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Abstract: In this paper we prove some property for a general integral operator on the
���(�)-class of convex functions associated with some hyperbola.
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1. INTRODUCTION

Consider �(� ) be the set of functions which are regular in the unit disc � = {z � �, | z | < 1},
� denote the class of the functions f (z) of the form

f (z) = z + a2 z
2 + a3 z

3 + ..., z � �

with the property f (0) = f �(0) – 1 = 0 and � = {f � � : f is univalent in �}.

We recall here the definition of the class ���(�) introduced by Acu and Owa in [1].

The function f � � is in the class ��� (�) �, > 0, if

� � � �( ) ( )
2 1 2Re 2 2,2 1 2 1

( ) ( )
z f z z f z

z
f z f z

�� ��� �� � � � � � � �� �� �� �� �
. (1)

Geometric interpretation: f � ��� (�) if and only if ( )
( ) 1z f z

f z
��
� �  take all values in the

convex domain � (�) = {w = u + i · v : v2 < 4�u + u2, u > 0}. Note that � (�) is the interior
of a hyperbola in the right half-plane which is symmetric about the real axis and has vertex
at the origin.

Regarding the class ��� (�) we recall the coefficient estimations obtained in [1]:

Theorem 1.1: If f (z) = 
2j

�

�
� aj z

j belong to the class ��� (�), � > 0, then

2

32 3

1 4 (1 4 )(3 16 24
,

2(1 2 ) 12(1 2 )
aa

� � � � � � � �
� �

� � � �
.
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We consider the integral operator defined by

F�1, ..., �n (z) = 
0

z

� [ f1� (t)]
�1 · ... · [ fn� (t)]

�n dt (2)

where fi (z) � � and �i > 0, for all i � {1, ..., n}. This operator was introduced by Breaz,
Owa and Breaz in [2].

2. MAIN RESULTS

Theorem 2.1: If fi � ���(�i) for all i � {1, ..., n}, �i > 0 and �i > 0, then the integral

operator defined in (2) is in the class �(�), where � = � �
1 1

1 2 2
n n

i i i
i i� �

� � � ��� �  and �(�)

is the class of convex functions of order � (� < 1).

Proof: We have, after the simple calculus:

1

1

, ..., 1
1

1, ..., 1

( ) ( ) ( )( )
...

( ) ( ) ( ) ( )
n

n

n
n i

n i
in i

zF z z f z z f zz f z

F z f z f z f z
� �

�� �

�� �� ����
� � � � � � �

� � � �� .

Since fi � ���(�i), for all i � {1, ..., n} we have satisfy for all functions fi the
inequality (1).

Thus, we obtain:
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, ...,
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n
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� � � �� �
1 1

( )
2 1 22 22 1 2 1( )

n n
i

ii i i i
i ii

z f z
f z� �

��
� � �� � � �� � � �� ��� �

� �
1 1

2 2 22 1
n n

i i i
i i� �

� � � � � � ��� � .

Thus, we obtain:

� �1

1

, ...,

1 1, ...,

( )
1Re 1 2 2

( )
n

n

n n

i i i
i i

zF z

F z
� �

� �� �

��� �
� � � � � � �� � �� ��� �

� �

which imply that F�1, ..., �n (z) � K(�), where � = � �
1 1

1 2 2
n n

i i i
i i� �

� � � � ��� � .

If we consider �1 = �2 = ··· = �n = � > 0 in the above theorem we obtain:

Corollary 2.1: If fi � ���(�) for all i � {1, ..., n}, � > 0 and �i > 0, then the integral

operator defined in (2) is in the class �(�), where � = 
�

� � � � ��
1

1 [1 (2 2)]
n

i
i

 and �(�) is

the class of convex functions of order � (� < 1).

If we consider n = 1 in the Theorem 2.1 we obtain:

Corollary 2.2: If f1 � ���(�1), �1 > 0 and �1 > 0, then the integral operator defined by

F�1(z) = 1
10

[ ( )]
z

f t dt���  is in the class �(�), where � = 1 – �1 – (2 – 2 ) �1�1 and �(�) is
the class of convex functions of order � (� < 1).

If in (2) we consider �1 = �2 = ··· = �n = 1 we obtain the integral operator

F1 (z) = 10
( ) ... ( )

z

nf t f t dt� �� �� . (3)

For this integral operator we have:

Theorem 2.2: Let fi � ���(�i) for all i � {1, ..., n}, �i > 0, fi (z) = ,
2

, 1,i
i j

j

z a z i n
�

�
� �� .

If we consider the integral operator defined by (3), with F1(z) = 
2

n
j

j
j

z b z
�

� � , then:
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1 4 1 4(1 4 )(3 16 24 ) 1
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i ki i k ii
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� �� �
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Proof: From (3) we obtain

F1�(z) = f1�(z) · f2�(z) ··· fn�(z),

namely

1 1 11
1, 2, ,

2 2 22

1 1 11 j j jj
j j n jj

j j jj

ja z ja z ja zjb z
� � ��

� � ��

� � ��

� � � � � �
� � � � � �� � �� � � � � �

� � � � � �
� � �� � .

Thus we have:

b2 = , 2
1

n

i
i

a
�
�

b3 = , 2 , 2, 3
11 1

4
3

nn n

k ii
i ki k

a aa
� �� �

� �
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� �
�� � .

But, from Theorem 1.1, we have

� �
� �

� �, 2
1 4

, 1,
2(1 2 )
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i
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(1 4 )(3 16 24 )
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.

In this conditions we obtain
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�� � .

For �1 = �2 = ··· = �n = � > 0, we obtain

Corollary 2.3: Let fi � ���(�), � > 0, fi (z) = ,
2

, 1,i
i j

j

z a z i n
�

�
� �� . If we consider the

integral operator defined by (3), with F1(z) = 
2

n
j

j
j

z b z
�

� � , then:
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