate space can be further 
elaborated to

	 (9)

It is plotted in Fig. 2. The hollow cavity is due to the Heisenberg principle, 
since , and the particles at the cavity surface possess the maximal 
momentum. Within the cavity, the quantum singularity overcomes the 
gravitational one and repels the particles outside. As expected, the probability 
density fr tends to a delta-function in the classical limit   since  .
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Fig. 2. The dimensionless radial density r0 fr as a function of the dimensionless  xr/r0 from 
Eq. (9) (solid) and the approximation  (dashed)

It is interesting to calculate some average characteristics of the quantum 
self-gravitating gas. Using the distributions (6) and (9), the mean kinetic and 
potential energies of a particle read

  	 (10)

Hence, the total Bohr energy  is negative and 
proportional to the square of the number of particles. At zero temperature, the 
bosons condensate on this ground state. It is easy to prove the virial theorem 

 but note that the usual expression  fails, due to the quadratic 
quantum term in Eq. (7). Another interesting quantity is the local quantum 
stress tensor, defined via ,

	 (11)

The corresponding pressure  obeys a polytropic 
equation of state and satisfies the standard relation . Knowing 
it, one can calculate the speed of sound  which equals to 

at the cavity surface.
The existence of cut-offs in the model is physically justified but it creates 

mathematical uncertainty, when a differentiation comes into use. For instance, 
neither of the following two well-known integrals provides the correct kinetic 
energy
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Moreover, they are not equal and the last integral is even negative. The 
correct kinetic energy equals to the average of these integrals. To clear up 
doubts, let us solve the Schrödinger equation (2) in the field of the unrestricted 
potential (7). The solution  is not peculiar and the 
kinetic, potential and total energies coincide with the estimations above. Since 
(r  0)  0, this approximate solution confirms also that the self-gravitating 
Bose gas is hollow. The comparison of the corresponding radial distribution 
density with that from Eq. (9) is shown in Fig. (2). Of course, the approximate 
wave function does not satisfy Eq. (1) for the potential (7). A self-consistent 
procedure requires further determination of a new potential via integration of 
Eq. (1) and so on.

The present quantum gravitational theory is non-relativistic and it will meet 
the Einstein relativity theory at large mass. The Schwarzschild radius is inside 
the hollow cavity for small N.
A black hole can appear at large N, where rs  r0 defines the critical mass 

of Kaup. The corresponding critical velocity  equals to half 
of the speed of light, while the critical radius of the hollow cavity  is 
twice the reduced Compton wavelength of a particle. The critical number of 
particles  for a bosonic black hole formation is inversely proportional 
to the gravitational fine-structure constant. For instance, two Planck particles, 
either bosons or fermions, form a binary black hole and the corresponding radius 
of the hollow cavity is the Planck length . In contrast to the classical 
theory at , where any self-gravitating gas collapses to a mass point black 
hole, if no other interactions are present, the quantum theory above states that 
black holes appear only if the mass  is larger than a critical mass2,3. 
Figure 2 shows also that the mass distribution in the quantum black hole is 
not uniform. The central part of the black hole is empty and the radius of the 
hollow cavity is smaller than the doubled reduced Compton wavelength. As an 
example, let us consider an electron-positron neutral plasma. The advantage 
of these particles is that their masses possess purely electrostatic origin. It is 
expected that neutral Cooper electron-positron pairs are generated, promoted 
by electrostatics. Thus avoiding the fermionic repulsion, this Bose gas can easily 
condensate at zero temperature. Since the Compton wavelength of an electron 
equals to its radius divided by the electrostatic fine-structure constant, it follows 
that r*

0 equals to 137 electron radii. The corresponding black hole critical mass 
is of the order of an exagram, while its size is of the order of a picometer. One 
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can expect further that electron-positron pairs will annihilate but this will not 
be a problem, since even the resultant photons cannot leave the black hole. At 
this stage, the latter will become a photonic black hole. Especially interesting are 
black photons with wavelength bellow lp , which are black holes by themselves, 
since their mass exceeds mp.

The effect of temperature can be taken into account via a density-functional 
modification of Eq. (2) including the local Boltzmann entropy6

	 (12)

Here  is the constant chemical potential. This equation implies that the 
temperature T belongs to the gas itself, not to an environment. Expressing the 
gravitational energy  and introducing it in Eq. (1) yields the 
Schrödinger-Poisson-Boltzmann equation

	 (13)

At low temperature, the wave function can be written as a superposition of the 
zero temperature solution (4) and a small constant proportional to temperature T

	 (14)

where  is the thermal de Broglie wavelength. It is easy to 
check that  satisfies Eq. (13), linearized on T. The gravitational potential, 
corresponding to Eq. (14), reads

	 (15)

The last integrational constant in the brackets subtracts the thermodynamic 
entropy from the local one. The logarithmic potential in Eq. (15) corresponds 
to an additional attractive force, which shrinks the cavity radius 

. However, the potential well depth remains 
nearly the same . At large distance the 
potential (15) becomes positive, which suppresses the gas density there, due 
to the Boltzmann law. This is also evident from the radial distribution density

	 (16)

where the thermal de Broglie wave length plays the role of an upper cut-off. 
Therefore, the particles beyond T  are not bonded to the quantum gas anymore. 



Quantum Black Holes and Atomic Nuclei are Hollow	 7

The mean energy can be calculated by the use of the virial theorem

	 (17)

It shows that the Dulong-Petit law holds, indicating thermal acoustic 
phonons, propagating with the speed of sound vs. They are classical, owning to the 
classical Boltzmann entropy used. Due to the T -linearization, the formulas above 
are correct for , which transforms to a temperature restriction 
. The temperature  is the sublimation point, since  the 
energy becomes positive and the Bose gas evaporates completely. 8 The quantum 
black hole temperature, associated usually with the temperature of the Hawking7 
radiation , must be always below Ts . Otherwise, the black hole 
is not present because  follows from  and the Schwarzschild radius 
is inside the hollow cavity. In critical black holes the Hawking temperature 

 touches almost the sublimation point .
Motivated by the previous simple results, another simple solution 

 of Eq. (13) is derived, clarifying the high temperature effect. 
Here  is the gravitational Bjerrum length, which is proportional 
to the number of particles. As is seen,  is completely classical, since it is valid 
at high temperature only. Introducing  in Eq. (1) and integrating twice along 
the distance yields the gravitational potential energy

	 (18)

Fig. 3. The dimensionless potential  as a function of the dimensionless 
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At short distance,is negative but weaker than the Newton potential, 
while at large distance it becomes positive as is shown in Fig. 3. The sign 
change suppresses the gas density at r  lT due to the Boltzmann law. Hence, 
the corresponding radial distribution density is constant up to the upper limit 
cut-off lT

	 (19)

The genetics of this uniform distribution traces back to Eq. (16), where 
. The corresponding kinetic, potential and total energies read 

, respectively. In essence, the high temperature 
requires a more compacted classical gas in order the gravity to be able to keep 
the particles together. A possible problem of this condensed state is the stability 
of the proposed classical solution of Eq. (13). Thus at high temperature, it could 
spontaneously transform to the maximum entropy state with  0 everywhere. 
This is not possible, however, if a black hole forms. It follows from the criterion rs 
 lT that the temperature of a critical classical black hole   is extremely 
high. For instance, T*1 GK in the case of a black hole made from the already 
mentioned electron-positron plasma. As was discussed in the beginning, any 
amount of classical gas of mass points could form a black hole, but without 
cooling, the latter would be very hot. Moreover, cooling of a black hole is perhaps 
impossible, since even heat cannot leave it, unless a special kind of heat transfer 
is available through the event horizon.

Another interesting example is the atomic nucleus, where the protons and 
neutrons with mass m attract each other via the Yukawa8 potential energy 

. The Yukawa screening length  coincides 
numerically with the Compton wavelength of a nucleon . The corresponding 
screened Poisson equation reads

	 (20)

Expressing Q from the Schrödinger equation yields the Schrödinger-
Yukawa equation3

	 (21)

Far from the nucleus center r Y , the first term is negligible as compared 
to the second one. Thus, Eq. (21) reduces to the well-known nonlinear Gross-
Pitaevskii equation9,10 with an attractive pseudo-potential, dependent on the 
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particle density 

	 (22)

This equation is traditionally used for bosons but it can be adapted for 
fermionic nucleons as well. Since the size of nucleons is commensurable with 
Y , it is reasonable to estimate the mass density by the geometric average 

, where R is the nucleus radius. Substituting it in Eq. (22) results 
in a Schrödinger equation, describing nucleons in a constant potential well,

	 (23)

which is a very popular model for the atomic nuclei. The closed 3D packing 
implies also that the depth of the potential well is independent of the number 
of nucleons in the heavy nucleus. It can be estimated as 3 times the Yukawa 
potential energy, i.e. . Comparing this expression with Eq. (23) 
unveils the well-known empirical dependence  of the nucleus radius on 
the number of nucleons. Since the Fermi energy of an equal mix of protons and 
neutrons is , the binding energy amounts to 8 MeV. 

On the other hand, the first term dominates Eq. (21) close to the nucleus 
center, where r Y. Neglecting now the second term yields the Schrödinger-
Newton equation (3), where Gm2 is replaced by the 37 orders of magnitude larger 
Yukawa magnitude 

	 (24)

Hence, all previous considerations apply for a nucleus near its center, as 
well, and confirm that the atomic nuclei are also hollow. The strong force Bohr 
radius  decreases also with increase of N. It is 4 times the 
Compton wavelength of the entire nucleus and represents the quantum Kerr 
length parameter. The lack of material constants on the right-hand side of Eq. 
(24) shows that the strong force is due to a super-relativistic effect, characterized 
simply by the product  as the Casimir force. Since the nucleons are fermions, 
the results above are rigorous for the deuteron. Its hollow cavity radius of 2.6 fm 
is commensurable with the known charge radius of 2.1 fm. The binding energy of 
3.0 MeV, however, is much higher than the experimental value of 1.1 MeV. Their 
radio e shows that it is an effect of the neglected screening in Eq. (24). Therefore, 
for better understanding of the deuteron one should solve the Schrödinger- 
Yukawa equation (21). It is known that annihilation of the electron-positron 
Cooper pairs can 11 create some bosonic hadrons, which interact strongly in 
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contrast to the original leptons. The critical mass  for an extreme 
Kerr black hole, formed via strong self-interacting bosons, is only 3.5 times the 
Planck mass. The corresponding critical radius of the hollow cavity equals to 7lp 
and the local quantum pressure  is universal in such Bose gases. 
The fact that  is a universal constant, being independent of m, is 
due to the universality of the Yukawa interaction, as discussed before. Since 
the particle mass is not a parameter in the classical black hole mechanics, the 
latter is probably correct for matter collapsed via strong forces. Our analysis is 
applicable also to the internal structure of hadrons, leading to the conclusion 
that these composite particles are probably also hollow. 

Finally, the present cut-off model is applicable to fermions as well. In a first 
approximation, one can imagine without proof an energy spectrum 
like in the Bohr atom. Since each energy level accommodates 2n2 fermions, 

and the Fermi energy equals to . The total energy  
of the entire Fermi gas defines the mean energy per particle , being 
3 times the negative Fermi energy. It is not clear, however, how correctthese 
estimates are, since the bottom energy  is generated by bosons, condensed 
solely on their ground state. To improve the analysis, one can express from 
scaling considerations the quantum potential  
is the local particle density and C is an unknown constant. Similar to the bosonic 
case, the quantum potential is attractive. Because\ the gravitational energy 
m is proportional to Q , Eq. (1) reduces with this ansatz to the gravitational 
Thomas-Fermi equation2 

	 (25)

Encouraged by the previous results, one is looking for a normalized particle 
density with a hollow central cavity in the form

	 (26)

The corresponding radial probability distribution density reads 
 and the mass accumulates via the cubic law 

. It is straightforward to prove that  from Eq. (26) 
is the solution of Eq. (25), if the hollow cavity radius is given by

	 (27)

This radius for the Fermi gas is larger than that for the Bose gas. They 
coincide only at N  2 , since there is no statistical difference between bosons and 
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fermions in this case. Interestingly, the Fermi density decreases with distance 
sharper than the Bose one. However, since the hollow cavity is larger, the Bose 
gas cumulative mass is always higher than the Fermi one.

Knowing the density from Eq. (26), accomplished by Eq. (27), allows 
integration of Eq. (1) to obtain the quantum gravitational potential for the 
Fermi self-gravitating gas

	 (28)

Fig. 4. The dimensionless potential /0 as a function of the dimensionless x  r / r0

As is seen from Fig. 4, it possesses a minimum  at the cavity 
surface r0 , as well. Compare it with Eq. (7) confirms a stronger quantum 
repulsion between fermions, as expected. Using the virial theorem one can 
calculate the corresponding mean kinetic and potential energies of the entire 
Fermi gas

	 (29)

The unspecified constant  follows from the alternative relation 
. The total energy of the gas is negative and amounts to

	 (30)

This binding energy is about 4/3 times the initial estimate . On 
the other hand, the total energy  of the Bose gas decreases much sharper 
with the increase on the number of particles, since all the bosons condensate 
on the ground state. Defining the critical black hole via  yields the critical 
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number  of fermions, which corresponds well to the Chandrasekhar 
limit. Finally, the present analysis is even better for the description of the atomic 
nuclei, since nucleons are fermions. Replacing  in Eq. (27) yields a 
new expression for the radius of the hollow cavity in the nuclei, . 
As expected, it coincides with the previous estimate for the deuteron radius. For 
heavier nuclei, the ratio between the cavity and nucleus radii decreases softer 
than bosons with increase on the number of particles. Since the nuclei consist 
of two kinds of fermions, nearly equal mix of protons and neutrons, the correct 
formula reads . For instance, this ratio is about 1/24 in Uranium, 
while in Oxygen the hollow cavity extends up to 1/4 of the nucleus radius. The 
empty volume ratio  is 25% in Helium and 100% in Deuterium nuclei.

In general, one expects any quantum self-attracting matter of identical 
particles to create a hollow cavity around the mass center, because the particle 
indistinguishability dictates that the unique point in space at r  0 remains 
unoccupied. The appearance of the hollow cavity solves directly the problem 
with the gravitational potential singularity. Moreover, it protects also the 
matter from a black hole collapse, as a shield over the Schwarzschild radius. 
Another problem of black holes is the mass defect, which will obviously reduce 
the strength of the crucial gravitational self-attraction. Thus, a black hole itself 
can collapse at the end into a zero mass object if there is a way to dissipate 
its energy via heat transfer through the event horizon. This could happen, for 
instance, by collisions of particles from the black hole and from its surrounding, 
which takes place on the border at s r . Hence, the free particles will not enter 
the black hole but could exchange energy with the particles, captured already 
inside the black hole.

The paper is dedicated to the Memory of David Bohm (1917-1992) and 
Stephen Hawking (1942-2018).
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