A INTEGRAL OPERATOR ON THE $CVH(\beta)$ -CLASS

Daniel Breaz^{*} & Mugur Acu

Abstract: In this paper we prove some property for a general integral operator on the $CVH(\beta)$ -class of convex functions associated with some hyperbola.

2000 Mathematics Subject Classification: 30C45

Keywords and phrases: Analytic functions, integral operator, convex functions.

1. INTRODUCTION

Consider $\mathcal{H}(\mathcal{U})$ be the set of functions which are regular in the unit disc $\mathcal{U} = \{z \in \mathbb{C}, |z| < 1\}$, \mathcal{A} denote the class of the functions f(z) of the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots, \quad z \in \mathcal{U}$$

with the property f(0) = f'(0) - 1 = 0 and $S = \{f \in \mathcal{A} : f \text{ is univalent in } \mathcal{U}\}.$

We recall here the definition of the class $CVH(\beta)$ introduced by Acu and Owa in [1].

The function $f \in A$ is in the class $CVH(\beta) \beta$, > 0, if

$$\left|\frac{zf''(z)}{f'(z)} - 2\beta\left(\sqrt{2} - 1\right) + 1\right| < \operatorname{Re}\left\{\sqrt{2} \,\frac{zf''(z)}{f'(z)}\right\} + 2\beta\left(\sqrt{2} - 1\right) + \sqrt{2}, \quad z \in \mathcal{U}.$$
(1)

Geometric interpretation: $f \in CVH(\beta)$ if and only if $\frac{zf'(z)}{f'(z)} + 1$ take all values in the convex domain $\Omega(\beta) = \{w = u + i \cdot v : v^2 < 4\beta u + u^2, u > 0\}$. Note that $\Omega(\beta)$ is the interior of a hyperbola in the right half-plane which is symmetric about the real axis and has vertex at the origin.

Regarding the class $CVH(\beta)$ we recall the coefficient estimations obtained in [1]:

Theorem 1.1: If
$$f(z) = \sum_{j=2}^{\infty} a_j z^j$$
 belong to the class $\mathcal{CVH}(\beta)$, $\beta > 0$, then
 $|a_2| \le \frac{1+4\beta}{2(1+2\beta)}, |a_3| \le \frac{(1+4\beta)(3+16\beta+24\beta^2)}{12(1+2\beta)^3}.$

⁶ Supported by the Grant 2-CEx 06-11-10 / 25.07.2006.

We consider the integral operator defined by

$$F_{\alpha_1, ..., \alpha_n}(z) = \int_0^z \left[f_1'(t) \right]^{\alpha_1} \cdot ... \cdot \left[f_n'(t) \right]^{\alpha_n} dt$$
(2)

where $f_i(z) \in A$ and $\alpha_i > 0$, for all $i \in \{1, ..., n\}$. This operator was introduced by Breaz, Owa and Breaz in [2].

2. MAIN RESULTS

Theorem 2.1: If $f_i \in CVH(\beta_i)$ for all $i \in \{1, ..., n\}$, $\beta_i > 0$ and $\alpha_i > 0$, then the integral operator defined in (2) is in the class $\mathcal{K}(\delta)$, where $\delta = 1 - \sum_{i=1}^n \alpha_i \left(2 - \sqrt{2}\right) \sum_{i=1}^n \alpha_i \beta_i$ and $\mathcal{K}(\delta)$ is the class of convex functions of order δ ($\delta < 1$).

Proof: We have, after the simple calculus:

$$\frac{zF_{\alpha_1,\dots,\alpha_n}^{"}(z)}{F_{\alpha_1,\dots,\alpha_n}'(z)} = \alpha_1 \frac{zf_1^{"}(z)}{f_1'(z)} + \dots + \alpha_n \frac{zf_n^{"}(z)}{f_n'(z)} = \sum_{i=1}^n \alpha_i \frac{zf_i^{"}(z)}{f_i'(z)}.$$

Since $f_i \in CVH(\beta_i)$, for all $i \in \{1, ..., n\}$ we have satisfy for all functions f_i the inequality (1).

Thus, we obtain:

$$\begin{split} \sqrt{2} \; \frac{zF_{\alpha_{1},...,\alpha_{n}}^{"}(z)}{F_{\alpha_{1},...,\alpha_{n}}^{'}(z)} &= \sqrt{2} \sum_{i=1}^{n} \alpha_{i} \frac{zf_{i}^{"}(z)}{f_{i}^{'}(z)}, \\ \sqrt{2} \; \frac{zF_{\alpha_{1},...,\alpha_{n}}^{"}(z)}{F_{\alpha_{1},...,\alpha_{n}}^{'}(z)} &= \sum_{i=1}^{n} \left(\sqrt{2}\alpha_{i} \; \frac{zf_{i}^{"}(z)}{f_{i}^{'}(z)} + 2\alpha_{i}\beta_{i}\left(\sqrt{2}-1\right) + \sqrt{2}\alpha_{i} - 2\alpha_{i}\beta_{i}\left(\sqrt{2}-1\right) - \sqrt{2}\alpha_{i}\right), \\ \sqrt{2} \; \operatorname{Re}\left(\frac{zF_{\alpha_{1},...,\alpha_{n}}^{"}(z)}{F_{\alpha_{1},...,\alpha_{n}}^{'}(z)} + 1\right) \\ &= \operatorname{Re}\sum_{i=1}^{n} \left(\sqrt{2}\alpha_{i} \; \frac{zf_{i}^{"}(z)}{f_{i}^{'}(z)} + 2\alpha_{i}\beta_{i}\left(\sqrt{2}-1\right) + \sqrt{2}\alpha_{i} - 2\alpha_{i}\beta_{i}\left(\sqrt{2}-1\right) - \sqrt{2}\alpha_{i}\right) + \sqrt{2} \;, \\ \sqrt{2} \; \operatorname{Re}\left(\frac{zF_{\alpha_{1},...,\alpha_{n}}^{"}(z)}{F_{\alpha_{1},...,\alpha_{n}}^{"}(z)} + 1\right) \\ &= \sum_{i=1}^{n} \alpha_{i} \left[\operatorname{Re}\left\{ \sqrt{2} \; \frac{zf_{i}^{"}(z)}{f_{i}^{'}(z)} + 2\beta_{i}\left(\sqrt{2}-1\right) + \sqrt{2}\right\} \right] - \sum_{i=1}^{n} \left(2\alpha_{i}\beta_{i}\left(\sqrt{2}-1\right) + \sqrt{2}\alpha_{i}\right) + \sqrt{2} > \end{split}$$

$$\sum_{i=1}^{n} \alpha_{i} \left| \frac{z f_{i}''(z)}{f_{i}'(z)} - 2\beta_{i} \left(\sqrt{2} - 1 \right) + 1 \right| - \sum_{i=1}^{n} \left(2\alpha_{i}\beta_{i} \left(\sqrt{2} - 1 \right) + \alpha_{i} \sqrt{2} \right) + \sqrt{2} > \\ > -\sqrt{2} \sum_{i=1}^{n} \alpha_{i} - 2 \left(\sqrt{2} - 1 \right) \sum_{i=1}^{n} \alpha_{i} \beta_{i} + \sqrt{2} .$$

Thus, we obtain:

$$\operatorname{Re}\left(\frac{zF_{\alpha_{1},...,\alpha_{n}}'(z)}{F_{\alpha_{1},...,\alpha_{n}}'(z)}+1\right) > 1 - \sum_{i=1}^{n} \alpha_{i} - \left(2 - \sqrt{2}\right) \sum_{i=1}^{n} \alpha_{i}\beta_{i}$$

which imply that $F_{\alpha_1}, ..., \alpha_n(z) \in K(\delta)$, where $\delta = 1 - \sum_{i=1}^n \alpha_i - (2 - \sqrt{2}) \sum_{i=1}^n \alpha_i \beta_i$.

If we consider $\beta_1 = \beta_2 = \dots = \beta_n = \beta > 0$ in the above theorem we obtain:

Corollary 2.1: If $f_i \in CVH(\beta)$ for all $i \in \{1, ..., n\}$, $\beta > 0$ and $\alpha_i > 0$, then the integral operator defined in (2) is in the class $\mathcal{K}(\delta)$, where $\delta = 1 - [1 + \beta(2 - \sqrt{2})] \sum_{i=1}^{n} \alpha_i$ and $\mathcal{K}(\delta)$ is the class of convex functions of order $\delta(\delta < 1)$.

If we consider n = 1 in the Theorem 2.1 we obtain:

Corollary 2.2: If $f_1 \in CVH(\beta_1)$, $\beta_1 > 0$ and $\alpha_1 > 0$, then the integral operator defined by $F_{\alpha_1}(z) = \int_0^z [f_1'(t)]^{\alpha_1} dt$ is in the class $\mathcal{K}(\delta)$, where $\delta = 1 - \alpha_1 - (2 - \sqrt{2}) \alpha_1 \beta_1$ and $\mathcal{K}(\delta)$ is the class of convex functions of order $\delta(\delta < 1)$.

If in (2) we consider $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 1$ we obtain the integral operator

$$F_1(z) = \int_0^z f_1'(t) \cdot \dots \cdot f_n'(t) \, dt \,. \tag{3}$$

For this integral operator we have:

Theorem 2.2: Let $f_i \in CVH(\beta_i)$ for all $i \in \{1, ..., n\}, \beta_i > 0, f_i(z) = z + \sum_{j=2}^{\infty} a_{i,j} z^i, i = \overline{1, n}$.

If we consider the integral operator defined by (3), with $F_1(z) = z + \sum_{j=2}^n b_j z^j$, then:

$$|b_2| \le \sum_{i=1}^n \frac{1+4\beta_i}{(1+2\beta_i)}$$

$$|b_3| \le \sum_{i=1}^n \frac{(1+4\beta_i)(3+16\beta_i+24\beta_i^2)}{12(1+2\beta_i)^3} + \frac{1}{3} \sum_{i=1}^{n-1} \left(\frac{1+4\beta_k}{(1+2\beta_k)} \cdot \sum_{i=k+1}^n \frac{1+4\beta_i}{(1+2\beta_i)} \right)$$

and

Proof: From (3) we obtain

$$F'_1(z) = f'_1(z) \cdot f'_2(z) \cdots f'_n(z),$$

namely

$$1 + \sum_{j=2}^{\infty} jb_j z^{j-1} = \left(1 + \sum_{j=2}^{\infty} ja_{1,j} \cdot z^{j-1}\right) \cdot \left(1 + \sum_{j=2}^{\infty} ja_{2,j} \cdot z^{j-1}\right) \cdots \left(1 + \sum_{j=2}^{\infty} ja_{n,j} \cdot z^{j-1}\right).$$

Thus we have:

$$b_2 = \sum_{i=1}^n a_{i,2}$$
$$b_3 = \sum_{i=1}^n a_{i,3} + \frac{4}{3} \sum_{k=1}^n \left(a_{k,2} \sum_{i=k+1}^n a_{i,2} \right).$$

But, from Theorem 1.1, we have

$$\left|a_{i,2}\right| \le \frac{1+4\beta_i}{2(1+2\beta_i)}, \quad i=\overline{1,n}$$

 $a_{i,3}\left|\le \frac{(1+4\beta_i)(3+16\beta_i+24\beta_i^2)}{12(1+2\beta_i)^3}, \quad i=\overline{1,n}$

In this conditions we obtain

$$\begin{split} \left| b_{2} \right| &\leq \sum_{i=1}^{n} \left| a_{i,2} \right| \leq \frac{1}{2} \sum_{i=1}^{n} \frac{1+4\beta_{i}}{1+2\beta_{i}} \\ \left| b_{3} \right| &\leq \sum_{i=1}^{n} \left| a_{i,3} \right| + \frac{4}{3} \sum_{k=1}^{n-1} \left(\left| a_{k,2} \right| \sum_{i=k+1}^{n} \left| a_{i,2} \right| \right) \\ &\leq \sum_{i=1}^{n} \frac{(1+4\beta_{i})(3+16\beta_{i}+24\beta_{i}^{2})}{12(1+2\beta_{i})^{3}} + \frac{1}{3} \sum_{k=1}^{n-1} \left(\frac{1+4\beta_{k}}{1+2\beta_{k}} \sum_{i=k+1}^{n} \frac{1+4\beta_{i}}{1+2\beta_{i}} \right) \end{split}$$

For $\beta_1 = \beta_2 = \dots = \beta_n = \beta > 0$, we obtain

Corollary 2.3: Let $f_i \in CVH(\beta)$, $\beta > 0$, $f_i(z) = z + \sum_{j=2}^{\infty} a_{i,j} z^i$, $i = \overline{1, n}$. If we consider the integral operator defined by (3), with $F_1(z) = z + \sum_{j=2}^{n} b_j z^j$, then:

$$|b_2| \le \frac{n(1+4\beta)}{2(1+2\beta)}$$
$$|b_3| \le \frac{n(1+4\beta) \cdot [2n+1+4(3n+1)\beta+8(2n+1)\beta^2]}{12(1+2\beta)^3}.$$

REFERENCES

- [1] M. Acu, and S. Owa, (2005), Convex Functions Associated with Some Hyperbola, *Journal of Approximation Theory and Applications*, **1**(1): 37–40.
- [2] D. Breaz, S. Owa, and N. Breaz, A New Integral Univalent Operator, (To Appear).

Daniel Breaz

Department of Mathematics "1 Decembrie 1918" University Alba Iulia, Romania *E-mail : dbreaz@uab.ro*

Mugur Acu

Department of Mathematics "Lucian Blaga" University of Sibiu Sibiu, Romania *E-mail: acu-mugur@yahoo.com*

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/