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Abstract. We consider two probabilistic approaches to construct stochastic
models for quasilinear parabolic equations and systems. These approaches

allow to construct stochastic counterparts to quasilinear parabolic equations
and systems modeling conservation and balance laws and derive probabilistic
representations of the Cauchy problem classical solutions. In addition these

approaches allow to construct algorithms for numerical solution of the Cauchy
problem based on the derived probabilistic representations.

1. Introduction

Mathematical models of conservation and balance laws in physics, chemistry,
biology and other fields often are presented in the form of systems of nonlinear
parabolic equations of the form

∂um

∂t
+

d∑
i,j=1

d1∑
q=1

Bi
mq(x, u)∇xi

uq =
1

2

d∑
i,j=1

Gij(x, u)∇2
xixj

um +

d1∑
q=1

cmq(x, u)uq,

(1.1)
called systems with self-diffusion or

∂um

∂t
+

d∑
i,j=1

d1∑
q=1

∇xi [B
i
mq(u)uq] =

1

2

d∑
i,j=1

d1∑
q=1

∇2
xixj

[Gij
mq(x, u)uq]+

d1∑
q=1

cmq(x, u)uq,

(1.2)
called systems with cross diffusion [1], [2].

In addition systems of type (1.1) arise when one investigates scalar conservation
laws in divergence form

∂u

∂t
= ⟨∇, (α(u)∇u)⟩, u(0, x) = u0(x) ∈ R

or balance laws

∂u

∂t
= ⟨∇, (α(u)∇u)⟩+ γ(u)u, u(0, x) = u0(x) ∈ R (1.3)
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which are nonlinear both with respect to u and ∇u. We include this equation into
a system of parabolic equations rewriting (1.3) in the form

∂u

∂t
= α(u)∆u+ α′(u)⟨∇u,∇u⟩+ γ(u)u, u(0, x) = u0(x), (1.4)

and adding to it an equation for the function ∇u. For the resulting semilinear
system of parabolic equations we derive a required stochastic system which allows
to construct a solution of the Cauchy problem for the original PDE.

Thus, our aim is to construct stochastic counterparts to the Cauchy problem
both for (1.1) and (1.2) with initial data u(0, y) = u0(y) in the form of stochastic
equations and obtain probabilistic representations of solutions to the PDE systems.
In addition based on the probabilistic representation of a solution to (1.1) we
develop an algorithm of constructing of the Cauchy problem numerical solution.

Connections between classical solutions of the Cauchy problem for a system of
nonlinear backward Kolmogorov equations and solutions of the corresponding sto-
chastic system were established in [3], [4] under assumptions that coefficients and
the Cauchy data of (1.4) are smooth enough and satisfy certain growth conditions.
In our previous paper [5] we used this approach to develop a numerical algorithm
to construct such solutions and obtained some numerical results. Here we apply
this approach to solve numerically the Cauchy problem for a quasilinear parabolic
equation.

Numerical schemes based on probabilistic representations of the Cauchy prob-
lem solutions for scalar semilinear parabolic equations were developed by Milstein
and Tretjakov [6], [7], Talay [8] and others. In our previous paper [5] there were
constructed some numerical schemes which allow to obtain approximate numerical
solutions of the Cauchy problem for systems of nonlinear backward Kolmogorov
equations.

In this paper we consider a class of systems of forward Kolmogorov equations of
the form (1.1) which can be reduced to systems of backward ones. This allows to
apply the results from [4] and to construct numerical solutions approximating clas-
sical solutions of the Cauchy problem based on their probabilistic representations.
Since this reduction does not work in the case of systems with cross-diffusion of
the form (1.2) we treat them directly as systems of forward Kolmogorov equations
similar to [9], [10] and construct probabilistic representations of solutions to the
Cauchy problem mild solutions.

The rest of the paper is organized as follows. In section 2 we discuss a stochastic
system associated with the Cauchy problem (1.1) and state conditions to ensure
existence and uniqueness of classical solutions to (1.1). In addition we construct
a probabilistic representation for a classical solution of the Cauchy problem for a
scalar quasilinear parabolic equation. In section 3 we discuss a probabilistic inter-
pretation of a mild solution of the Cauchy problem (1.2) for systems of semilinear
parabolic equations with cross diffusion. In section 4 we apply the probabilistic
approach described in section 2 to develop a numerical scheme which allows to
obtain numerical approximation of a classical solution of the Cauchy problem for
a nonlinear heat equation and show numerical results.
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2. Systems with self-diffusion, probabilistic representation of the
Cauchy problem classical solution

Let us reduce the Cauchy problem of the form (1.1) to the Cauchy problem

∂vm
∂t

−
d1∑
q=1

⟨Bmq(x, v),∇vq⟩+
1

2
Tr[G(x, v)∇2vm] +

d1∑
q=1

cmq(x, v)vq = 0, (2.1)

vm(T, x) = u0m(x)

with respect to a new function v(T − t, x) = u(t, x).
To obtain a stochastic counterpart to (2.1) we fix a probability space (Ω,F , P )

and the standard Wiener process w(t) ∈ Rd defined on it. Next we consider a
stochastic system of the form

dξ(τ) = A(ξ(τ), v(T − τ, ξ(τ)))dw(τ), ξ(t) = x ∈ Rd, (2.2)

dη(τ) = c(ξ(τ), v(T − τ, ξ(t)))η(τ)dτ − C(ξ(τ), v(T − τ, ξ(τ)))(η(τ), dw(τ)),
(2.3)

η(t) = h ∈ Rd1 .

⟨h, v(T − t, x)⟩ = E⟨ηt,h(T ), u0(ξt,x(T ))⟩. (2.4)

where coefficients of (2.1) and (2.2),(2.3) are connected by relations

Gij(x, v) =
d∑

k=1

Aik(x, v)Akj(x, v), B(x, v) = C(x, v)A(x, v)

and ⟨·, ·⟩ is the scalar product in Rd.
We say that condition C 2.1 holds if G(y, u) = A(y, u)A∗(y, u), where A∗ is a

dual matrix to A, and there exist positive constants K0,K, L0, L, ρ1, ρ, Lρ and a
constant ρ0 such that

∥A(y, u)−A(y1, u1)∥2 ≤ L∥y − y1∥2 + Lρ∥u− u1∥2,

∥A(y, u)∥2 ≤ K[1+∥y∥2+∥u∥2p], ⟨c(y, u)h, h⟩ ≤ [ρ0+ρ1∥u∥p]∥h∥2, y ∈ Rd, u, h ∈ Rd1

∥[c(y, u)− c(y1, u1)]h∥2 ≤ L∥y − y1∥2 + Lρ∥u− u1∥2]∥h∥2,

∥[C(y, u)− C(y1, u1)](h,w)∥2 ≤ [L∥y − y1∥2 + Lρ∥u− u1∥2]∥h∥2∥w∥2,

∥C(y, u)(h,w)∥2 ≤ K[1 + ∥u∥2]∥h∥2∥w∥2, w ∈ Rd

sup
x

∥u0(x)∥ ≤ K0, ∥u0(x)− u0(y)∥ ≤ L0∥x− y∥.

Below we often use notations of the type Au(y) = A(y, u(y)).
In [3],[4] there were proved the following assertions.

Theorem 2.1. Assume that C 2.1 holds. Then there exists a unique solution
(ξ(t), η(t), v(T − t, y)) of the system (2.2) –(2.4). In addition v(T − t, y) is a
bounded Lipschitz continuous function on a certain interval [T1, T ] with the length
depending on constants in C 2.1 and the initial function u0, ξ(t) ∈ Rd is a Markov
process and η(t) ∈ Rd1 defines a multiplicative operator functional R(s, t) : Rd1 →
Rd1 of the process ξ(t), R(s, t)h = η(t), h ∈ Rd1 .
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We denote by Cb(R
d) the space of bounded functions on Rd with the norm

supRd |h(x)| = ∥h∥∞ and by Ck(Rd) the space of functions from Cb(R
d) which are

k times differentiable.
We say that condition C2.2k holds if C 2.1 holds and in addition all coefficients

au, Au, cu, Cu and the function u0(y) are functions from the class Ck+β(Rd) in y, u
for 0 < β ≤ 1.

Theorem 2.2. Assume that C2.22 holds. Then the function v(T − t, y) defined
by (2.4) is a unique classical solution of the Cauchy problem (2.1)

Proof. Let us give a draft of the proof for the second theorem (see details in [4]).
Set

Lvu =
1

2
TrAv(x)∇2u[Av]∗(x),

[Mvu]m = −
d1∑
q=1

Bv
mq(x)∇uq] +

d1∑
q=1

cvmq(x)uq.

Assume that there exists a classical solution v(T − t, y) to (2.1), then there
exists a unique solurion to (2.2), (2.3) and applying the Ito formula we derive an
expression for a stochastic differential of a process γ(t) = ⟨η(t), v(T − t, ξ(t))⟩. As
a result we obtain

dγ(t) = ⟨dη(t), v(T − t, ξ(t))⟩+ ⟨η(t), dv(T − t, ξ(t))⟩+ ⟨dη(t), dv(T − t, ξ(t))⟩ =

= ⟨η(t),
[
∂v

∂t
+ Lvv +Mvv

]
(T − t, ξ(t))⟩dt+

+⟨η(t), [Av(ξ(t))∇v(T − t, ξ(t)) + [Cv]∗(ξ(t))v(T − t, ξ(t))]dw(t)⟩.
Integrating the last equality in time from t up to T and evaluating the expectation
we get

E[γ(T )− γ(t)] = E

[∫ T

t

⟨η(s),
[
∂v

∂t
+ Lvv +Mvv

]
(T − s, ξt,y(s))⟩ds

]
. (2.5)

Then keeping in mind that E[γ(T )] = E [⟨ηt,h(T ), u0(ξt,x(T ))⟩] and γ(t) = ⟨h, v(T−
t, x)⟩ we obtain that if v(t) ∈ C2(Rd) solves (2.1) it admits a representation (2.4).
On the other hand if (2.4) holds and v(T − t) ∈ C2(Rd) then applying once again
the Ito formula we get

E

[∫ T

t

⟨η(s),
[
∂v

∂s
+ Lvv +Mvv

]
(T − s, ξt,x(s))⟩ds

]
= E[γ(T )]− γ(t) = 0.

Since this equality holds for arbitrary t and x and η(s) ̸= 0 this means that

∂v

∂t
+ Lvv +Mvv = 0

and one can easily verify that v(T − 0, x) = u0(x).
To prove uniqueness of a classical solution to (2.1) under C 2.2 we assume that

there exist at least two solutions and verify that their probabilistic representations
coincide. Thus one can deduce uniqueness of a solution to (2.1) from uniqueness
of a solution to (2.2) –(2.4) . �
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As a result we obtain that to construct a classical solution to (2.1) it is enough
to construct a solution to (2.2) -(2.4) providing the function v(T − t) of the form
(2.4) belongs to C2(Rd).

It should be mentioned that conditions of theorem 2.1 which states existence
and uniqueness of a (local in time) solution to (2.2)-(2.4) are more weak then
conditions of theorem 2.2 which ensures that the solution of stochastic system
gives rise to the classical solution of (2.1).

Now we apply the above approach to construct a solution of a nonlinear heat
equation of the form (2.3) assuming that α(u) > 0. To this end we rewrite (1.4)
in the form

∂u

∂t
= α(u)∆u+ ⟨α′(u)u,∇u⟩+ γ(u)u, u(0, y) = u0(x) ∈ R, (2.6)

and consider (2.6) as a parabolic equation including two unknown functions u and
v = ∇u.

To obtain a closed system we differentiate (2.6) with respect to spatial argument
and add to (2.6) an equation for v = ∇u. As a result we get a system including
(2.6) and

∂v

∂t
= α(u)∆v+2⟨α′(u)v,∇v⟩+⟨α′′(u)v, v⟩v+γ′(u)vu+γ(u)v, v(0, x) = v0(x) ∈ Rd.

(2.7)
To construct a closed stochastic system associated with (2.6), (2.7) we introduce a

new couple of functions f(T − t, x) = u(t, x) and gi(T − t, x) = ∂u(t,x)
∂xi

= ∂f(T−t,x)
∂xi

and observe that a system

∂f

∂t
+ α(f)∆f + ⟨α′(f)g,∇f⟩+ γ(f)f = 0, f(T, x) = u0(y) ∈ R+. (2.8)

∂gi
∂t

= α(f)∆gi + 2⟨α′(f)g,∇gi⟩+ α′′(f)gi⟨g, g⟩+ γ′(f)gif + γ(f)gi, (2.9)

gi(T, x) = ∇xiu0i(x) ∈ R+, i = 1, . . . , d,

has a structure similar to the structure of the system (2.1). Next we consider a
system of stochastic equations similar to (2.2)– (2.4), namely, a system

dξ(τ) = α′(f(T − τ, ξ(τ)))g(T − τ, ξ(τ))dτ +
√
2α(f(T − τ, ξ(τ)))dw(τ), (2.10)

ξ(t) = x ∈ Rd,

dη(τ) = c(f(T − τ, ξ(τ)), g(T − τ, ξ(t)))η(τ)dτ+ (2.11)

+C(f(T − τ, ξ(τ)), g(T − τ, ξ(t)))η(τ)dw(τ), η(t) = h ∈ Rd,

where for i = 1, 2, 3, Ci(f, g) and c(f, g) are (d + 1) × (d + 1) matrices with
components

c11(f, g) = γ(f), cjk = [α′′(f)⟨g, g⟩+ γ′(f)f + γ(f)]δjk, j ̸= 1 or k ̸= 1

Ci
1k = Ci

k1 = 0, and for the remaining indices Ci
jk = 2

α′(f)

α(f)
g.

Adding a relation

⟨h, V (T − t, x)⟩ = E⟨ηt,h(T ), V0(ξt,x(T ))⟩ (2.12)
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where V (t, x) = (f(t, x), g(t, x)) and V (0, x) = (u0(x),∇u0(x)) we obtain a closed
system (2.10)– (2.12).

Now we can formulate the following assertion.

Theorem 2.3. Assume that α ∈ C3(R), γ ∈ C2(R) have polynomial growth
and v0 ∈ C2(Rd) is bounded. Then there exists an interval [T1, T ] such that for all
s ∈ [T1, T ] there exists a unique solution (ξ(s), η(s), V (T−s, x)) ∈ Rd×Rd1×Rd1+1

of (2.10)–(2.12). In addition ξ(s) is a Markov process and V (T − s, x) = (f(T −
s, x), g(T − s, x)) is a bounded Lipschitz continuous function.

Proof. Since coefficients of (2.10), (2.11) satisfy C 2.1 we deduce the existence
and uniqueness of the solution to (2.10)– (2.12) from theorem 2.1. Besides we
obtain that V (T − t, x) is bounded and Lipschitz continuous. �

Theorem 2.4. If coefficients in (2.10)– (2.12) and u0 have three bounded contin-
uous derivatives then a solution (ξ(t), η(t), V (T − t, x)) of (2.10)– (2.12) gives rise
to a unique classical solution of the Cauchy problem (2.7) and u(t, x) = f(T − t, x)
is a unique classical solution of the Cauchy problem (2.6).

Proof. Since coefficients of (2.10), (2.11) satisfy C2.23 we deduce the existence
and uniqueness of the solution to (2.10)– (2.12) from theorem 2.1. Besides we
obtain that V (T − t, x) is bounded and twice differentiable. Then applying the Ito
formula one can verify the assertions of the theorem. �

3. Systems with cross-diffusion, a probabilistic representation of the
Cauchy problem mild solution

As it was mentioned in the introduction the approach described in section 2 does
not work for systems of the type (1.2). To develop a probabilistic approach to a
solution of the Cauchy problem for such a system we need more weak notions of the
solution, namely, the notions of weak and mild solutions of the Cauchy problem.
To define these types of solutions we need a number of functional spaces.

We denote by: Cb(R
d) the space of bounded real valued functions on Rd with

the norm supRd |h(x)| = ∥h∥∞;
C∞

0 (Rd) the space of infinitely differentiable real functions with compact sup-
ports;

W k,p(Rd) the Sobolev space of order k in Lp(Rd), ∥ · ∥p), (1 ≤ p ≤ ∞) and

W 1,1
loc (R

d) the space of functions g : Rd → R such that g and ∇g belong to

L1
loc(R

d) = {g :
∫
Rd |h(y)g(y)|dy < ∞, ∀h ∈ C∞

0 (Rd)}.
In this section we construct a stochastic system which gives rise to a mild

solution of the Cauchy problem of the form (1.2). Existence and uniqueness of a
solution to this stochastic system will be proved elsewhere.

We restrict ourselves to one of the simplest versions of (1.2). Setting Bi
ml ≡

0, m, l = 1, 2, i, j = 1, . . . , d, Gij
ml(y, u) ≡

∑d
k=1 A

ik
m(y)Akj

m (y)δml, and [c(y, u)u]m =
cm(y, u)um, where δml is the Kronecker symbol we consider the Cauchy problem

∂um

∂t
=

1

2

d∑
i,j,k=1

∇2
xixj

[Aik
m(y)Akj

m (y)um] + cm(y, u)um, (3.1)
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um(0, y) = u0m(y).

We say that a function u(t, ·) ∈ R2 is a mild solution of (3.1) if for all h ∈
C∞

0 (Rd;R2), t ∈ [0, T ], m = 1, 2,∫
Rd

hm(y)um(t, y)⟩dy =

∫
Rd

hm(y)

∫
Rd

u0m(x)pm(0, x, t, y)dxdy+ (3.2)

+

∫ t

0

∫
Rd

(∫ Rd

hm(y)pm(s, z, t, y)dy

)
cm(z, u(s, z))um(s, z)dzds,

where pm(0, x, t, y) is a fundamental solution of a scalar equation

∂vm
∂t

=
1

2

d∑
i,j=1

∇2
yiyj

(Gij
m(y)vm), vm(0, y) = δy (3.3)

and δy is the Dirac function at y. One can easily verify that vm(t, ·) belong to
L1(Rd) since ∫

Rd

vm(t, y)dy = 1, m = 1, 2.

For a given bounded smooth function u = (u1, u2) we consider the Cauchy
problem for a linearised system

∂µm

∂t
=

1

2

d∑
i,j,k=1

∇2
xixj

[Gij
m(y)µm] + cm(y, u)µm, µm(0)(dy) = u0m(y)dy. (3.4)

We say that a Borel measure µ(t, dy) = (µ1(t, dy), µ2(t, dy)) is a mild measure
-valued solution of the Cauchy problem (3.4) if for all h ∈ C∞

0 (Rd;R2), t ∈ [0, T ]∫
Rd

hm(y)µm(t, dy) =

∫
Rd

hm(y)

∫
Rd

µ0m(dx)Pm(0, x, t, dy)+ (3.5)

+

∫ t

0

∫
Rd

(∫
Rd

hm(y)Pm(s, z, t, dy)dy

)
cm(u(s, z))µm(s, dz)ds,

where Pm(0, x, t, dy) = pm(0, x, t, y)dy.
To construct a stochastic system associated with (3.1) denoting by wm(t) in-

dependent Wiener processes defined on the given probability space (Ω,F , P ) we
consider stochastic equations

dξm(τ) = Am(ξm(τ))dwm(τ), ξm(0) = ξ0m ∼ µ0m, 0 ≤ τ ≤ t (3.6)

where µ0m(dy) = u0m(y)dy = P{ξ0m ∈ dy} and closing relations

um(t, y) =

∫
Rd

pm(0, x, t, y)µ0m(dx)+ (3.7)

+

∫ t

0

∫
Rd

pm(s, z, t, y)cm(z, u(s, z))um(s, z)dzds.
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Theorem 3.1. Assume that Am(y), cm(y, u) satisfy C.2.1 and there exists a so-
lution (ξm(t), um(t, y)),m = 1, 2, of the system (3.6)– (3.7) such that ξm(t) are
Markov processes with transition probability densities pm(0, x, t, y) and um(t, y)
are bounded functions.

A function u : [0, T ]×Rd → R2, u ∈ L1([0, T ],W 1,1(Rd;R2)∩Cb(R
d;R2)) is a

mild solution of (3.1) if for all h ∈ C∞
0 (Rd), m = 1, 2∫

Rd

hm(y)um(t, y)dy = E

[
exp

{∫ t

0

cm(ξm(s), u(s, ξm0,ξ0m(s)))ds

}
u0m(ξm0,ξ0m(t))

]
.

(3.8)

Proof. Since we can approximate functions hm ∈ Cb(R
d) by functions hn

m ∈
C∞

0 (Rd) and c(u) is bounded (this results from 2.1 and boundedness of u) we
deduce that the right hand side of (3.8) is a linear functional on Cb(R

d) and by
the Riesz theorem there exists a unique measure µm(t, dy) such that∫

Rd

hm(y)µm(t, dy) = E

[
exp

{∫ t

0

cm(ξm(s), u(s, ξm(s)))ds

}
hm(ξm(t))

]
. (3.9)

Since for all h ∈ C∞
0 (Rd, R2) we have

E[hm(ξm(t))] =

∫
Rd

u0m(dx)

∫
Rd

hm(y)pm(0, x, t, y)dy (3.10)

keeping in mind properties of conditional expectations we can rewrite the right
hand side of (3.9) in the form

E

[
cm(ξm(s), u(s, ξm(s))) exp

{∫ s

0

cm(ξm(τ), u(τ, ξm(τ)))dτ

}
hm(ξm(t))

]
=

(3.11)

= E

[
cm(ξm(s), u(s, ξm(s))) exp

{∫ s

0

cm(ξm(τ), u(τ, ξm(τ)))dτ

}
E[hm(ξm(t))|Fs]

]
=∫

Rd

cm(z, u(s, z))

∫
Rd

hm(y)pm(s, z, t, y)dy µm(s, dz).

To derive the last equality we have used the Riesz theorem choosing

cm(ξm(s), u(s, z))

∫
Rd

hm(y)pum(s, z, t, y)dy

for a bounded measurable test function. Substituting (3.10) and (3.11) into
(3.9) we obtain that provided u(t, y) is a bounded Lipschitz continuous function,
µm(t, dy) is a mild measure-valued solution of (3.4).

Let us prove uniqueness of a measure - valued mild solution of (3.4). Denote by
M(Rd) the space of finite Borel measures on Rd equipped with the total variation
norm

∥µ∥TV = sup
h∈Cb(Rd),∥h∥∞≤1

∫
Rd

h(y)µ(dy)

and assume that there exist two measure-valued solutions µ1 and µ2 to (3.1). Set
νm = µ2

m−µ1
m. Since u is bounded, c(u) is bounded as well and thus ∥νm(t, ·)∥TV <
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∞. In addition ∀h ∈ Cb(R
d) we have∫

Rd

hm(y)νm(t, dy) =

∫ t

0

∫
Rd

cm(z, u(s, z))

∫
Rd

hm(y)pm(s, z, t, y)dyνm(s, dz)ds.

(3.12)
Let us take supremum of both sides of (3.12) over all hm with ∥hm∥∞ ≤ 1 we
obtain

∥νm(t, ·)∥TV ≤ sup
(s,z)∈[0,T ]×Rd

|cm(z, u(s, z))

∫ t

0

∥νm(τ, ·)∥TV dτ. (3.13)

Then by the Gronwall lemma we deduce νm(t, ·) = 0. By similar speculations we
can prove that the measure um(t, y)dy satisfies (3.1) as well and hence µm(t, dy) =
um(t, y)dy. Thus, we deduce that if um(t, y) satisfying (3.8) is a mild solution to
(3.1). �

4. Numerical scheme

As far as solutions of nonlinear parabolic equations can be rarely solved explic-
itly an important role is played by the possibility to construct numerical scheme to
solve these equations. Applying the standard techniques used for constructing of
SDE numerical solutions and successive approximation technique we derive a nu-
merical algorithm to construct approximations for solutions of the Cauchy problem
for quasilinear parabolic equations based on their probabilistic representations.

We illustrate this technique constructing a numerical solution for the Cauchy
problem of one dimensional nonlinear heat equation

∂u

∂t
= ⟨∇, u2∇u⟩+ uβ , u0(x) =

1√
2πϵ

e−
x2

ϵ2 , (4.1)

where β and ϵ are fixed positive constants. Setting V1(T − t, x) = u(t, x), V2(T −
t, x) = ∂u(t,x)

∂x we include the transformed equation (4.1) into a system

∂V1

∂t
+ V 2

1

∂2V1

∂x2
+ 2V1V2

∂V1

∂x
+ V β

1 = 0, V1(T, x) =
1√
2πϵ

e−
x2

ϵ2 . (4.2)

∂V2

∂t
+ V 2

1

∂2V2

∂x2
+ 2V1V2

∂V2

∂x
+ 4V1V2

∂V2

∂x
+ 2V 3

2 + βV β−1
1 V2 = 0, (4.3)

V2(T, x) =
−2x√
2πϵ3

e−
x2

ϵ2 .

A stochastic system associated with (4.1)-(4.2) has the form

dξ(θ) = aV (ξ(θ))dθ +AV1(ξ(θ))dw(θ), ξ(t) = x, (4.4)

dη(θ) = [cV ]∗(ξ(θ))η(θ)dθ + [CV2 ]∗(ξ(θ))(η(θ), dw(θ)), η(t) = h, (4.5)

⟨h, V (T − t, x)⟩ = E⟨ηt,h(T ), V0(ξt,x(T ))⟩, (4.6)

aV (x) = 2V1(T − t, x)V2(T − t, x), AV1(x) =
√
2V1(T − t, x),

cV (x) =

(
V β−1
1 (T − t, x) 0

0 2V 2
2 (T − t, x) + βV β−1

1 (T − t, x)

)
,

CV2(T − t, x) =

(
0 0

0
√
2V2(T − t, x)

)
, V (t, x) = (V1(t, x), V2(t, x)),
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h = (1, 1), V0(x) = (V1(T, x), V2(T, x)) =

(
u0(x),

∂u0(x)

∂x

)
.

To solve numerically the system (4.4) –(4.6) we use evolution properties of prop-
agators

S(t, T )V1(T, x) = V1(T − t, x), G(t, T )
∂V2(T, x)

∂x
= V2(T − t, x).

Namely, we consider a partition T1 = t0 ≤ t1 ≤ · · · ≤ tn = T of the time
interval [T − T1, T ] (where a solution to (2.12) – (??) is defined) and construct
approximations Sn(s, t), Gn(s, t) such that

S(t, T )V1(T, x) = lim
n→∞

n−1∏
k=0

Sn(tk, tk+1)V1(T, x),

G(t, T )V2(T, x) = lim
n→∞

n−1∏
k=0

Gn(tk, tk+1)V2(T, x),

The required approximations Sn(tk, tk+1), G
n(tk, tk+1) are constructed by the Euler-

Maruyama method with an additional approximation of Gaussian random vari-
ables by Bernoulli random variables on intervals [tk, tk+1] similar to [5], [6]. Be-
sides, to obtain a numerical algorithm we introduce a space partition of a space
interval [−L,L], −L = x0 ≤ · · · ≤ xi ≤ · · · ≤ xm = L.

Set V̄ (t, x) = V (T − t, x),∆ = tk+1 − tk = T1

n . The resulting algorithm can be
presented as follows:

V̄ (T, xi) = (u0(xi),
∂u0(xi)

∂x
) = (V 0

1 (xi), V
0
2 (xi)),

V̄ 1
1 (tn−1, xi) =

1

2
[(1 + V̄ 0

1 (xi)
β−1∆)(V̄ 0

1 (xi + 2V̄ 0
1 (xi)V̄

0
2 (xi)∆+ (4.7)

+
√
2V̄ 0

1 (xi)
√
∆) + V̄ 0

1 (xi + 2V̄ 0
1 (xi)V̄

0
2 (xi)∆−

√
2V̄ 0

1 (xi)
√
∆))],

V̄ 1
2 (tn−1, xi) =

1

2
[(1 + (2(V̄ 0

2 (xi))
2 + β(V̄ 0

1 (xi))
β−1)∆+ (4.8)

+2
√
2V̄ 0

2 (xi)
√
∆)V̄ 0

2 (xi + 2V̄ 0
1 (xi)V̄

0
2 (xi)∆ +

√
2V̄ 0

1 (xi)
√
∆)+

+(1 + (2(V̄ 0
2 (xi))

2 + β(V̄ 0
1 (xi))

β−1)∆− 2
√
2V̄ 0

2 (xi)
√
∆)V̄ 0

2 (xi+

+2V̄ 0
1 (xi)V̄

0
2 (xi)∆−

√
2V̄ 0

1 (xi)
√
∆)],

for tk, k = n− 2, ..., 0

V̄ 0(θ, x) = V̄ 1(tk+1, x) tk ≤ θ ≤ tk+1,

V̄ 1
1 (tk, xi) =

1

2
[(1 + (V̄ 0

1 (tk, xi))
β−1∆)(V̄ 0

1 (tk+1, xi + 2V̄ 0
1 (tk, xi)V̄

0
2 (tk, xi)∆+

(4.9)

+
√
2V̄ 0

1 (tk, xi)
√
∆) + V̄ 0

1 (tk+1, xi + 2V̄ 0
1 (tk, xi)V̄

0
2 (tk, xi)∆−

√
2V̄ 0

1 (tk, xi)
√
∆))],

V̄ 1
2 (tk, xi) =

1

2
[(1 + (2(V̄ 0

2 (tk, xi))
2 + β(V̄ 0

1 (tk, xi))
β−1)∆+ (4.10)

+2
√
2V̄ 0

2 (tk, xi)
√
∆)V̄ 0

2 (tk+1, xi + 2V̄ 0
1 (tk, xi)V̄

0
2 (tk, xi)∆ +

√
2V̄ 0

1 (tk, xi)
√
∆)+

+(1 + (2(V̄ 0
2 (tk, xi))

2 + β(V̄ 0
1 (tk, xi))

β−1)∆− 2
√
2V̄ 0

2 (tk, xi)
√
∆)V̄ 0

2 (tk+1, xi+

+2V̄ 0
1 (tk, xi)V̄

0
2 (tk, xi)∆−

√
2V̄ 0

1 (tk, xi)
√
∆)].
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Here V̄ 1(tk, x) is an approximate solution of (4.6) and upper index corresponds to

the iteration number, xi = x0 + i
√
∆, i = 0, . . . ,m.

To obtain a value of the function Vl(tk+1, x) at a point x which does not coincide
with a grid point we use a linear interpolation

Vl(tk+1, x) =
xi+1 − x√

∆
Vl(tk+1, xi) +

x− xi√
∆

Vl(tk+1, xi+1), (4.11)

xi ≤ x ≤ xi+1, i = 0, . . . ,m, k = n− 1, . . . , 0, l = 1, 2.

Figure 1. A solution to (4.1) for β = 2, ϵ = 0.4, x ∈ [−1.9922, 1.9922].
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