CONDITIONS FOR STATIONARITY AND ERGODICITY OF TWO-FACTOR AFFINE DIFFUSIONS

BEÁTA BOLYOG AND GYULA PAP

Abstract

Sufficient conditions are presented for the existence of a unique stationary distribution and exponential ergodicity of two-factor affine diffusion processes.

1. Introduction

We consider general 2-dimensional two-factor affine diffusion processes

$$
\left\{\begin{array}{l}
\mathrm{d} Y_{t}=\left(a-b Y_{t}\right) \mathrm{d} t+\sigma_{1} \sqrt{Y_{t}} \mathrm{~d} W_{t}, \tag{1.1}\\
\mathrm{~d} X_{t}=\left(\alpha-\beta Y_{t}-\gamma X_{t}\right) \mathrm{d} t+\sigma_{2} \sqrt{Y_{t}}\left(\varrho \mathrm{~d} W_{t}+\sqrt{1-\varrho^{2}} \mathrm{~d} B_{t}\right)+\sigma_{3} \mathrm{~d} L_{t},
\end{array}\right.
$$

for $t \in[0, \infty)$, where $a \in[0, \infty), b, \alpha, \beta, \gamma \in \mathbb{R}, \sigma_{1}, \sigma_{2}, \sigma_{3} \in[0, \infty), \varrho \in[-1,1]$ and $\left(W_{t}, B_{t}, L_{t}\right)_{t \in[0, \infty)}$ is a 3-dimensional standard Wiener process. Affine processes are joint generalizations of continuous state branching processes and Orstein-Uhlenbeck type processes, and they have applications in financial mathematics, see, e.g., in Duffie et al. [7]. The aim of the present paper is to extend the results of Barczy et al. [1] for the processes given in (1.1), where the case of $\beta=0, \varrho=0, \sigma_{1}=1, \sigma_{2}=1, \sigma_{3}=0$ is covered. We give sufficient conditions for the existence of a unique stationary distribution and exponential ergodicity, see Theorems 3.1 and 4.1, respectively. These results can be used in a forthcoming paper for studying parameter estimation for this model. An important observation is that it is enough to prove the results for the special case of $\varrho=0$, since there is a non-singular linear transform of a 2-dimensional affine diffusion process which is a special 2-dimensional affine diffusion process with $\varrho=0$, see Proposition 2.5. Otherwise, the method of the proofs are the same as in Barczy et al. [1].

2. The Affine Two-factor Diffusion Model

Let $\mathbb{N}, \mathbb{Z}_{+}, \mathbb{R}, \mathbb{R}_{+}, \mathbb{R}_{++}, \mathbb{R}_{-}, \mathbb{R}_{--}$and \mathbb{C} denote the sets of positive integers, non-negative integers, real numbers, non-negative real numbers, positive real numbers, non-positive real numbers, negative real numbers and complex numbers, respectively. For $x, y \in \mathbb{R}$, we will use the notations $x \wedge y:=\min (x, y)$ and $x \vee y:=\max (x, y)$. By $C_{\mathrm{c}}^{2}\left(\mathbb{R}_{+} \times \mathbb{R}, \mathbb{R}\right)$, we denote the set of twice continuously differentiable real-valued functions on $\mathbb{R}_{+} \times \mathbb{R}$ with compact support. We will

[^0]denote the convergence in distribution and equality in distribution by $\xrightarrow{\mathcal{D}}$ and $\stackrel{\mathcal{D}}{=}$, respectively.

We start with the definition of a two-factor affine process.
Definition 2.1. A time-homogeneous Markov process $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$with state space $\mathbb{R}_{+} \times \mathbb{R}$ is called a two-factor affine process if its (conditional) characteristic function takes the form

$$
\begin{aligned}
& \mathbb{E}\left(\mathrm{e}^{\mathrm{i}\left(u_{1} Y_{t}+u_{2} X_{t}\right)} \mid\left(Y_{0}, X_{0}\right)=\left(y_{0}, x_{0}\right)\right) \\
& =\exp \left\{y_{0} G_{1}\left(t, u_{1}, u_{2}\right)+x_{0} G_{2}\left(t, u_{1}, u_{2}\right)+H\left(t, u_{1}, u_{2}\right)\right\}, \quad\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}
\end{aligned}
$$

for $\left(y_{0}, x_{0}\right) \in \mathbb{R}_{+} \times \mathbb{R}, t \in \mathbb{R}_{+}$, where $G_{1}\left(t, u_{1}, u_{2}\right), G_{2}\left(t, u_{1}, u_{2}\right), H\left(t, u_{1}, u_{2}\right) \in \mathbb{C}$.
Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}, \mathbb{P}\right)$ be a filtered probability space satisfying the usual conditions, i.e., $(\Omega, \mathcal{F}, \mathbb{P})$ is complete, the filtration $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$is right-continuous and \mathcal{F}_{0} contains all the \mathbb{P}-null sets in \mathcal{F}. Let $\left(W_{t}, B_{t}, L_{t}\right)_{t \in[0, \infty)}$ be a 3-dimensional standard $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$-Wiener process.

The next proposition is about the existence and uniqueness of a strong solution of the SDE (1.1).

Proposition 2.2. Let $\left(\eta_{0}, \xi_{0}\right)$ be a random vector independent of the process $\left(W_{t}, B_{t}, L_{t}\right)_{t \in \mathbb{R}_{+}}$satisfying $\mathbb{P}\left(\eta_{0} \in \mathbb{R}_{+}\right)=1$. Then for all $a \in \mathbb{R}_{+}$, $b, \alpha, \beta, \gamma \in \mathbb{R}, \quad \sigma_{1}, \sigma_{2}, \sigma_{3} \in \mathbb{R}_{+}, \varrho \in[-1,1]$, there is a (pathwise) unique strong solution $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$of the $S D E(1.1)$ such that $\mathbb{P}\left(\left(Y_{0}, X_{0}\right)=\left(\eta_{0}, \xi_{0}\right)\right)=1$ and $\mathbb{P}\left(Y_{t} \in \mathbb{R}_{+}\right.$for all $\left.t \in \mathbb{R}_{+}\right)=1$. Further, for all $s, t \in \mathbb{R}_{+}$with $s \leqslant t$, we have

$$
\begin{equation*}
Y_{t}=\mathrm{e}^{-b(t-s)} Y_{s}+a \int_{s}^{t} \mathrm{e}^{-b(t-u)} \mathrm{d} u+\sigma_{1} \int_{s}^{t} \mathrm{e}^{-b(t-u)} \sqrt{Y_{u}} \mathrm{~d} W_{u} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{align*}
X_{t}= & \mathrm{e}^{-\gamma(t-s)} X_{s}+\int_{s}^{t} \mathrm{e}^{-\gamma(t-u)}\left(\alpha-\beta Y_{u}\right) \mathrm{d} u \tag{2.2}\\
& +\sigma_{2} \int_{s}^{t} \mathrm{e}^{-\gamma(t-u)} \sqrt{Y_{u}}\left(\varrho \mathrm{~d} W_{u}+\sqrt{1-\varrho^{2}} \mathrm{~d} B_{u}\right)+\sigma_{3} \int_{s}^{t} \mathrm{e}^{-\gamma(t-u)} \mathrm{d} L_{u}
\end{align*}
$$

Moreover, $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$is a two-factor affine process with infinitesimal generator

$$
\begin{align*}
\left(\mathcal{A}_{(Y, X)} f\right)(y, x)= & (a-b y) f_{1}^{\prime}(y, x)+(\alpha-\beta y-\gamma x) f_{2}^{\prime}(y, x) \\
& +\frac{1}{2} y\left[\sigma_{1}^{2} f_{1,1}^{\prime \prime}(y, x)+2 \varrho \sigma_{1} \sigma_{2} f_{1,2}^{\prime \prime}(y, x)+\sigma_{2}^{2} f_{2,2}^{\prime \prime}(y, x)\right] \tag{2.3}\\
& +\frac{1}{2} \sigma_{3}^{2} f_{2,2}^{\prime \prime}(y, x)
\end{align*}
$$

where $(y, x) \in \mathbb{R}_{+} \times \mathbb{R}, \quad f \in \mathcal{C}_{c}^{2}\left(\mathbb{R}_{+} \times \mathbb{R}, \mathbb{R}\right)$, and $f_{i}^{\prime}, \quad i \in\{1,2\}$, and $f_{i, j}^{\prime \prime}$, $i, j \in\{1,2\}$, denote the first and second order partial derivatives of f with respect to its i-th and i-th and j-th variables.

Conversely, every two-factor affine diffusion process is a (pathwise) unique strong solution of a $S D E$ (1.1) with suitable parameters $a \in \mathbb{R}_{+}, b, \alpha, \beta, \gamma \in \mathbb{R}$, $\sigma_{1}, \sigma_{2}, \sigma_{3} \in \mathbb{R}_{+}$and $\varrho \in[-1,1]$.

Proof. Equation (1.1) is a special case of the equation (6.6) in Dawson and Li [6], and Theorem 6.2 in Dawson and $\mathrm{Li}[6]$ implies that for any initial value $\left(\eta_{0}, \xi_{0}\right)$ with $\mathbb{P}\left(\left(\eta_{0}, \xi_{0}\right) \in \mathbb{R}_{+} \times \mathbb{R}\right)=1$ and $\mathbb{E}\left(\eta_{0}\right)<\infty, \mathbb{E}\left(\left|\xi_{0}\right|\right)<\infty$, there exists a pathwise unique non-negative strong solution satisfying $\mathbb{P}\left(\left(Y_{0}, X_{0}\right)=\left(\eta_{0}, \xi_{0}\right)\right)=1$ and $\mathbb{P}\left(Y_{t} \in \mathbb{R}_{+}\right.$for all $\left.t \in \mathbb{R}_{+}\right)=1$.

Applications of the Itô's formula to the processes $\left(\mathrm{e}^{b t} Y_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(\mathrm{e}^{\gamma t} X_{t}\right)_{t \in \mathbb{R}_{+}}$ give formulas (2.1) and (2.2), respectively.

The form of the infinitesimal generator (2.3) readily follows by (6.5) in Dawson and $\mathrm{Li}[6]$. Further, Theorem 6.2 in Dawson and $\mathrm{Li}[6]$ also implies that Y is a continuous state and continuous time branching process with infinitesimal generator given in the Proposition.

The converse follows from Theorems 6.1 and 6.2 in Dawson and Li [6].
Next we present a result about the first moment of $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$together with its asymptotic behavior as $t \rightarrow \infty$. Note that the formula for $\mathbb{E}\left(Y_{t}\right), t \in \mathbb{R}_{+}$, is well known.

Proposition 2.3. Let $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$be the unique strong solution of the $S D E$ (1.1) satisfying $\mathbb{P}\left(Y_{0} \in \mathbb{R}_{+}\right)=1$ and $\mathbb{E}\left(Y_{0}\right)<\infty, \mathbb{E}\left(\left|X_{0}\right|\right)<\infty$. Then

$$
\begin{aligned}
{\left[\begin{array}{c}
\mathbb{E}\left(Y_{t}\right) \\
\mathbb{E}\left(X_{t}\right)
\end{array}\right]=} & {\left[\begin{array}{cc}
\mathrm{e}^{-b t} & 0 \\
-\beta \mathrm{e}^{-\gamma t} \int_{0}^{t} \mathrm{e}^{(\gamma-b) u} \mathrm{~d} u & \mathrm{e}^{-\gamma t}
\end{array}\right]\left[\begin{array}{c}
\mathbb{E}\left(Y_{0}\right) \\
\mathbb{E}\left(X_{0}\right)
\end{array}\right] } \\
& +\left[\begin{array}{cc}
\int_{0}^{t} \mathrm{e}^{-b u} \mathrm{~d} u \\
-\beta \mathrm{e}^{-\gamma t} \int_{0}^{t} \mathrm{e}^{\gamma u}\left(\int_{0}^{u} \mathrm{e}^{-b v} \mathrm{~d} v\right) \mathrm{d} u & \int_{0}^{t} \mathrm{e}^{-\gamma u} \mathrm{~d} u
\end{array}\right]\left[\begin{array}{c}
a \\
\alpha
\end{array}\right], \quad t \in \mathbb{R}_{+} .
\end{aligned}
$$

Consequently, as $t \rightarrow \infty$, if $b \in \mathbb{R}_{++}$, then $\mathbb{E}\left(Y_{t}\right)=\frac{a}{b}+\mathrm{O}\left(\mathrm{e}^{-b t}\right)$ and

$$
\mathbb{E}\left(X_{t}\right)= \begin{cases}\frac{\alpha}{\gamma}-\frac{a \beta}{b \gamma}+\mathrm{O}\left(\mathrm{e}^{-(b \wedge \gamma) t}\right), & \gamma \in \mathbb{R}_{++} \\ \left(\alpha-\frac{a \beta}{b}\right) t+\mathrm{O}(1), & \gamma=0 \\ \left(\frac{\beta}{\gamma-b} \mathbb{E}\left(Y_{0}\right)+\mathbb{E}\left(X_{0}\right)-\frac{\alpha}{\gamma}+\frac{a \beta}{b \gamma}-\frac{a \beta}{(\gamma-b) b}\right) \mathrm{e}^{-\gamma t}+\mathrm{O}(1), & \gamma \in \mathbb{R}_{--}\end{cases}
$$

if $b=0$, then $\mathbb{E}\left(Y_{t}\right)=a t+\mathrm{O}(1)$, and

$$
\mathbb{E}\left(X_{t}\right)= \begin{cases}-\frac{a \beta}{\gamma} t+\mathrm{O}(1), & \gamma \in \mathbb{R}_{++} \\ -\frac{1}{2} a \beta t^{2}+\mathrm{O}(t), & \gamma=0 \\ \left(\frac{\beta}{\gamma} \mathbb{E}\left(Y_{0}\right)+\mathbb{E}\left(X_{0}\right)-\frac{\alpha}{\gamma}-\frac{a \beta}{\gamma^{2}}\right) \mathrm{e}^{-\gamma t}+\mathrm{O}(t), & \gamma \in \mathbb{R}_{--}\end{cases}
$$

if $b \in \mathbb{R}_{--}$, then $\mathbb{E}\left(Y_{t}\right)=\left(\mathbb{E}\left(Y_{0}\right)-\frac{a}{b}\right) \mathrm{e}^{-b t}+\mathrm{O}(1)$, and

$$
\mathbb{E}\left(X_{t}\right)= \begin{cases}\left(-\frac{\beta}{\gamma-b} \mathbb{E}\left(Y_{0}\right)+\frac{a \beta}{(\gamma-b) b}\right) \mathrm{e}^{-b t}+\mathrm{O}(1), & \gamma \in \mathbb{R}_{++}, \\ \left(\frac{\beta}{b} \mathbb{E}\left(Y_{0}\right)+\mathbb{E}\left(X_{0}\right)-\frac{\beta a}{b^{2}}\right) \mathrm{e}^{-b t}+\mathrm{O}(t), & \gamma=0 \\ \left(-\frac{\beta}{\gamma-b} \mathbb{E}\left(Y_{0}\right)+\frac{a \beta}{(\gamma-b) b}\right) \mathrm{e}^{-b t}+\mathrm{O}\left(\mathrm{e}^{-\gamma t}\right), & \gamma \in(b, 0), \\ \left(-\beta \mathbb{E}\left(Y_{0}\right)+\frac{a \beta}{b}\right) t \mathrm{e}^{-b t}+\mathrm{O}\left(\mathrm{e}^{-\gamma t}\right), & \gamma=b, \\ \left(\frac{\beta}{\gamma-b} \mathbb{E}\left(Y_{0}\right)+\mathbb{E}\left(X_{0}\right)-\frac{\alpha}{\gamma}+\frac{a \beta}{b \gamma}-\frac{a \beta}{b(\gamma-b)}\right) \mathrm{e}^{-\gamma t}+\mathrm{O}\left(\mathrm{e}^{-b t}\right), & \gamma \in(-\infty, b)\end{cases}
$$

Proof. It is sufficient to prove the statement in the case when $\left(Y_{0}, X_{0}\right)=\left(y_{0}, x_{0}\right)$ with an arbitrary $\left(y_{0}, x_{0}\right) \in \mathbb{R}_{++} \times \mathbb{R}$, since then the statement of the proposition follows by the law of total expectation.

The formula for $\mathbb{E}\left(Y_{t}\right), t \in \mathbb{R}_{+}$, can be found, e.g., in Cox et al. [5, Equation (19)] or Jeanblanc et al. [9, Theorem 6.3.3.1]. Next we observe that

$$
\begin{equation*}
\left(\int_{0}^{t} \mathrm{e}^{-\gamma(t-u)} \sqrt{Y_{u}} \mathrm{~d}\left(\varrho W_{u}+\sqrt{1-\varrho^{2}} B_{u}\right)\right)_{t \in \mathbb{R}_{+}} \tag{2.4}
\end{equation*}
$$

is a square integrable martingale, since

$$
\mathbb{E}\left[\left(\int_{0}^{t} \mathrm{e}^{-\gamma(t-u)} \sqrt{Y_{u}} \mathrm{~d}\left(\varrho W_{u}+\sqrt{1-\varrho^{2}} B_{u}\right)\right)^{2}\right]=\int_{0}^{t} \mathrm{e}^{-2 \gamma(t-u)} \mathbb{E}\left(Y_{u}\right) \mathrm{d} u<\infty
$$

where the finiteness of the integral follows from

$$
\mathbb{E}\left(Y_{s}\right)=\mathrm{e}^{-b s} y_{0}+a \int_{0}^{s} \mathrm{e}^{-b u} \mathrm{~d} u, \quad s \in \mathbb{R}_{+}
$$

see, e.g., Cox et al. [5, Equation (19)], Jeanblanc et al. [9, Theorem 6.3.3.1] or Proposition 3.2 in Barczy et al. [1]. In a similar way,

$$
\begin{equation*}
\left(\int_{0}^{t} \mathrm{e}^{-\gamma(t-u)} \mathrm{d} L_{u}\right)_{t \in \mathbb{R}_{+}} \tag{2.5}
\end{equation*}
$$

is a square integrable martingale, since

$$
\left.\mathbb{E}\left[\left(\int_{0}^{t} \mathrm{e}^{-\gamma(t-u)} \mathrm{d} L_{u}\right)\right)^{2}\right]=\int_{0}^{t} \mathrm{e}^{-2 \gamma(t-u)} \mathrm{d} u<\infty
$$

Taking expectations of both sides of the equation (2.2) and using the martingale property of the processes in (2.4) and (2.5), we have

$$
\begin{aligned}
\mathbb{E}\left(X_{t}\right)= & \mathrm{e}^{-\gamma t} x_{0}+\int_{0}^{t} \mathrm{e}^{-\gamma(t-u)}\left(\alpha-\beta \mathbb{E}\left(Y_{u}\right)\right) \mathrm{d} u \\
= & \mathrm{e}^{-\gamma t} x_{0}+\alpha \int_{0}^{t} \mathrm{e}^{-\gamma(t-u)} \mathrm{d} u-\beta \int_{0}^{t} \mathrm{e}^{-\gamma(t-u)}\left(\mathrm{e}^{-b u} y_{0}+a \int_{0}^{u} \mathrm{e}^{-b v} \mathrm{~d} v\right) \mathrm{d} u \\
= & \mathrm{e}^{-\gamma t} x_{0}-\beta y_{0} \mathrm{e}^{-\gamma t} \int_{0}^{t} \mathrm{e}^{(\gamma-b) u} \mathrm{~d} u \\
& +\alpha \int_{0}^{t} \mathrm{e}^{-\gamma v} \mathrm{~d} v-\beta a \mathrm{e}^{-\gamma t} \int_{0}^{t} \mathrm{e}^{\gamma u}\left(\int_{0}^{u} \mathrm{e}^{-b v} \mathrm{~d} v\right) \mathrm{d} u, \quad t \in \mathbb{R}_{+}
\end{aligned}
$$

The asymptotic behavior of $\mathbb{E}\left(Y_{t}\right)$ as $t \rightarrow \infty$ does not depend on γ, which can be derived from

$$
\mathbb{E}\left(Y_{t}\right)=\mathrm{e}^{-b t} y_{0}+a \int_{0}^{t} \mathrm{e}^{-b u} \mathrm{~d} u= \begin{cases}\frac{a}{b}+\left(y_{0}-\frac{a}{b}\right) \mathrm{e}^{-b t}, & b \neq 0 \\ y_{0}+a t, & b=0\end{cases}
$$

The asymptotic behavior of $\mathbb{E}\left(X_{t}\right)$ as $t \rightarrow \infty$ does depend on b and γ as well. We have

$$
\begin{aligned}
& \int_{0}^{t} \mathrm{e}^{-\gamma v} \mathrm{~d} v=\left\{\begin{array}{ll}
\frac{1-\mathrm{e}^{-\gamma t}}{\gamma}, & \gamma \neq 0, \\
t, & \gamma=0,
\end{array} \quad \mathrm{e}^{-\gamma t} \int_{0}^{t} \mathrm{e}^{(\gamma-b) u} \mathrm{~d} u= \begin{cases}\frac{\mathrm{e}^{-b t}-\mathrm{e}^{-\gamma t}}{\gamma-b}, & b \neq \gamma, \\
t \mathrm{e}^{-\gamma t}, & b=\gamma,\end{cases} \right. \\
& \mathrm{e}^{-\gamma t} \int_{0}^{t} \mathrm{e}^{\gamma u}\left(\int_{0}^{u} \mathrm{e}^{-b v} \mathrm{~d} v\right) \mathrm{d} u= \begin{cases}\frac{1}{b} \mathrm{e}^{-\gamma t} \int_{0}^{t}\left(\mathrm{e}^{\gamma u}-\mathrm{e}^{(\gamma-b) u}\right) \mathrm{d} u, & b \neq 0, \\
\mathrm{e}^{-\gamma t} \int_{0}^{t} u \mathrm{e}^{\gamma u} \mathrm{~d} u, & b=0,\end{cases} \\
&= \begin{cases}\frac{1-\mathrm{e}^{-\gamma t}}{b \gamma}-\frac{\mathrm{e}^{-b t}-\mathrm{e}^{-\gamma t}}{(\gamma-b) b}, & b \neq 0, \\
\frac{t}{b}-\frac{1-\mathrm{e}^{-b t}}{b^{2}} & b \neq 0, \quad b \neq \gamma, \\
\frac{1-\mathrm{e}^{-\gamma t}}{b \gamma}-\frac{t \mathrm{e}^{-\gamma t}}{b}, & b \neq 0, \\
\frac{t}{\gamma}-\frac{1-\mathrm{e}^{-\gamma t}}{\gamma^{2}} & b \neq 0, \quad b=\gamma, \\
\frac{t^{2}}{2}, & b=0, \gamma \neq 0, \\
& b=0, \gamma=0 .\end{cases}
\end{aligned}
$$

Consequently, if $b \neq 0, \gamma \neq 0$ and $b \neq \gamma$, then

$$
\begin{aligned}
\mathbb{E}\left(X_{t}\right)= & \mathrm{e}^{-\gamma t} x_{0}-\beta y_{0} \frac{\mathrm{e}^{-b t}-\mathrm{e}^{-\gamma t}}{\gamma-b}+\frac{\alpha}{\gamma}\left(1-\mathrm{e}^{-\gamma t}\right) \\
& -\frac{a \beta}{b \gamma}\left(1-\mathrm{e}^{-\gamma t}\right)+\frac{a \beta}{(\gamma-b) b}\left(\mathrm{e}^{-b t}-\mathrm{e}^{-\gamma t}\right) \\
= & \frac{\alpha}{\gamma}-\frac{a \beta}{b \gamma}+\left(-\frac{\beta}{\gamma-b} y_{0}+\frac{a \beta}{(\gamma-b) b}\right) \mathrm{e}^{-b t} \\
& +\left(\frac{\beta}{\gamma-b} y_{0}+x_{0}-\frac{\alpha}{\gamma}+\frac{a \beta}{b \gamma}-\frac{a \beta}{(\gamma-b) b}\right) \mathrm{e}^{-\gamma t}
\end{aligned}
$$

Moreover, if $b \neq 0, \gamma \neq 0$ and $b=\gamma$, then

$$
\begin{aligned}
\mathbb{E}\left(X_{t}\right) & =\mathrm{e}^{-\gamma t} x_{0}-\beta y_{0} t \mathrm{e}^{-\gamma t}+\frac{\alpha}{\gamma}\left(1-\mathrm{e}^{-\gamma t}\right)-\frac{a \beta}{b \gamma}\left(1-\mathrm{e}^{-\gamma t}\right)+\frac{a \beta}{b} t \mathrm{e}^{-\gamma t} \\
& =\frac{\alpha}{\gamma}-\frac{a \beta}{b \gamma}+\left(x_{0}-\frac{\alpha}{\gamma}+\frac{a \beta}{b \gamma}\right) \mathrm{e}^{-\gamma t}+\left(-\beta y_{0}+\frac{a \beta}{b}\right) t \mathrm{e}^{-\gamma t}
\end{aligned}
$$

Further, if $b \neq 0$ and $\gamma=0$, then

$$
\begin{aligned}
\mathbb{E}\left(X_{t}\right) & =\mathrm{e}^{-\gamma t} x_{0}-\beta y_{0} \frac{1-\mathrm{e}^{-b t}}{b}+\alpha t-\frac{a \beta}{b \gamma} t+\frac{a \beta}{b^{2}}\left(1-\mathrm{e}^{-b t}\right) \\
& =-\frac{\beta}{b} y_{0}+\frac{a \beta}{b^{2}}+\left(\alpha-\frac{a \beta}{b}\right) t+\left(\frac{\beta}{b} y_{0}+x_{0}-\frac{a \beta}{b^{2}}\right) \mathrm{e}^{-b t} .
\end{aligned}
$$

In a similar way, if $b=0$ and $\gamma \neq 0$, then

$$
\begin{aligned}
\mathbb{E}\left(X_{t}\right) & =\mathrm{e}^{-\gamma t} x_{0}-\beta y_{0} \frac{1-\mathrm{e}^{-\gamma t}}{\gamma}+\frac{\alpha}{\gamma}\left(1-\mathrm{e}^{-\gamma t}\right)-a \beta\left(\frac{t}{\gamma}-\frac{1-\mathrm{e}^{-\gamma t}}{\gamma^{2}}\right) \\
& =-\frac{\beta}{\gamma} y_{0}+\frac{\alpha}{\gamma}+\frac{a \beta}{\gamma^{2}}-\frac{a \beta}{\gamma} t+\left(\frac{\beta}{\gamma} y_{0}+x_{0}-\frac{\alpha}{\gamma}-\frac{a \beta}{\gamma^{2}}\right) \mathrm{e}^{-\gamma t}
\end{aligned}
$$

and if $b=0$ and $\gamma=0$, then

$$
\mathbb{E}\left(X_{t}\right)=x_{0}-\beta y_{0} t+\alpha t-a \beta \frac{t^{2}}{2}
$$

The asymptotic behavior of $\mathbb{E}\left(X_{t}\right)$ as $t \rightarrow \infty$ can be derived from the above formulas.

Based on the asymptotic behaviour of the expectations $\left(\mathbb{E}\left(Y_{t}\right), \mathbb{E}\left(X_{t}\right)\right)$ as $t \rightarrow \infty$, we introduce a classification of affine diffusion processes given by the SDE (1.1).

Definition 2.4. Let $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$be the unique strong solution of the SDE (1.1) satisfying $\mathbb{P}\left(Y_{0} \in \mathbb{R}_{+}\right)=1$. We call $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$subcritical, critical or supercritical if $b \wedge \gamma \in \mathbb{R}_{++}, b \wedge \gamma=0$ or $b \wedge \gamma \in \mathbb{R}_{--}$, respectively.

The next proposition describes a non-singular linear transform of a 2-dimensional affine diffusion process which is a special 2 -dimensional affine diffusion process with $\varrho=0$.

Proposition 2.5. Let us consider the 2-dimensional affine diffusion model (1.1) with $a \in \mathbb{R}_{+}, \quad b, \alpha, \beta, \gamma \in \mathbb{R}, \quad \sigma_{1}, \sigma_{2}, \sigma_{3} \in \mathbb{R}_{+}, \varrho \in[-1,1]$, and with a random initial value $\left(\eta_{0}, \zeta_{0}\right)$ independent of $\left(W_{t}, B_{t}, L_{t}\right)_{t \in \mathbb{R}_{+}}$satisfying $\mathbb{P}\left(\eta_{0} \in \mathbb{R}_{+}\right)=1$. Put

$$
c:=\left\{\begin{array}{ll}
0, & \text { if } \sigma_{1}=0, \tag{2.6}\\
\frac{\sigma_{2} \varrho}{\sigma_{1}}, & \text { if } \sigma_{1}>0,
\end{array} \quad Z_{t}:=X_{t}-c Y_{t}, \quad t \in \mathbb{R}_{+}\right.
$$

Then the process $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$is a regular affine process with infinitesimal generator

$$
\begin{align*}
\left(\mathcal{A}_{(Y, Z)} f\right)(y, z)= & (a-b y) f_{1}^{\prime}(y, z)+(A-B y-\gamma z) f_{2}^{\prime}(y, z) \\
& +\frac{1}{2} y\left[\sigma_{1}^{2} f_{1,1}^{\prime \prime}(y, z)+\Sigma_{2}^{2} f_{2,2}^{\prime \prime}(y, z)\right]+\frac{1}{2} \sigma_{3}^{2} f_{2,2}^{\prime \prime}(y, z) \tag{2.7}
\end{align*}
$$

for $(y, z) \in \mathbb{R}_{+} \times \mathbb{R}$ and $f \in \mathcal{C}_{c}^{2}\left(\mathbb{R}_{+} \times \mathbb{R}, \mathbb{R}\right)$, where

$$
A:=\alpha-c a, \quad B:=\beta-c(b-\gamma), \quad \Sigma_{2}:= \begin{cases}\sigma_{2}, & \text { if } \sigma_{1}=0 \\ \sigma_{2} \sqrt{1-\varrho^{2}}, & \text { if } \sigma_{1}>0 .\end{cases}
$$

Proof. If $\sigma_{1}=0$, then the statement follows from Proposition 2.2.
If $\sigma_{1}>0$, then, by Itô's formula, $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$is the unique strong solution of the SDE

$$
\left\{\begin{array}{l}
\mathrm{d} Y_{t}=\left(a-b Y_{t}\right) \mathrm{d} t+\sigma_{1} \sqrt{Y_{t}} \mathrm{~d} W_{t} \tag{2.8}\\
\mathrm{~d} Z_{t}=\left(A-B Y_{t}-\gamma Z_{t}\right) \mathrm{d} t+\Sigma_{2} \sqrt{Y_{t}} \mathrm{~d} B_{t}+\sigma_{3} \mathrm{~d} L_{t} .
\end{array} \quad t \in \mathbb{R}_{+}\right.
$$

with random initial value $\left(\eta_{0}, \zeta_{0}-c \eta_{0}\right)$. By Proposition 2.2, $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$is a regular affine process with infinitesimal generator (2.7).

3. Stationarity

The following result states the existence of a unique stationary distribution of the affine diffusion process given by the $\operatorname{SDE}(1.1)$. Let $\mathbb{C}_{-}:=\{z \in \mathbb{C}: \operatorname{Re}(z) \leqslant$ $0\}$.

Theorem 3.1. Let us consider the 2-dimensional affine diffusion model (1.1) with $a \in \mathbb{R}_{+}, \quad b \in \mathbb{R}_{++}, \quad \alpha, \beta \in \mathbb{R}, \quad \gamma \in \mathbb{R}_{++}, \quad \sigma_{1}, \sigma_{2}, \sigma_{3} \in \mathbb{R}_{+}, \quad \varrho \in[-1,1]$, and with a random initial value $\left(\eta_{0}, \zeta_{0}\right)$ independent of $\left(W_{t}, B_{t}, L_{t}\right)_{t \in \mathbb{R}_{+}}$satisfying $\mathbb{P}\left(\eta_{0} \in \mathbb{R}_{+}\right)=1$. Then
(i) $\left(Y_{t}, X_{t}\right) \xrightarrow{\mathcal{D}}\left(Y_{\infty}, X_{\infty}\right)$ as $t \rightarrow \infty$, and we have

$$
\begin{equation*}
\mathbb{E}\left(\mathrm{e}^{u_{1} Y_{\infty}+\mathrm{i} \lambda_{2} X_{\infty}}\right)=\exp \left\{a \int_{0}^{\infty} \kappa_{s}\left(u_{1}, \lambda_{2}\right) \mathrm{d} s+\mathrm{i} \frac{\alpha}{\gamma} \lambda_{2}-\frac{\sigma_{3}^{2}}{4 \gamma} \lambda_{2}^{2}\right\} \tag{3.1}
\end{equation*}
$$

for $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$, where $\kappa_{t}\left(u_{1}, \lambda_{2}\right), t \in \mathbb{R}_{+}$, is the unique solution of the (deterministic) differential equation

$$
\left\{\begin{align*}
\frac{\partial \kappa_{t}}{\partial t}\left(u_{1}, \lambda_{2}\right)= & -b \kappa_{t}\left(u_{1}, \lambda_{2}\right)-\mathrm{i} \beta \mathrm{e}^{-\gamma t} \lambda_{2}+\frac{1}{2} \sigma_{1}^{2} \kappa_{t}\left(u_{1}, \lambda_{2}\right)^{2} \tag{3.2}\\
& +\mathrm{i} \varrho \sigma_{1} \sigma_{2} \mathrm{e}^{-\gamma t} \lambda_{2} \kappa_{t}\left(u_{1}, \lambda_{2}\right)-\frac{1}{2} \sigma_{2}^{2} \mathrm{e}^{-2 \gamma t} \lambda_{2}^{2} \\
\kappa_{0}\left(u_{1}, \lambda_{2}\right)= & u_{1}
\end{align*}\right.
$$

(ii) supposing that the random initial value $\left(\eta_{0}, \zeta_{0}\right)$ has the same distribution as $\left(Y_{\infty}, X_{\infty}\right)$ given in part (i), $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$is strictly stationary.

Proof. First we check that it is enough to prove the statement (i) for the special affine diffusion process $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$given in Proposition 2.5. Hence we suppose that (i) holds for $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$, and we check that then (i) holds for $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$ as well.

If $\sigma_{1}=0$ then $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}=\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$, hence (i) trivially holds for $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$as well.

If $\sigma_{1}>0$ then $\left(Y_{t}, Z_{t}\right) \xrightarrow{\mathcal{D}}\left(Y_{\infty}, Z_{\infty}\right)$ as $t \rightarrow \infty$, and we have

$$
\mathbb{E}\left(\mathrm{e}^{u_{1} Y_{\infty}+\mathrm{i} \lambda_{2} Z_{\infty}}\right)=\exp \left\{a \int_{0}^{\infty} K_{s}\left(u_{1}, \lambda_{2}\right) \mathrm{d} s+\mathrm{i} \frac{A}{\gamma} \lambda_{2}-\frac{\sigma_{3}^{2}}{4 \gamma} \lambda_{2}^{2}\right\}
$$

for $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$, where $K_{t}\left(u_{1}, \lambda_{2}\right), t \in \mathbb{R}_{+}$, is the unique solution of the differential equation

$$
\left\{\begin{align*}
\frac{\partial K_{t}}{\partial t}\left(u_{1}, \lambda_{2}\right)= & -b K_{t}\left(u_{1}, \lambda_{2}\right)-\mathrm{i} B \mathrm{e}^{-\gamma t} \lambda_{2} \tag{3.3}\\
& +\frac{1}{2} \sigma_{1}^{2} K_{t}\left(u_{1}, \lambda_{2}\right)^{2}-\frac{1}{2} \Sigma_{2}^{2} \mathrm{e}^{-2 \gamma t} \lambda_{2}^{2}, \\
K_{0}\left(u_{1}, \lambda_{2}\right)= & u_{1}
\end{align*} \quad t \in \mathbb{R}_{+}\right.
$$

By the continuous mapping theorem, we obtain

$$
\left(Y_{t}, X_{t}\right)=\left(Y_{t}, Z_{t}+\frac{\sigma_{2} \varrho}{\sigma_{1}} Y_{t}\right) \xrightarrow{\mathcal{D}}\left(Y_{\infty}, Z_{\infty}+\frac{\sigma_{2} \varrho}{\sigma_{1}} Y_{\infty}\right)=:\left(Y_{\infty}, X_{\infty}\right) \quad \text { as } \quad t \rightarrow \infty
$$

Moreover, for each $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$,

$$
\begin{aligned}
& \mathbb{E}\left(\mathrm{e}^{u_{1} Y_{\infty}+\mathrm{i} \lambda_{2} X_{\infty}}\right)=\mathbb{E}\left(\exp \left\{u_{1} Y_{\infty}+\mathrm{i} \lambda_{2}\left(Z_{\infty}+\frac{\sigma_{2} \varrho}{\sigma_{1}} Y_{\infty}\right)\right\}\right) \\
& =\mathbb{E}\left(\exp \left\{\left(u_{1}+\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \lambda_{2}\right) Y_{\infty}+\mathrm{i} \lambda_{2} Z_{\infty}\right\}\right) \\
& =\exp \left\{a \int_{0}^{\infty} K_{s}\left(u_{1}+\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \lambda_{2}, \lambda_{2}\right) \mathrm{d} s+\mathrm{i} \frac{A}{\gamma} \lambda_{2}-\frac{\sigma_{3}^{2}}{4 \gamma} \lambda_{2}^{2}\right\} \\
& =\exp \left\{a \int_{0}^{\infty} K_{s}\left(u_{1}+\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \lambda_{2}, \lambda_{2}\right) \mathrm{d} s+\mathrm{i} \frac{\alpha}{\gamma} \lambda_{2}-\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \frac{a}{\gamma} \lambda_{2}-\frac{\sigma_{3}^{2}}{4 \gamma} \lambda_{2}^{2}\right\} \\
& =\exp \left\{a \int_{0}^{\infty} \kappa_{s}\left(u_{1}, \lambda_{2}\right) \mathrm{d} s+\mathrm{i} \frac{\alpha}{\gamma} \lambda_{2}-\frac{\sigma_{3}^{2}}{4 \gamma} \lambda_{2}^{2}\right\}
\end{aligned}
$$

where

$$
\kappa_{t}\left(u_{1}, \lambda_{2}\right):=K_{t}\left(u_{1}+\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \lambda_{2}, \lambda_{2}\right)-\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \mathrm{e}^{-\gamma t} \lambda_{2}
$$

for $t \in \mathbb{R}_{+}$and $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$. Using that $K_{t}\left(u_{1}, \lambda_{2}\right), t \in \mathbb{R}_{+}$, satisfies the differential equation (3.3), we get

$$
\begin{aligned}
& \frac{\partial \kappa_{t}}{\partial t}\left(u_{1}, \lambda_{2}\right)=\frac{\partial K_{t}}{\partial t}\left(u_{1}+\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \lambda_{2}, \lambda_{2}\right)+\mathrm{i} \gamma \frac{\sigma_{2} \varrho}{\sigma_{1}} \mathrm{e}^{-\gamma t} \lambda_{2} \\
&=-b K_{t}\left(u_{1}+\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \lambda_{2}, \lambda_{2}\right)-\mathrm{i} B \mathrm{e}^{-\gamma t} \lambda_{2}+\frac{1}{2} \sigma_{1}^{2} K_{t}\left(u_{1}+\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \lambda_{2}, \lambda_{2}\right)^{2} \\
&-\frac{1}{2} \Sigma_{2}^{2} \mathrm{e}^{-2 \gamma t} \lambda_{2}^{2}+\mathrm{i} \gamma \frac{\sigma_{2} \varrho}{\sigma_{1}} \mathrm{e}^{-\gamma t} \lambda_{2} \\
&=-b\left(\kappa_{t}\left(u_{1}, \lambda_{2}\right)+\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \mathrm{e}^{-\gamma t} \lambda_{2}\right)-\mathrm{i}\left(\beta-\frac{\sigma_{2} \varrho}{\sigma_{1}}(b-\gamma)\right) \mathrm{e}^{-\gamma t} \lambda_{2} \\
& \quad+\frac{1}{2} \sigma_{1}^{2}\left(\kappa_{t}\left(u_{1}, \lambda_{2}\right)+\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \mathrm{e}^{-\gamma t} \lambda_{2}\right)^{2}-\frac{1}{2} \sigma_{2}^{2}\left(1-\varrho^{2}\right) \mathrm{e}^{-2 \gamma t} \lambda_{2}^{2}+\mathrm{i} \gamma \frac{\sigma_{2} \varrho}{\sigma_{1}} \mathrm{e}^{-\gamma t} \lambda_{2} \\
&=-b \kappa_{t}\left(u_{1}, \lambda_{2}\right)-\mathrm{i} \beta \mathrm{e}^{-\gamma t} \lambda_{2}+\frac{1}{2} \sigma_{1}^{2} \kappa_{t}\left(u_{1}, \lambda_{2}\right)^{2} \\
& \quad+\mathrm{i} \varrho \sigma_{1} \sigma_{2} \mathrm{e}^{-\gamma t} \lambda_{2} \kappa_{t}\left(u_{1}, \lambda_{2}\right)-\frac{1}{2} \sigma_{2}^{2} \mathrm{e}^{-2 \gamma t} \lambda_{2}^{2}
\end{aligned}
$$

and

$$
\kappa_{0}\left(u_{1}, \lambda_{2}\right)=K_{0}\left(u_{1}+\mathrm{i} \frac{\sigma_{2 \varrho}}{\sigma_{1}} \lambda_{2}, \lambda_{2}\right)-\mathrm{i} \frac{\sigma_{2 \varrho}}{\sigma_{1}} \lambda_{2}=\left(u_{1}+\mathrm{i} \frac{\sigma_{2 \varrho} \varrho}{\sigma_{1}} \lambda_{2}\right)-\mathrm{i} \frac{\sigma_{2 \varrho}}{\sigma_{1}} \lambda_{2}=u_{1},
$$

hence $\kappa_{t}\left(u_{1}, \lambda_{2}\right), t \in \mathbb{R}_{+}$, is a solution of the differential equation (3.2). In a similar way, if $\kappa_{t}\left(u_{1}, \lambda_{2}\right), t \in \mathbb{R}_{+}$, satisfies the differential equation (3.2), then

$$
K_{t}\left(u_{1}, \lambda_{2}\right):=\kappa_{t}\left(u_{1}-\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \lambda_{2}, \lambda_{2}\right)+\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \mathrm{e}^{-\gamma t} \lambda_{2}, \quad t \in \mathbb{R}_{+}
$$

is a solution of the differential equation (3.3) for each $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$, since

$$
\begin{aligned}
& \frac{\partial K_{t}}{\partial t}\left(u_{1}, \lambda_{2}\right)=\frac{\partial \kappa_{t}}{\partial t}\left(u_{1}-\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \lambda_{2}, \lambda_{2}\right)-\mathrm{i} \gamma \frac{\sigma_{2} \varrho}{\sigma_{1}} \mathrm{e}^{-\gamma t} \lambda_{2} \\
&=-b \kappa_{t}\left(u_{1}-\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \lambda_{2}, \lambda_{2}\right)-\mathrm{i} \beta \mathrm{e}^{-\gamma t} \lambda_{2}+\frac{1}{2} \sigma_{1}^{2} \kappa_{t}\left(u_{1}-\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \lambda_{2}, \lambda_{2}\right)^{2} \\
& \quad+\mathrm{i} \varrho \sigma_{1} \sigma_{2} \mathrm{e}^{-\gamma t} \lambda_{2} \kappa_{t}\left(u_{1}-\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \lambda_{2}, \lambda_{2}\right)-\frac{1}{2} \sigma_{2}^{2} \mathrm{e}^{-2 \gamma t} \lambda_{2}^{2}-\mathrm{i} \gamma \frac{\sigma_{2} \varrho}{\sigma_{1}} \mathrm{e}^{-\gamma t} \lambda_{2} \\
&=-b\left(K_{t}\left(u_{1}, \lambda_{2}\right)-\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \mathrm{e}^{-\gamma t} \lambda_{2}\right)-\mathrm{i} \beta \mathrm{e}^{-\gamma t} \lambda_{2}+\frac{1}{2} \sigma_{1}^{2}\left(K_{t}\left(u_{1}, \lambda_{2}\right)-\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \mathrm{e}^{-\gamma t} \lambda_{2}\right)^{2} \\
&+\mathrm{i} \varrho \sigma_{1} \sigma_{2} \mathrm{e}^{-\gamma t} \lambda_{2}\left(K_{t}\left(u_{1}, \lambda_{2}\right)-\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \mathrm{e}^{-\gamma t} \lambda_{2}\right)-\frac{1}{2} \sigma_{2}^{2} \mathrm{e}^{-2 \gamma t} \lambda_{2}^{2}-\mathrm{i} \gamma \frac{\sigma_{2} \varrho}{\sigma_{1}} \mathrm{e}^{-\gamma t} \lambda_{2} \\
&=-b K_{t}\left(u_{1}, \lambda_{2}\right)-\mathrm{i} B \mathrm{e}^{-\gamma t} \lambda_{2}+\frac{1}{2} \sigma_{1}^{2} K_{t}\left(u_{1}, \lambda_{2}\right)^{2}-\frac{1}{2} \Sigma_{2}^{2} \mathrm{e}^{-2 \gamma t} \lambda_{2}^{2},
\end{aligned}
$$

and

$$
K_{0}\left(u_{1}, \lambda_{2}\right)=\kappa_{0}\left(u_{1}-\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \lambda_{2}, \lambda_{2}\right)+\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \lambda_{2}=\left(u_{1}-\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \lambda_{2}\right)+\mathrm{i} \frac{\sigma_{2} \varrho}{\sigma_{1}} \lambda_{2}=u_{1} .
$$

Consequently, $\quad \kappa_{t}\left(u_{1}, \lambda_{2}\right), \quad t \in \mathbb{R}_{+}, \quad$ is the unique solution of the differential equation (3.2).
(i): We prove this part for the special linear transform described in Proposition 2.5 in three steps.

Step 1. By Theorem 6.1 in Dawson and Li [6] and Proposition 2.2, we have

$$
\begin{equation*}
\mathbb{E}\left(\mathrm{e}^{\left\langle u,\left(Y_{t}, Z_{t}\right)\right\rangle} \mid\left(Y_{0}, Z_{0}\right)=\left(y_{0}, z_{0}\right)\right)=\mathrm{e}^{\left\langle\left(y_{0}, z_{0}\right), \psi_{t}(u)\right\rangle+\phi_{t}(u)} \tag{3.4}
\end{equation*}
$$

for $u \in \mathbb{C}_{-} \times(\mathbb{i} \mathbb{R}), \quad\left(y_{0}, z_{0}\right) \in \mathbb{R}_{+} \times \mathbb{R}, t \in \mathbb{R}_{+}$, for all $u=\left(u_{1}, u_{2}\right) \in \mathbb{C}_{-} \times(\mathrm{i} \mathbb{R})$, we have $\psi_{t}(u)=\left(\psi_{t}^{(1)}(u), \mathrm{e}^{-\gamma t} u_{2}\right), t \in \mathbb{R}_{+}$, where $\psi_{t}^{(1)}(u), t \in \mathbb{R}_{+}$, is a solution of the Riccati equation

$$
\left\{\begin{array}{l}
\frac{\partial \psi_{t}^{(1)}}{\partial t}(u)=R\left(\psi_{t}^{(1)}(u), \mathrm{e}^{-\gamma t} u_{2}\right), \quad t \in \mathbb{R}_{+}, \tag{3.5}\\
\psi_{0}^{(1)}(u)=u_{1}
\end{array}\right.
$$

the function $\mathbb{R}_{+} \times\left(\mathbb{C}_{-} \times(\mathrm{i} \mathbb{R})\right) \ni(t, u) \mapsto \psi_{t}^{(1)}(u)$ is continuous, and

$$
\phi_{t}(u)=\int_{0}^{t} F\left(\psi_{s}^{(1)}(u), \mathrm{e}^{-\gamma s} u_{2}\right) \mathrm{d} s, \quad t \in \mathbb{R}_{+}
$$

where the (complex valued) functions F and R are given by

$$
F(u)=a u_{1}+A u_{2}+\frac{1}{2} \sigma_{3}^{2} u_{2}^{2}, \quad R(u)=-b u_{1}-B u_{2}+\frac{1}{2} \sigma_{1}^{2} u_{1}^{2}+\frac{1}{2} \Sigma_{2}^{2} u_{2}^{2}
$$

for $u=\left(u_{1}, u_{2}\right) \in \mathbb{C}_{-} \times(\mathbb{i})$. Note that for every $u=\left(u_{1}, u_{2}\right) \in \mathbb{C}_{-} \times(\mathbb{R})$ and $t \in \mathbb{R}_{+}$, we have $\psi_{t}^{(1)}(u) \in \mathbb{C}_{-}$and $\phi_{t}(u) \in \mathbb{C}_{-}$. Indeed,

$$
\left|\mathbb{E}\left(\mathrm{e}^{\left\langle u,\left(Y_{t}, Z_{t}\right)\right\rangle} \mid\left(Y_{0}, Z_{0}\right)=\left(y_{0}, z_{0}\right)\right)\right| \leqslant \mathbb{E}\left(\left|\mathrm{e}^{\left\langle u,\left(Y_{t}, Z_{t}\right)\right\rangle}\right| \mid\left(Y_{0}, Z_{0}\right)=\left(y_{0}, z_{0}\right)\right) \leqslant 1
$$

since $\left|\mathrm{e}^{\left\langle u,\left(Y_{t}, Z_{t}\right)\right\rangle}\right|=\mathrm{e}^{\operatorname{Re}\left(\left\langle u,\left(Y_{t}, Z_{t}\right)\right\rangle\right)}=\mathrm{e}^{Y_{t} \operatorname{Re}\left(u_{1}\right)} \leqslant 1$ by $Y_{t} \geqslant 0$ and $\operatorname{Re}\left(u_{1}\right) \leqslant 0$. Consequently,

$$
\left|\mathrm{e}^{\left\langle\left(y_{0}, z_{0}\right), \psi_{t}(u)\right\rangle+\phi_{t}(u)}\right|=\mathrm{e}^{\operatorname{Re}\left(\left\langle\left(y_{0}, z_{0}\right), \psi_{t}(u)\right\rangle\right)+\operatorname{Re}\left(\phi_{t}(u)\right)}=\mathrm{e}^{y_{0} \operatorname{Re}\left(\psi_{t}^{(1)}(u)\right)+\operatorname{Re}\left(\phi_{t}(u)\right)} \leqslant 1,
$$

hence $y_{0} \operatorname{Re}\left(\psi_{t}^{(1)}(u)\right)+\operatorname{Re}\left(\phi_{t}(u)\right) \leqslant 0$. Putting $y_{0}=0$, we obtain $\operatorname{Re}\left(\phi_{t}(u)\right) \leqslant$ 0 , thus $\phi_{t}(u) \in \mathbb{C}_{-}$. Further, for each $y_{0}>0$, we have $\operatorname{Re}\left(\psi_{t}^{(1)}(u)\right) \leqslant$ $-\operatorname{Re}\left(\phi_{t}(u)\right) / y_{0}$, thus letting $y_{0} \rightarrow \infty$, we obtain $\operatorname{Re}\left(\psi_{t}^{(1)}(u)\right) \leqslant 0$, and hence $\psi_{t}^{(1)}(u) \in \mathbb{C}_{-}$.

Moreover, for all $t \in \mathbb{R}_{+}$and $u=\left(u_{1}, u_{2}\right) \in \mathbb{C}_{-} \times(\mathrm{i} \mathbb{R})$, we have

$$
\begin{aligned}
\phi_{t}(u) & =\int_{0}^{t}\left(a \psi_{s}^{(1)}(u)+A \mathrm{e}^{-\gamma s} u_{2}+\frac{1}{2} \sigma_{3}^{2}\left(\mathrm{e}^{-\gamma s} u_{2}\right)^{2}\right) \mathrm{d} s \\
& =a \int_{0}^{t} \psi_{s}^{(1)}(u) \mathrm{d} s+A u_{2} \frac{1-\mathrm{e}^{-\gamma t}}{\gamma}+\frac{1}{2} \sigma_{3}^{2} u_{2}^{2} \frac{1-\mathrm{e}^{-2 \gamma t}}{2 \gamma} .
\end{aligned}
$$

In fact, we have

$$
\begin{equation*}
\mathbb{E}\left(\mathrm{e}^{u_{1} Y_{t}+\mathrm{i} \lambda_{2} Z_{t}} \mid\left(Y_{0}, Z_{0}\right)=\left(y_{0}, z_{0}\right)\right)=\exp \left\{y_{0} K_{t}\left(u_{1}, \lambda_{2}\right)+\mathrm{i} z_{0} \mathrm{e}^{-\gamma t} \lambda_{2}+g_{t}\left(u_{1}, \lambda_{2}\right)\right\} \tag{3.6}
\end{equation*}
$$

for $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$ and $\left(y_{0}, z_{0}\right) \in \mathbb{R}_{+} \times \mathbb{R}$, where

$$
\begin{equation*}
g_{t}\left(u_{1}, \lambda_{2}\right):=a \int_{0}^{t} K_{s}\left(u_{1}, \lambda_{2}\right) \mathrm{d} s+\mathrm{i} A \lambda_{2} \frac{1-\mathrm{e}^{-\gamma t}}{\gamma}-\frac{1}{2} \sigma_{3}^{2} \lambda_{2}^{2} \frac{1-\mathrm{e}^{-2 \gamma t}}{2 \gamma} \tag{3.7}
\end{equation*}
$$

and $K_{t}\left(u_{1}, \lambda_{2}\right), t \in \mathbb{R}_{+}$, is the unique solution of the differential equation (3.3). Indeed, by (3.4) with $u_{2}=\mathrm{i} \lambda_{2}$, we have

$$
\begin{aligned}
& \mathbb{E}\left(\mathrm{e}^{u_{1} Y_{t}+\mathrm{i} \lambda_{2} Z_{t}} \mid\left(Y_{0}, Z_{0}\right)=\left(y_{0}, z_{0}\right)\right) \\
& =\exp \left\{y_{0} \psi_{t}^{(1)}\left(u_{1}, \mathrm{i} \lambda_{2}\right)+\mathrm{i} z_{0} \mathrm{e}^{-\gamma t} \lambda_{2}+a \int_{0}^{t} \psi_{s}^{(1)}\left(u_{1}, \mathrm{i} \lambda_{2}\right) \mathrm{d} s\right. \\
& \left.\quad+\mathrm{i} A \lambda_{2} \frac{1-\mathrm{e}^{-\gamma t}}{\gamma}-\frac{1}{2} \sigma_{3}^{2} \lambda_{2}^{2} \frac{1-\mathrm{e}^{-2 \gamma t}}{2 \gamma}\right\}
\end{aligned}
$$

for $\left(y_{0}, z_{0}\right) \in \mathbb{R}_{+} \times \mathbb{R}$, where

$$
\left\{\begin{aligned}
\frac{\partial \psi_{t}^{(1)}}{\partial t}\left(u_{1}, \mathrm{i} \lambda_{2}\right)= & -b \psi_{t}^{(1)}\left(u_{1}, \mathrm{i} \lambda_{2}\right)-B\left(\mathrm{e}^{-\gamma t} \mathrm{i} \lambda_{2}\right) \\
& +\frac{1}{2} \sigma_{1}^{2}\left[\psi_{t}^{(1)}\left(u_{1}, \mathrm{i} \lambda_{2}\right)\right]^{2}+\frac{1}{2} \Sigma_{2}^{2}\left(\mathrm{e}^{-\gamma t} \mathrm{i} \lambda_{2}\right)^{2}, \quad t \in \mathbb{R}_{+} \\
\psi_{0}^{(1)}\left(u_{1}, \mathrm{i} \lambda_{2}\right)= & u_{1}
\end{aligned}\right.
$$

and hence, for the function $K_{t}\left(u_{1}, \lambda_{2}\right):=\psi_{t}^{(1)}\left(u_{1}, \mathrm{i} \lambda_{2}\right), t \in \mathbb{R}_{+}$, we obtain the differential equation (3.3). Recall that $K_{t}\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-}$for all $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$. The uniqueness of the solution of the differential equation (Cauchy problem) (3.3) follows by general results of Duffie et al. [7, Propositions 6.1, 6.4 and Lemma 9.2].

Step 2. We show that there exists $C_{2} \in \mathbb{R}_{++}$(depending on the parameters b and γ), and for each $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$, there exists $C_{1}\left(u_{1}, \lambda_{2}\right) \in \mathbb{R}_{+}$(depending on the parameters b, B, γ, σ_{1} and $\left.\Sigma_{2}\right)$, such that

$$
\begin{equation*}
\left|K_{t}\left(u_{1}, \lambda_{2}\right)\right| \leqslant C_{1}\left(u_{1}, \lambda_{2}\right) \mathrm{e}^{-C_{2} t}, \quad t \in \mathbb{R}_{+} \tag{3.8}
\end{equation*}
$$

Let us introduce the functions $v_{t}\left(u_{1}, \lambda_{2}\right), t \in \mathbb{R}_{+}$, and $w_{t}\left(u_{1}, \lambda_{2}\right), t \in \mathbb{R}_{+}$, by

$$
v_{t}\left(u_{1}, \lambda_{2}\right):=-\operatorname{Re}\left(K_{t}\left(u_{1}, \lambda_{2}\right)\right), \quad w_{t}\left(u_{1}, \lambda_{2}\right):=\operatorname{Im}\left(K_{t}\left(u_{1}, \lambda_{2}\right)\right), \quad t \in \mathbb{R}_{+}
$$

We observe that, as a consequence of (3.3), the function $\left(v_{t}\left(u_{1}, \lambda_{2}\right), w_{t}\left(u_{1}, \lambda_{2}\right)\right)$, $t \in \mathbb{R}_{+}$, is the unique solution of the system of the Riccati equations

$$
\left\{\begin{array}{l}
\frac{\partial v_{t}}{\partial t}\left(u_{1}, \lambda_{2}\right)=-b v_{t}\left(u_{1}, \lambda_{2}\right)-\frac{1}{2} \sigma_{1}^{2}\left(v_{t}\left(u_{1}, \lambda_{2}\right)^{2}-w_{t}\left(u_{1}, \lambda_{2}\right)^{2}\right)+\frac{1}{2} \Sigma_{2}^{2} \mathrm{e}^{-2 \gamma t} \lambda_{2}^{2} \tag{3.9}\\
\frac{\partial w_{t}}{\partial t}\left(u_{1}, \lambda_{2}\right)=-b w_{t}\left(u_{1}, \lambda_{2}\right)-B \mathrm{e}^{-\gamma t} \lambda_{2}-\sigma_{1}^{2} v_{t}\left(u_{1}, \lambda_{2}\right) w_{t}\left(u_{1}, \lambda_{2}\right) \\
v_{0}\left(u_{1}, \lambda_{2}\right)=-\operatorname{Re}\left(u_{1}\right) \\
w_{0}\left(u_{1}, \lambda_{2}\right)=\operatorname{Im}\left(u_{1}\right)
\end{array}\right.
$$

Note that $K_{t}\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-}$implies $v_{t}\left(u_{1}, \lambda_{2}\right) \geqslant 0$ for all $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times$ \mathbb{R}. Clearly, the function $w_{t}\left(u_{1}, \lambda_{2}\right), \quad t \in \mathbb{R}_{+}$, is the unique solution of the inhomogeneous linear differential equation

$$
\left\{\begin{array}{l}
\frac{\partial w_{t}}{\partial t}\left(u_{1}, \lambda_{2}\right)=-f_{t}\left(u_{1}, \lambda_{2}\right) w_{t}\left(u_{1}, \lambda_{2}\right)-B \lambda_{2} \mathrm{e}^{-\gamma t}, \quad t \in \mathbb{R}_{+} \tag{3.10}\\
w_{0}\left(u_{1}, \lambda_{2}\right)=\operatorname{Im}\left(u_{1}\right)
\end{array}\right.
$$

with $f_{t}\left(u_{1}, \lambda_{2}\right):=b+\sigma_{1}^{2} v_{t}\left(u_{1}, \lambda_{2}\right), \quad t \in \mathbb{R}_{+}$. The general solution of the homogeneous linear differential equation

$$
\frac{\partial \widetilde{w}_{t}}{\partial t}\left(u_{1}, \lambda_{2}\right)=-f_{t}\left(u_{1}, \lambda_{2}\right) \widetilde{w}_{t}\left(u_{1}, \lambda_{2}\right), \quad t \in \mathbb{R}_{+}
$$

takes the form

$$
\widetilde{w}_{t}\left(u_{1}, \lambda_{2}\right)=C \mathrm{e}^{-\int_{0}^{t} f_{z}\left(u_{1}, \lambda_{2}\right) \mathrm{d} z}, \quad t \in \mathbb{R}_{+},
$$

where $C \in \mathbb{R}$. By variation of constants, the function

$$
\mathbb{R}_{+} \ni t \mapsto-B \lambda_{2} \mathrm{e}^{-\int_{0}^{t} f_{z}\left(u_{1}, \lambda_{2}\right) \mathrm{d} z} \int_{0}^{t} \mathrm{e}^{-\gamma s+\int_{0}^{s} f_{z}\left(u_{1}, \lambda_{2}\right) \mathrm{d} z} \mathrm{~d} s, \quad t \in \mathbb{R}_{+}
$$

is a particular solution of the inhomogeneous linear differential equation (3.10). Hence a general solution of the inhomogeneous linear differential equation takes the form

$$
w_{t}\left(u_{1}, \lambda_{2}\right)=C \mathrm{e}^{-\int_{0}^{t} f_{z}\left(u_{1}, \lambda_{2}\right) \mathrm{d} z}-B \lambda_{2} \mathrm{e}^{-\int_{0}^{t} f_{z}\left(u_{1}, \lambda_{2}\right) \mathrm{d} z} \int_{0}^{t} \mathrm{e}^{-\gamma s+\int_{0}^{s} f_{z}\left(u_{1}, \lambda_{2}\right) \mathrm{d} z} \mathrm{~d} s
$$

for $t \in \mathbb{R}_{+}$. Taking into account of the initial value $w_{0}\left(u_{1}, \lambda_{2}\right)=\operatorname{Im}\left(u_{1}\right)$, we obtain $C=\operatorname{Im}\left(u_{1}\right)$. Consequently,

$$
\left|w_{t}\left(u_{1}, \lambda_{2}\right)\right| \leqslant\left|\operatorname{Im}\left(u_{1}\right)\right| \mathrm{e}^{-\int_{0}^{t} f_{z}\left(u_{1}, \lambda_{2}\right) \mathrm{d} z}+\left|B \lambda_{2}\right| \int_{0}^{t} \mathrm{e}^{-\gamma s-\int_{s}^{t} f_{z}\left(u_{1}, \lambda_{2}\right) \mathrm{d} z} \mathrm{~d} s
$$

for $t \in \mathbb{R}_{+}$. Applying $f_{t}\left(u_{1}, \lambda_{2}\right) \geqslant b>0, t \in \mathbb{R}_{+}$, we get $\mathrm{e}^{-\int_{0}^{t} f_{z}\left(u_{1}, \lambda_{2}\right) \mathrm{d} z} \leqslant \mathrm{e}^{-b t}$, $t \in \mathbb{R}_{+}$, and

$$
\int_{0}^{t} \mathrm{e}^{-\gamma s-\int_{s}^{t} f_{z}\left(u_{1}, \lambda_{2}\right) \mathrm{d} z} \mathrm{~d} s \leqslant \int_{0}^{t} \mathrm{e}^{-\gamma s-(t-s) b} \mathrm{~d} s= \begin{cases}\frac{\mathrm{e}^{-\gamma t}-\mathrm{e}^{-b t}}{b-\gamma} \leqslant \frac{\mathrm{e}^{-t \min \{\gamma, b\}}}{|b-\gamma|}, & b \neq \gamma \\ t \mathrm{e}^{-b t} \leqslant \frac{2}{\mathrm{eb}} \mathrm{e}^{-b t / 2}, & b=\gamma\end{cases}
$$

since $t \mathrm{e}^{-b t} \leqslant \mathrm{e}^{-b t / 2} \sup _{t \in \mathbb{R}_{+}} t \mathrm{e}^{-b t / 2}$, where $\sup _{t \in \mathbb{R}_{+}} t \mathrm{e}^{-b t / 2}=2 \mathrm{e}^{-1} / b$. Summarizing, we have

$$
\begin{equation*}
\left|w_{t}\left(u_{1}, \lambda_{2}\right)\right| \leqslant C_{3}\left(u_{1}, \lambda_{2}\right) \mathrm{e}^{-C_{2} t}, \quad t \in \mathbb{R}_{+} \tag{3.11}
\end{equation*}
$$

with

$$
\begin{gathered}
C_{3}\left(u_{1}, \lambda_{2}\right):=\left|\operatorname{Im}\left(u_{1}\right)\right|+\left|B \lambda_{2}\right|\left(\frac{1}{|b-\gamma|} \mathbb{1}_{\{b \neq \gamma\}}+\frac{2}{\mathrm{e} b} \mathbb{1}_{\{b=\gamma\}}\right) \in \mathbb{R}_{+}, \\
C_{2}:=\min \{\gamma, b / 2\} \in \mathbb{R}_{++} .
\end{gathered}
$$

Using (3.9) and (3.11), we obtain

$$
\left\{\begin{array}{l}
\frac{\partial v_{t}}{\partial t}\left(u_{1}, \lambda_{2}\right) \leqslant-b v_{t}\left(u_{1}, \lambda_{2}\right)+C_{4}\left(u_{1}, \lambda_{2}\right) \mathrm{e}^{-C_{2} t}, \quad t \in \mathbb{R}_{+} \\
v_{0}\left(u_{1}, \lambda_{2}\right)=-\operatorname{Re}\left(u_{1}\right)
\end{array}\right.
$$

with $C_{4}\left(u_{1}, \lambda_{2}\right):=\left(\sigma_{1}^{2} C_{3}\left(u_{1}, \lambda_{2}\right)^{2}+\Sigma_{2}^{2} \lambda_{2}^{2}\right) / 2 \in \mathbb{R}_{+}$. By the help of a version of the comparison theorem (see, e.g., Volkmann [17]), we can derive the inequality $v_{t}\left(u_{1}, \lambda_{2}\right) \leqslant \widetilde{v}_{t}\left(u_{1}, \lambda_{2}\right)$ for all $t \in \mathbb{R}_{+}$and $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$, where $\widetilde{v}_{t}\left(u_{1}, \lambda_{2}\right)$, $t \in \mathbb{R}_{+}$, is the unique solution of the inhomogeneous linear differential equation

$$
\left\{\begin{array}{l}
\frac{\partial \widetilde{v}_{t}}{\partial t}\left(u_{1}, \lambda_{2}\right)=-b \widetilde{v}_{t}\left(u_{1}, \lambda_{2}\right)+C_{4}\left(u_{1}, \lambda_{2}\right) \mathrm{e}^{-C_{2} t}, \quad t \in \mathbb{R}_{+}, \\
\widetilde{v}_{0}\left(u_{1}, \lambda_{2}\right)=-\operatorname{Re}\left(u_{1}\right)
\end{array}\right.
$$

This differential equation has the same form as (3.10), hence the solution takes the form

$$
\widetilde{v}_{t}\left(u_{1}, \lambda_{2}\right)=-\operatorname{Re}\left(u_{1}\right) \mathrm{e}^{-b t}+C_{4}\left(u_{1}, \lambda_{2}\right) \mathrm{e}^{-b t} \int_{0}^{t} \mathrm{e}^{-C_{2} s+b s} \mathrm{~d} s, \quad t \in \mathbb{R}_{+}
$$

We have $b-C_{2} \geqslant b / 2>0$ and $b>b / 2 \geqslant C_{2}$, thus

$$
\begin{aligned}
0 \leqslant v_{t}\left(u_{1}, \lambda_{2}\right) \leqslant \widetilde{v}_{t}\left(u_{1}, \lambda_{2}\right) & =-\operatorname{Re}\left(u_{1}\right) \mathrm{e}^{-b t}+C_{4}\left(u_{1}, \lambda_{2}\right) \frac{\mathrm{e}^{-C_{2} t}-\mathrm{e}^{-b t}}{b-C_{2}} \\
& \leqslant C_{5}\left(u_{1}, \lambda_{2}\right) \mathrm{e}^{-C_{2} t}, \quad t \in \mathbb{R}_{+},
\end{aligned}
$$

with $C_{5}\left(u_{1}, \lambda_{2}\right):=-\operatorname{Re}\left(u_{1}\right)+2 C_{4}\left(u_{1}, \lambda_{2}\right) / b \in \mathbb{R}_{+}$. Using (3.11), we conclude

$$
\left|K_{t}\left(u_{1}, \lambda_{2}\right)\right|=\sqrt{v_{t}\left(u_{1}, \lambda_{2}\right)^{2}+w_{t}\left(u_{1}, \lambda_{2}\right)^{2}} \leqslant C_{1}\left(u_{1}, \lambda_{2}\right) \mathrm{e}^{-C_{2} t}, \quad t \in \mathbb{R}_{+},
$$

with $C_{1}\left(u_{1}, \lambda_{2}\right):=C_{5}\left(u_{1}, \lambda_{2}\right)+C_{3}\left(u_{1}, \lambda_{2}\right) \in \mathbb{R}_{+}$, and we obtain (3.8).
Step 3. For each $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}-\times \mathbb{R}$, the function $h_{u_{1}, \lambda_{2}}: \mathbb{R}^{2} \rightarrow \mathbb{C}$, given by $h_{u_{1}, \lambda_{2}}(y, z):=\mathrm{e}^{u_{1} y+\mathrm{i} \lambda_{2} z}, \quad(y, z) \in \mathbb{R}^{2}$, is bounded and continuous, since $\left|\mathrm{e}^{u_{1} y+\mathrm{i} \lambda_{2} z}\right|=\mathrm{e}^{y \operatorname{Re}\left(u_{1}\right)} \leqslant 1$. Hence, by the continuity theorem, by (3.6) and by the portmanteau theorem, to prove (i), it is enough to check that for all $\left(u_{1}, \lambda_{2}\right) \in$ $\mathbb{C}_{-} \times \mathbb{R}$ and $\left(y_{0}, z_{0}\right) \in \mathbb{R}_{+} \times \mathbb{R}$,

$$
\begin{align*}
& \lim _{t \rightarrow \infty}\left[y_{0} K_{t}\left(u_{1}, \lambda_{2}\right)+\mathrm{i} z_{0} \mathrm{e}^{-\gamma t} \lambda_{2}+g_{t}\left(u_{1}, \lambda_{2}\right)\right] \\
& =a \int_{0}^{\infty} K_{s}\left(u_{1}, \lambda_{2}\right) \mathrm{d} s+\mathrm{i} \frac{A}{\gamma} \lambda_{2}-\frac{\sigma_{3}^{2}}{4 \gamma} \lambda_{2}^{2}=: g_{\infty}\left(u_{1}, \lambda_{2}\right), \tag{3.12}
\end{align*}
$$

and that the function $\mathbb{C}_{-} \times \mathbb{R} \ni\left(u_{1}, \lambda_{2}\right) \mapsto g_{\infty}\left(u_{1}, \lambda_{2}\right)$ is continuous. Indeed, using (3.6) and the independence of $\left(\eta_{0}, \zeta_{0}\right)$ and $\left(W_{t}, B_{t}, L_{t}\right)_{t \in \mathbb{R}_{+}}$, the law of total expectation yields that

$$
\begin{aligned}
& \mathbb{E}\left(\mathrm{e}^{u_{1} Y_{t}+\mathrm{i} \lambda_{2} Z_{t}}\right)=\int_{0}^{\infty} \int_{-\infty}^{\infty} \mathbb{E}\left(\mathrm{e}^{u_{1} Y_{t}+\mathrm{i} \lambda_{2} Z_{t}} \mid\left(Y_{0}, Z_{0}\right)=\left(y_{0}, z_{0}\right)\right) \mathbb{P}_{\left(Y_{0}, Z_{0}\right)}\left(\mathrm{d} y_{0}, \mathrm{~d} z_{0}\right) \\
& =\int_{0}^{\infty} \int_{-\infty}^{\infty} \exp \left\{y_{0} K_{t}\left(u_{1}, \lambda_{2}\right)+\mathrm{i} z_{0} \mathrm{e}^{-\gamma t} \lambda_{2}+g_{t}\left(u_{1}, \lambda_{2}\right)\right\} \mathbb{P}_{\left(Y_{0}, Z_{0}\right)}\left(\mathrm{d} y_{0}, \mathrm{~d} z_{0}\right)
\end{aligned}
$$

for all $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$, where $\mathbb{P}_{\left(Y_{0}, Z_{0}\right)}$ denotes the distribution of $\left(Y_{0}, Z_{0}\right)$ on $\mathbb{R}_{+} \times \mathbb{R}$, and hence (3.12) and the dominated convergence theorem implies that

$$
\lim _{t \rightarrow \infty} \mathbb{E}\left(\mathrm{e}^{u_{1} Y_{t}+\mathrm{i} \lambda_{2} Z_{t}}\right)=\int_{0}^{\infty} \int_{-\infty}^{\infty} \mathrm{e}^{g_{\infty}\left(u_{1}, \lambda_{2}\right)} \mathbb{P}_{\left(Y_{0}, Z_{0}\right)}\left(\mathrm{d} y_{0}, \mathrm{~d} z_{0}\right)=\mathrm{e}^{g_{\infty}\left(u_{1}, \lambda_{2}\right)}
$$

for all $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$. Then, using the continuity of the function $\mathbb{C}_{-} \times \mathbb{R} \ni$ $\left(u_{1}, \lambda_{2}\right) \mapsto g_{\infty}\left(u_{1}, \lambda_{2}\right)$ (which will be checked later on), the continuity theorem implies $\left(Y_{t}, X_{t}\right) \xrightarrow{\mathcal{D}}\left(Y_{\infty}, X_{\infty}\right)$ as $t \rightarrow \infty$, and then, applying the portmanteau theorem for the functions $h_{u_{1}, \lambda_{2}},\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$, yields (i).

Next we turn to prove (3.12). By (3.8) and $\gamma>0$, we have

$$
\lim _{t \rightarrow \infty}\left[y_{0} K_{t}\left(u_{1}, \lambda_{2}\right)+\mathrm{i} z_{0} \mathrm{e}^{-\gamma t} \lambda_{2}\right]=0
$$

Recall that

$$
g_{t}\left(u_{1}, \lambda_{2}\right)=a \int_{0}^{t} K_{s}\left(u_{1}, \lambda_{2}\right) \mathrm{d} s+\mathrm{i} A \lambda_{2} \frac{1-\mathrm{e}^{-\gamma t}}{\gamma}-\frac{1}{2} \sigma_{3}^{2} \lambda_{2}^{2} \frac{1-\mathrm{e}^{-2 \gamma t}}{2 \gamma}
$$

Since $\gamma>0$, we have $\lim _{t \rightarrow \infty} \frac{1-\mathrm{e}^{-\gamma t}}{\gamma}=\frac{1}{\gamma}$ and $\lim _{t \rightarrow \infty} \frac{1-\mathrm{e}^{-2 \gamma t}}{2 \gamma}=\frac{1}{2 \gamma}$, and by the dominated convergence theorem, we get

$$
\lim _{t \rightarrow \infty} \int_{0}^{t} K_{s}\left(u_{1}, \lambda_{2}\right) \mathrm{d} s=\int_{0}^{\infty} K_{s}\left(u_{1}, \lambda_{2}\right) \mathrm{d} s
$$

Indeed, by $(3.8),\left|K_{s}\left(u_{1}, \lambda_{2}\right) \mathbb{1}_{[0, t]}(s)\right| \leqslant\left|K_{s}\left(u_{1}, \lambda_{2}\right)\right|$ for all $t \in \mathbb{R}_{+}$and $s \in[0, t]$, and

$$
\int_{0}^{\infty}\left|K_{s}\left(u_{1}, \lambda_{2}\right)\right| \mathrm{d} s \leqslant C_{1}\left(u_{1}, \lambda_{2}\right) \int_{0}^{\infty} \mathrm{e}^{-C_{2} s} \mathrm{~d} s \leqslant \frac{C_{1}\left(u_{1}, \lambda_{2}\right)}{C_{2}}<\infty
$$

The continuity of the function $\mathbb{C}_{-} \times \mathbb{R} \ni\left(u_{1}, \lambda_{2}\right) \mapsto g_{\infty}\left(u_{1}, \lambda_{2}\right)$ can be checked as follows. It will follow if we prove that for all $s \in \mathbb{R}_{+}$, the function K_{s} is continuous. Namely, if $\left(u_{1}^{(n)}, \lambda_{2}^{(n)}\right), \quad n \in \mathbb{N}$, is a sequence in $\mathbb{C}_{-} \times \mathbb{R}$, such that $\lim _{n \rightarrow \infty}\left(u_{1}^{(n)}, \lambda_{2}^{(n)}\right)=\left(u_{1}, \lambda_{2}\right)$, where $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$, then $\lim _{n \rightarrow \infty} K_{s}\left(u_{1}^{(n)}, \lambda_{2}^{(n)}\right)=K_{s}\left(u_{1}, \lambda_{2}\right)$ for all $s \in \mathbb{R}_{+}$, and, by (3.8),

$$
\left|K_{s}\left(u_{1}^{(n)}, \lambda_{2}^{(n)}\right)\right| \leqslant C_{1}\left(u_{1}^{(n)}, \lambda_{2}^{(n)}\right) \mathrm{e}^{-C_{2} s}, \quad n \in \mathbb{N}, \quad s \in \mathbb{R}_{+}
$$

Since the sequence $\left(u_{1}^{(n)}, \lambda_{2}^{(n)}\right), n \in \mathbb{N}$, is bounded (since it is convergent), the dominated convergence theorem implies

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} K_{s}\left(u_{1}^{(n)}, \lambda_{2}^{(n)}\right) \mathrm{d} s=\int_{0}^{\infty} K_{s}\left(u_{1}, \lambda_{2}\right) \mathrm{d} s
$$

which shows the continuity of g_{∞}. Finally, the continuity of the function K_{s} follows from the continuity of the function $\psi_{s}^{(1)}$.
(ii): First we check that the one-dimensional distributions of $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$are translation invariant and have the same distribution as $\left(Y_{\infty}, X_{\infty}\right)$ has. Clearly, it is enough to prove that the one-dimensional distributions of $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$are translation invariant and have the same distribution as $\left(Y_{\infty}, Z_{\infty}\right)$ has. Using (3.1), (3.6), the tower rule and the independence of $\left(Y_{0}, Z_{0}\right)$ and (W, B, L), it is enough to check that for all $t \in \mathbb{R}_{+}$and $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$,

$$
\begin{aligned}
& \mathbb{E}\left(\exp \left\{K_{t}\left(u_{1}, \lambda_{2}\right) Y_{\infty}+\mathrm{ie}^{-\gamma t} \lambda_{2} Z_{\infty}+g_{t}\left(u_{1}, \lambda_{2}\right)\right\}\right) \\
& =\exp \left\{a \int_{0}^{\infty} K_{s}\left(u_{1}, \lambda_{2}\right) \mathrm{d} s+\mathrm{i} \frac{A}{\gamma} \lambda_{2}-\frac{\sigma_{3}^{2}}{4 \gamma} \lambda_{2}^{2}\right\} .
\end{aligned}
$$

By (3.1), (3.7) and using the fact that $K_{t}\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-}$for all $t \in \mathbb{R}_{+}$and $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R} \quad$ (see Step 1 of the proof of part (i)), we have

$$
\mathbb{E}\left(\exp \left\{K_{t}\left(u_{1}, \lambda_{2}\right) Y_{\infty}+\mathrm{ie}^{-\gamma t} \lambda_{2} Z_{\infty}+g_{t}\left(u_{1}, \lambda_{2}\right)\right\}\right)
$$

$$
=\exp \left\{a \int_{0}^{\infty} K_{s}\left(K_{t}\left(u_{1}, \lambda_{2}\right), \mathrm{e}^{-\gamma t} \lambda_{2}\right) \mathrm{d} s+\mathrm{i} \frac{A}{\gamma} \mathrm{e}^{-\gamma t} \lambda_{2}-\frac{\sigma_{3}^{2}}{4 \gamma} \mathrm{e}^{-2 \gamma t} \lambda_{2}^{2}+g_{t}\left(u_{1}, \lambda_{2}\right)\right\}
$$

$$
=\exp \left\{a\left(\int_{0}^{\infty} K_{s}\left(K_{t}\left(u_{1}, \lambda_{2}\right), \mathrm{e}^{-\gamma t} \lambda_{2}\right) \mathrm{d} s+\int_{0}^{t} K_{s}\left(u_{1}, \lambda_{2}\right) \mathrm{d} s\right)+\mathrm{i} \frac{A}{\gamma} \lambda_{2}-\frac{\sigma_{3}^{2}}{4 \gamma} \lambda_{2}^{2}\right\} .
$$

Hence it remains to check that

$$
\int_{0}^{\infty} K_{s}\left(u_{1}, \lambda_{2}\right) \mathrm{d} s=\int_{0}^{\infty} K_{s}\left(K_{t}\left(u_{1}, \lambda_{2}\right), \mathrm{e}^{-\gamma t} \lambda_{2}\right) \mathrm{d} s+\int_{0}^{t} K_{s}\left(u_{1}, \lambda_{2}\right) \mathrm{d} s, \quad t \in \mathbb{R}_{+},
$$

for all $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$, i.e.,

$$
\int_{t}^{\infty} K_{s}\left(u_{1}, \lambda_{2}\right) \mathrm{d} s=\int_{0}^{\infty} K_{s}\left(K_{t}\left(u_{1}, \lambda_{2}\right), \mathrm{e}^{-\gamma t} \lambda_{2}\right) \mathrm{d} s, \quad t \in \mathbb{R}_{+}
$$

for all $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$. For this it is enough to check that

$$
K_{s}\left(K_{t}\left(u_{1}, \lambda_{2}\right), \mathrm{e}^{-\gamma t} \lambda_{2}\right)=K_{s+t}\left(u_{1}, \lambda_{2}\right), \quad s, t \in \mathbb{R}_{+}
$$

for all $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$, or equivalently,

$$
\begin{equation*}
K_{t}\left(K_{s}\left(u_{1}, \lambda_{2}\right), \mathrm{e}^{-\gamma s} \lambda_{2}\right)=K_{t+s}\left(u_{1}, \lambda_{2}\right), \quad s, t \in \mathbb{R}_{+} \tag{3.13}
\end{equation*}
$$

for all $\left(u_{1}, \lambda_{2}\right) \in \mathbb{C}_{-} \times \mathbb{R}$. By (3.3), we have

$$
\begin{aligned}
\frac{\partial K_{s+t}}{\partial t}\left(u_{1}, \lambda_{2}\right)= & -b K_{s+t}\left(u_{1}, \lambda_{2}\right)-\mathrm{i} B \mathrm{e}^{-\gamma(s+t)} \lambda_{2} \\
& +\frac{1}{2} \sigma_{1}^{2} K_{s+t}\left(u_{1}, \lambda_{2}\right)^{2}-\frac{1}{2} \Sigma_{2}^{2} \mathrm{e}^{-2 \gamma(s+t)} \lambda_{2}^{2}
\end{aligned}
$$

for $t \in \mathbb{R}_{+}$with initial condition $K_{s+0}\left(u_{1}, \lambda_{2}\right)=K_{s}\left(u_{1}, \lambda_{2}\right)$. Note also that, again by (3.3),

$$
\begin{aligned}
\frac{\partial K_{t}}{\partial t}\left(K_{s}\left(u_{1}, \lambda_{2}\right), \mathrm{e}^{-\gamma s} \lambda_{2}\right)= & -b K_{t}\left(K_{s}\left(u_{1}, \lambda_{2}\right), \mathrm{e}^{-\gamma s} \lambda_{2}\right)-\mathrm{i} B \mathrm{e}^{-\gamma t}\left(\mathrm{e}^{-\gamma s} \lambda_{2}\right) \\
& +\frac{1}{2} \sigma_{1}^{2} K_{t}\left(K_{s}\left(u_{1}, \lambda_{2}\right), \mathrm{e}^{-\gamma s} \lambda_{2}\right)^{2}+\frac{1}{2} \Sigma_{2}^{2} \mathrm{e}^{-2 \gamma t}\left(\mathrm{e}^{-\gamma s} \lambda_{2}\right)^{2}
\end{aligned}
$$

for $t \in \mathbb{R}_{+}$with initial condition $K_{0}\left(K_{s}\left(u_{1}, \lambda_{2}\right), \mathrm{e}^{-\gamma s} \lambda_{2}\right)=K_{s}\left(u_{1}, \lambda_{2}\right)$. Hence, for all $s \in \mathbb{R}_{+}$, the left and right sides of (3.13), as functions of $t \in \mathbb{R}_{+}$, satisfy the differential equation (3.3) with $\mathrm{e}^{-\gamma s} \lambda_{2}$ instead of λ_{2} and with the initial value $K_{s}\left(u_{1}, \lambda_{2}\right)$. Since (3.3) has a unique solution for all non-negative initial values, we obtain (3.13).

Finally, the strict stationarity (translation invariance of the finite dimensional distributions) of $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$follows by the chain's rule for conditional expectations using also that it is a time homogeneous Markov process.

4. Exponential Ergodicity

In the subcritical case, the following result states the exponential ergodicity for the process $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$. As a consequence, according to the discussion after Proposition 2.5 in Bhattacharya [3], one also obtains a strong law of large numbers (4.3) for $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$.

Theorem 4.1. Let us consider the 2-dimensional affine diffusion model (1.1) with $a, b \in \mathbb{R}_{++}, \quad \alpha, \beta \in \mathbb{R}, \quad \gamma \in \mathbb{R}_{++}, \quad \sigma_{1} \in \mathbb{R}_{++}, \quad \sigma_{2}, \sigma_{3} \in \mathbb{R}_{+} \quad$ and $\varrho \in[-1,1]$ with a random initial value $\left(\eta_{0}, \zeta_{0}\right)$ independent of $\left(W_{t}, B_{t}, L_{t}\right)_{t \in \mathbb{R}_{+}}$satisfying $\mathbb{P}\left(\eta_{0} \in \mathbb{R}_{+}\right)=1$. Suppose that $\left(1-\varrho^{2}\right) \sigma_{2}^{2}+\sigma_{3}^{2}>0$. Then the process $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$ is exponentially ergodic, namely, there exist $\delta \in \mathbb{R}_{++}, B \in \mathbb{R}_{++}$and $\kappa \in \mathbb{R}_{++}$, such that

$$
\begin{equation*}
\sup _{|g| \leqslant V+1}\left|\mathbb{E}\left(g\left(Y_{t}, X_{t}\right) \mid\left(Y_{0}, X_{0}\right)=\left(y_{0}, x_{0}\right)\right)-\mathbb{E}\left(g\left(Y_{\infty}, X_{\infty}\right)\right)\right| \leqslant B\left(V\left(y_{0}, x_{0}\right)+1\right) \mathrm{e}^{-\delta t} \tag{4.1}
\end{equation*}
$$

for all $t \in \mathbb{R}_{+}$and $\left(y_{0}, x_{0}\right) \in \mathbb{R}_{+} \times \mathbb{R}$, where the supremum is running for Borel measurable functions $g: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
V(y, x):=y^{2}+\kappa x^{2}, \quad(y, x) \in \mathbb{R}_{+} \times \mathbb{R} \tag{4.2}
\end{equation*}
$$

and the distribution of $\left(Y_{\infty}, X_{\infty}\right)$ is given by (3.1) and (3.2). Moreover, for all Borel measurable functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\mathbb{E}\left(\left|f\left(Y_{\infty}, X_{\infty}\right)\right|\right)<\infty$, we have

$$
\begin{equation*}
\mathbb{P}\left(\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} f\left(Y_{s}, X_{s}\right) \mathrm{d} s=\mathbb{E}\left(f\left(Y_{\infty}, X_{\infty}\right)\right)\right)=1 \tag{4.3}
\end{equation*}
$$

Proof. First we check that it is enough to prove (4.1) for the special affine diffusion process $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$given in Proposition 2.5. Hence we suppose that (4.1) holds for $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$with $\delta \in \mathbb{R}_{++}, \quad B \in \mathbb{R}_{++}$and $\kappa \in \mathbb{R}_{++}$, and we check that then (4.1) holds for $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$with $\delta \in \mathbb{R}_{++}$, with some appropriate $\widetilde{B} \in \mathbb{R}_{++}$, and with $\kappa \in \mathbb{R}_{++}$as well. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a Borel measurable function with $|g(y, x)| \leqslant V(y, x)+1=y^{2}+\kappa x^{2}+1, \quad(y, x) \in \mathbb{R}_{+} \times \mathbb{R}$. Then $g\left(Y_{t}, X_{t}\right)=g\left(Y_{t}, Z_{t}+c Y_{t}\right)=h\left(Y_{t}, Z_{t}\right), \quad t \in \mathbb{R}_{+}$, where $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by $h(y, z):=g(y, z+c y),(y, z) \in \mathbb{R}^{2}$. Clearly, h is also a Borel measurable function. Moreover, (i) of Theorem 3.1 implies $\left(Y_{t}, X_{t}\right) \xrightarrow{\mathcal{D}}\left(Y_{\infty}, X_{\infty}\right)$ as $t \rightarrow \infty$. Again by (i) of Theorem 3.1, we obtain $\left(Y_{t}, X_{t}\right)=\left(Y_{t}, Z_{t}+c Y_{t}\right) \xrightarrow{\mathcal{D}}\left(Y_{\infty}, Z_{\infty}+c Y_{\infty}\right)$ as $t \rightarrow \infty$, consequently, $\left(Y_{\infty}, X_{\infty}\right) \stackrel{\mathcal{D}}{=}\left(Y_{\infty}, Z_{\infty}+c Y_{\infty}\right)$, and hence, $\mathbb{E}\left(g\left(Y_{\infty}, X_{\infty}\right)\right)=$
$\mathbb{E}\left(g\left(Y_{\infty}, Z_{\infty}+c Y_{\infty}\right)\right)=\mathbb{E}\left(h\left(Y_{\infty}, Z_{\infty}\right)\right)$. We conclude

$$
\begin{aligned}
& \left|\mathbb{E}\left(g\left(Y_{t}, X_{t}\right) \mid\left(Y_{0}, X_{0}\right)=\left(y_{0}, x_{0}\right)\right)-\mathbb{E}\left(g\left(Y_{\infty}, X_{\infty}\right)\right)\right| \\
& =\left|\mathbb{E}\left(g\left(Y_{t}, Z_{t}+c Y_{t}\right) \mid\left(Y_{0}, Z_{0}+c Y_{0}\right)=\left(y_{0}, x_{0}\right)\right)-\mathbb{E}\left(g\left(Y_{\infty}, X_{\infty}\right)\right)\right| \\
& =\left|\mathbb{E}\left(h\left(Y_{t}, Z_{t}\right) \mid\left(Y_{0}, Z_{0}\right)=\left(y_{0}, z_{0}\right)\right)-\mathbb{E}\left(h\left(Y_{\infty}, Z_{\infty}\right)\right)\right|
\end{aligned}
$$

with $z_{0}:=x_{0}-c y_{0}$. By the assumption, (4.1) holds for $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$and Borel measurable functions $\widetilde{g}: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ with $|\widetilde{g}(y, z)| \leqslant V(y, z)+1=y^{2}+\kappa z^{2}+1$, $(y, z) \in \mathbb{R}_{+} \times \mathbb{R}$. We have

$$
\begin{aligned}
|h(y, z)| & =|g(y, z+c y)| \leqslant y^{2}+\kappa(z+c y)^{2}+1 \leqslant y^{2}+2 \kappa\left(z^{2}+c^{2} y^{2}\right)+1 \\
& =\left(1+2 \kappa c^{2}\right) y^{2}+2 \kappa z^{2}+1 \leqslant C\left(y^{2}+\kappa z^{2}+1\right)
\end{aligned}
$$

with $C:=\max \left\{1+2 \kappa c^{2}, 2\right\}$, hence we can apply (4.1) for $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$and the Borel measurable function $\frac{1}{C} h(y, z),(y, z) \in \mathbb{R}_{+} \times \mathbb{R}$. We obtain

$$
\left|\mathbb{E}\left(\left.\frac{1}{C} h\left(Y_{t}, Z_{t}\right) \right\rvert\,\left(Y_{0}, Z_{0}\right)=\left(y_{0}, z_{0}\right)\right)-\mathbb{E}\left(\frac{1}{C} h\left(Y_{\infty}, Z_{\infty}\right)\right)\right| \leqslant B\left(y_{0}^{2}+\kappa z_{0}^{2}+1\right) \mathrm{e}^{-\delta t}
$$

and hence

$$
\begin{aligned}
& \left|\mathbb{E}\left(g\left(Y_{t}, X_{t}\right) \mid\left(Y_{0}, X_{0}\right)=\left(y_{0}, x_{0}\right)\right)-\mathbb{E}\left(g\left(Y_{\infty}, X_{\infty}\right)\right)\right| \\
& \leqslant B C\left(y_{0}^{2}+\kappa\left(x_{0}-c y_{0}\right)^{2}+1\right) \mathrm{e}^{-\delta t} \leqslant B C\left(y_{0}^{2}+2 \kappa\left(x_{0}^{2}+c^{2} y_{0}^{2}\right)+1\right) \mathrm{e}^{-\delta t} \\
& =B C\left(\left(1+2 \kappa c^{2}\right) y_{0}^{2}+2 \kappa x_{0}^{2}+1\right) \mathrm{e}^{-\delta t} \leqslant B C^{2}\left(y_{0}^{2}+\kappa x_{0}^{2}+1\right) \mathrm{e}^{-\delta t},
\end{aligned}
$$

thus (4.1) holds for $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$with $\delta \in \mathbb{R}_{++}, \widetilde{B}:=B C^{2} \in \mathbb{R}_{++}$and with $\kappa \in \mathbb{R}_{++}$.

Next we prove (4.3) for the special affine diffusion process $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$given in Proposition 2.5. We use the notations of Meyn and Tweedie [12], [13]. Using Theorem 6.1 (so called Foster-Lyapunov criteria) in Meyn and Tweedie [13], it is enough to check that
(a) $\left(Y_{t}, Z_{t}\right)_{t \geqslant 0}$ is a right process (defined on page 38 in Sharpe [15]);
(b) all compact sets are petite for some skeleton chain (skeleton chains and petite sets are defined on pages 491, 500 in Meyn and Tweedie [12], and page 550 in Meyn and Tweedie [11], respectively);
(c) there exist $c \in \mathbb{R}_{++}$and $d \in \mathbb{R}$ such that the inequality

$$
\left(\mathcal{A}_{n} V\right)(y, z) \leqslant-c V(y, z)+d, \quad(y, z) \in O_{n}
$$

holds for all $n \in \mathbb{N}$, where $O_{n}:=\left\{(y, z) \in \mathbb{R}_{+} \times \mathbb{R}:\|(y, z)\|<n\right\}$ for each $n \in \mathbb{N}$, and \mathcal{A}_{n} denotes the extended generator of the process $\left(Y_{t}^{(n)}, Z_{t}^{(n)}\right)_{t \in \mathbb{R}_{+}}$given by

$$
\left(Y_{t}^{(n)}, Z_{t}^{(n)}\right):= \begin{cases}\left(Y_{t}, Z_{t}\right), & \text { for } t<T_{n} \\ (0, n), & \text { for } t \geqslant T_{n}\end{cases}
$$

where the stopping time T_{n} is defined by $T_{n}:=\inf \left\{t \in \mathbb{R}_{+}:\left(Y_{t}, Z_{t}\right) \in\right.$ $\left.\left(\mathbb{R}_{+} \times \mathbb{R}\right) \backslash O_{n}\right\}$. (Here we note that instead of $(0, n)$ we could have chosen any fixed state in $\left(\mathbb{R}_{+} \times \mathbb{R}\right) \backslash O_{n}$, and we could also have defined
$\left(Y_{t}^{(n)}, Z_{t}^{(n)}\right)_{t \in \mathbb{R}_{+}}$as the stopped process $\left(Y_{t \wedge T_{n}}, Z_{t \wedge T_{n}}\right)_{t \in \mathbb{R}_{+}}$, see Meyn and Tweedie [13, page 521].)
To prove (a), it is enough to show that the process $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$is a (weak) Feller (see Meyn and Tweedy [12, Section 3.1]), strong Markov process with continuous sample paths, see, e.g., Meyn and Tweedy [12, page 498]. According to Proposition 8.2 (or Theorem 2.7) in Duffie et al. [7], the process $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$is a Feller Markov process. Since $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$has continuous sample paths almost surely (especially, it is càdlàg), it is automatically a strong Markov process, see, e.g., Theorem 1 on page 56 in Chung [4].

To prove (b), in view of Proposition 6.2.8 in Meyn and Tweedy [14], it is sufficient to show that the skeleton chain $\left(Y_{n}, Z_{n}\right)_{n \in \mathbb{Z}_{+}}$is irreducible with respect to the Lebesgue measure on $\mathbb{R}_{+} \times \mathbb{R}$ (see, e.g., Meyn and Tweedy [13, page 520]), and admits the Feller property. The skeleton chain $\left(Y_{n}, Z_{n}\right)_{n \in \mathbb{Z}_{+}}$admits the Feller property, since the process $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$is a Feller process. In order to check irreducibility of the skeleton chain $\left(Y_{n}, Z_{n}\right)_{n \in \mathbb{Z}_{+}}$with respect to the Lebesgue measure on $\mathbb{R}_{+} \times \mathbb{R}$, it is enough to prove that the conditional distribution of $\left(Y_{1}, Z_{1}\right)$ given $\left(Y_{0}, Z_{0}\right)$ is absolutely continuous (with respect to the Lebesgue measure on $\left.\mathbb{R}_{+} \times \mathbb{R}\right)$ with a conditional density function $f_{\left(Y_{1}, Z_{1}\right) \mid\left(Y_{0}, Z_{0}\right)}: \mathbb{R}^{2} \times$ $\mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$such that $f_{\left(Y_{1}, Z_{1}\right) \mid\left(Y_{0}, Z_{0}\right)}\left(y, z \mid y_{0}, z_{0}\right)>0$ for all $\left(y, z, y_{0}, z_{0}\right) \in$ $\mathbb{R}_{++} \times \mathbb{R} \times \mathbb{R}_{+} \times \mathbb{R}$. Indeed, the Lebesgue measure on $\mathbb{R}_{+} \times \mathbb{R}$ is σ-finite, and if B is a Borel set in $\mathbb{R}_{+} \times \mathbb{R}$ with positive Lebesgue measure, then

$$
\begin{aligned}
& \mathbb{E}\left(\sum_{n=0}^{\infty} \mathbb{1}_{B}\left(Y_{n}, Z_{n}\right) \mid\left(Y_{0}, Z_{0}\right)=\left(y_{0}, z_{0}\right)\right) \geqslant \mathbb{P}\left(\left(Y_{1}, Z_{1}\right) \in B \mid\left(Y_{0}, Z_{0}\right)=\left(y_{0}, z_{0}\right)\right) \\
& =\iint_{B} f_{\left(Y_{1}, Z_{1}\right) \mid\left(Y_{0}, Z_{0}\right)}\left(y, z \mid y_{0}, z_{0}\right) \mathrm{d} y \mathrm{~d} z>0
\end{aligned}
$$

for all $\left(y_{0}, z_{0}\right) \in \mathbb{R}_{+} \times \mathbb{R}$. The existence of $f_{\left(Y_{1}, Z_{1}\right) \mid\left(Y_{0}, Z_{0}\right)}$ with the required property can be checked as follows. By Theorem 2.2, we have

$$
\begin{aligned}
& Y_{1}=\mathrm{e}^{-b}\left(y_{0}+a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u+\sigma_{1} \int_{0}^{1} \mathrm{e}^{b u} \sqrt{Y_{u}} \mathrm{~d} W_{u}\right) \\
& Z_{1}=\mathrm{e}^{-\gamma}\left(z_{0}+\int_{0}^{1} \mathrm{e}^{\gamma u}\left(A-B Y_{u}\right) \mathrm{d} u+\Sigma_{2} \int_{0}^{1} \mathrm{e}^{\gamma u} \sqrt{Y_{u}} \mathrm{~d} B_{u}+\sigma_{3} \int_{0}^{1} \mathrm{e}^{\gamma u} \mathrm{~d} L_{u}\right),
\end{aligned}
$$

provided that $\left(Y_{0}, Z_{0}\right)=\left(y_{0}, z_{0}\right), \quad\left(y_{0}, z_{0}\right) \in \mathbb{R}_{+} \times \mathbb{R}$. Recall that a twodimensional random vector ζ is absolutely continuous if and only if $V \zeta+v$ is absolutely continuous for all invertable matrices $V \in \mathbb{R}^{2 \times 2}$ and for all vectors $v \in \mathbb{R}^{2}$, and if the density function of ζ is positive on a set $S \subset \mathbb{R}^{2}$, then the density function of $V \zeta+v$ is positive on the set $V S+v$. Hence it is enough to check that the random vector

$$
\begin{equation*}
\left(\sigma_{1} \int_{0}^{1} \mathrm{e}^{b u} \sqrt{Y_{u}} \mathrm{~d} W_{u}, I\right) \tag{4.4}
\end{equation*}
$$

with

$$
I:=-B \int_{0}^{1} \mathrm{e}^{\gamma u} Y_{u} \mathrm{~d} u+\Sigma_{2} \int_{0}^{1} \mathrm{e}^{\gamma u} \sqrt{Y_{u}} \mathrm{~d} B_{u}+\sigma_{3} \int_{0}^{1} \mathrm{e}^{\gamma u} \mathrm{~d} L_{u}
$$

is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^{2} having a density function being strictly positive on the set

$$
\left\{y \in \mathbb{R}: y>-y_{0}-a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u\right\} \times \mathbb{R}
$$

For all $y \leqslant-y_{0}-a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u$ and $z \in \mathbb{R}$, we have

$$
\begin{aligned}
\mathbb{P}\left(\sigma_{1} \int_{0}^{1} \mathrm{e}^{b u} \sqrt{Y_{u}} \mathrm{~d} W_{u}<y, I<z\right) & =\mathbb{P}\left(\mathrm{e}^{b} Y_{1}-y_{0}-a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u<y, I<z\right) \\
& \leqslant \mathbb{P}\left(Y_{1}<0\right)=0,
\end{aligned}
$$

since $\mathbb{P}\left(Y_{1} \geqslant 0\right)=1$. Note that the conditional distribution of I given $\left(Y_{t}\right)_{t \in[0,1]}$ is a normal distribution with mean $-B \int_{0}^{1} \mathrm{e}^{\gamma u} Y_{u} \mathrm{~d} u$ and with variance

$$
\Upsilon^{2}:=\Sigma_{2}^{2} \int_{0}^{1} \mathrm{e}^{2 \gamma u} Y_{u} \mathrm{~d} u+\sigma_{3}^{2} \int_{0}^{1} \mathrm{e}^{2 \gamma u} \mathrm{~d} u
$$

due to the fact that $\left(Y_{t}\right)_{t \in[0,1]}$ and $\left(B_{t}, L_{t}\right)_{t \in \mathbb{R}_{+}}$are independent. Indeed, $\left(Y_{t}\right)_{t \in \mathbb{R}_{+}}$is adapted to the augmented filtration corresponding to η_{0} and $\left(W_{t}\right)_{t \in \mathbb{R}_{+}}$ (see, e.g., Karatzas and Shreve [10, page 285]), and using the independence of the standard Wiener processes W and B, and Problem 2.7.3 in Karatzas and Shreve [10], one can argue that this augmented filtration is independent of the filtration generated by B. Here we call the attention that the condition $\left(1-\varrho^{2}\right) \sigma_{2}^{2}+\sigma_{3}^{2}>0$ implies $\mathbb{P}\left(\Upsilon^{2} \in \mathbb{R}_{++}\right)=1$. Indeed, $\Sigma_{2}^{2}=\left(1-\varrho^{2}\right) \sigma_{2}^{2}$, and the assumption $a>0$ yields $\mathbb{P}\left(\int_{0}^{1} \mathrm{e}^{2 \gamma u} Y_{u} \mathrm{~d} u \in \mathbb{R}_{++}\right)=1$. Hence, using again the independence of the standard Wiener processes W, B and L, we get for all $y>-y_{0}-a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u$ and $z \in \mathbb{R}$, by the law of total expectation,

$$
\begin{aligned}
& \mathbb{P}\left(\sigma_{1} \int_{0}^{1} \mathrm{e}^{b u} \sqrt{Y_{u}} \mathrm{~d} W_{u}<y, I<z\right) \\
& =\mathbb{P}\left(\mathrm{e}^{b} Y_{1}-y_{0}-a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u<y, I<z\right) \\
& =\mathbb{E}\left(\mathbb{P}\left(Y_{1}<\mathrm{e}^{-b}\left(y+y_{0}+a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u\right), I<z \mid\left(Y_{t}\right)_{t \in[0,1]}\right)\right) \\
& =\mathbb{E}\left(\mathbb{E}\left(\mathbb{1}_{\left\{Y_{1}<\mathrm{e}^{-b}\left(y+y_{0}+a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u\right)\right\}} \mathbb{1}_{\{I<z\}} \mid\left(Y_{t}\right)_{t \in[0,1]}\right)\right) \\
& =\mathbb{E}\left(\mathbb{1}_{\left\{Y_{1}<\mathrm{e}^{-b}\left(y+y_{0}+a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u\right)\right\}} \mathbb{P}\left(I<z \mid\left(Y_{t}\right)_{t \in[0,1]}\right)\right) \\
& =\mathbb{E}\left(\mathbb{1}_{\left.\left\{Y_{1}<\mathrm{e}^{-b}\left(y+y_{0}+a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u\right)\right\} \int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi \Upsilon^{2}}} \exp \left\{-\frac{\left(w+B \int_{0}^{1} \mathrm{e}^{\gamma u} Y_{u} \mathrm{~d} u\right)^{2}}{2 \Upsilon^{2}}\right\} \mathrm{d} w\right)}\right. \\
& =\int_{0}^{\mathrm{e}^{-b}\left(y+y_{0}+a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u\right)} \int_{-\infty}^{z} \mathbb{E}\left(\left.\frac{1}{\sqrt{2 \pi \Upsilon^{2}}} \exp \left\{-\frac{\left(w+B \int_{0}^{1} \mathrm{e}^{\gamma u} Y_{u} \mathrm{~d} u\right)^{2}}{2 \Upsilon^{2}}\right\} \right\rvert\, Y_{1}=v\right) \\
& \times f_{Y_{1} \mid Y_{0}}\left(v \mid y_{0}\right) \mathrm{d} v \mathrm{~d} w
\end{aligned}
$$

$$
\begin{aligned}
&=\int_{-y_{0}-a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u}^{y} \int_{-\infty}^{z} \mathbb{E}\left(\frac{1}{\sqrt{2 \pi \Upsilon^{2}}} \exp \left\{-\frac{\left(w+B \int_{0}^{1} \mathrm{e}^{\gamma u} Y_{u} \mathrm{~d} u\right)^{2}}{2 \Upsilon^{2}}\right\}\right. \\
&\left.\mid Y_{1}=\mathrm{e}^{-b}\left(v+y_{0}+a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u\right)\right) \\
& \times f_{Y_{1} \mid Y_{0}}\left(\mathrm{e}^{-b}\left(v+y_{0}+a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u\right) \mid y_{0}\right) \mathrm{e}^{-b} \mathrm{~d} v \mathrm{~d} w
\end{aligned}
$$

where $f_{Y_{1} \mid Y_{0}}$ denotes the conditional density function of Y_{1} given Y_{0}. It is known that for each $y_{0} \in \mathbb{R}_{+}$, we have $f_{Y_{1} \mid Y_{0}}\left(u \mid y_{0}\right)>0$ for Lebesgue a.e. $u \in \mathbb{R}_{++}$, see, e.g., Cox et al. [5, Equation (18)], Jeanblanc et al. [9, Proposition 6.3.2.1] or Ben Alaya and Kebaier [2, the proof of Proposition 2] in case of $y_{0} \in \mathbb{R}_{++}$, and Ikeda and Watanabe [8, page 222] in case of $y_{0}=0$.

In what follows we will make use of the following simple observation: if ξ and η are random variables such that $\mathbb{P}\left(\xi \in \mathbb{R}_{++}\right)=1, \mathbb{E}(\xi)<\infty, \mathbb{P}\left(\eta \in \mathbb{R}_{++}\right)=1$, and η is absolutely continuous with a density function f_{η} having the property $f_{\eta}(x)>0$ Lebesgue a.e. $x \in \mathbb{R}_{++}$, then $\mathbb{E}(\xi \mid \eta=y)>0$ Lebesgue a.e. $y \in \mathbb{R}_{++}$. For a proof, see, e.g., the proof of Theorem 4.1 in the extended arXiv version of Barczy et al. [1].

Now we turn back to the proof that the random vector (4.4) is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^{2} with a density function being strictly positive on the set $\left\{y \in \mathbb{R}: y>-y_{0}-a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u\right\} \times \mathbb{R}$. Using that $f_{Y_{1} \mid Y_{0}}\left(\mathrm{e}^{-b}\left(v+y_{0}+a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u\right) \mid y_{0}\right)>0$ for all $v>-y_{0}-a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u$, there exists a measurable function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$such that $g(v, w)>0$ for $v>-y_{0}-a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u, w \in \mathbb{R}$, and

$$
\begin{aligned}
& \mathbb{P}\left(\sigma_{1} \int_{0}^{1} \mathrm{e}^{b u} \sqrt{Y_{u}} \mathrm{~d} W_{u}<y, I<z\right) \\
& = \begin{cases}\int_{-y_{0}-a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u} \int_{-\infty}^{\infty} g(v, w) \mathrm{d} v \mathrm{~d} w & \text { if } y>-y_{0}-a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u, \quad z \in \mathbb{R} \\
0 & \text { if } y \leqslant-y_{0}-a \int_{0}^{1} \mathrm{e}^{b u} \mathrm{~d} u, \quad z \in \mathbb{R}\end{cases}
\end{aligned}
$$

Consequently, the random vector (4.4) is absolutely continuous with density function g having the desired property.

To prove (c), first we note that, since the sample paths of $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$are almost surely continuous, for each $n \in \mathbb{N}$, the extended generator has the form

$$
\begin{aligned}
\left(\mathcal{A}_{n} f\right)(y, z)= & (a-b y) f_{1}^{\prime}(y, z)+(A-B y-\gamma z) f_{2}^{\prime}(y, z) \\
& +\frac{y}{2}\left(\sigma_{1}^{2} f_{1,1}^{\prime \prime}(y, z)+\Sigma_{2}^{2} f_{2,2}^{\prime \prime}(y, z)\right)+\frac{\sigma_{3}^{2}}{2} f_{2,2}^{\prime \prime}(y, z)
\end{aligned}
$$

for all $(y, z) \in O_{n}$ and $f \in \mathcal{C}^{2}\left(\mathbb{R}_{+} \times \mathbb{R}, \mathbb{R}\right)$, see, e.g., page 538 in Meyn and Tweedie [13]. We also note that, by Duffie et al. [7, Theorem 2.7], for functions $f \in \mathcal{C}_{\mathrm{c}}^{2}\left(\mathbb{R}_{+} \times \mathbb{R}, \mathbb{R}\right), \quad \mathcal{A}_{n} f=\mathcal{A} f$ on O_{n}, \quad where \mathcal{A} denotes the (non-extended) generator of the process $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$. For the function V defined in (4.2), we have $V \in \mathcal{C}^{2}\left(\mathbb{R}_{+} \times \mathbb{R}, \mathbb{R}\right)$ and

$$
V_{1}^{\prime}(y, z)=2 y, \quad V_{2}^{\prime}(y, z)=2 \kappa z, \quad V_{1,1}^{\prime \prime}(y, z)=2, \quad V_{2,2}^{\prime \prime}(y, z)=2 \kappa
$$

for $(y, z) \in \mathbb{R}_{+} \times \mathbb{R}$, and hence for all $n \in \mathbb{N}$ and $c \in \mathbb{R}_{++}$,

$$
\begin{aligned}
\left(\mathcal{A}_{n} V\right)(y, z)+c V(y, z)= & 2(a-b y) y+2 \kappa(A-B y-\gamma z) z+y\left(\sigma_{1}^{2}+\kappa \Sigma_{2}^{2}\right) \\
& +\kappa \sigma_{3}^{2}+c y^{2}+c \kappa z^{2} \\
= & -(2 b-c) y^{2}-2 \kappa B y z-\kappa(2 \gamma-c) z^{2} \\
& +c_{1} y+2 \kappa A z+\kappa \sigma_{3}^{2}
\end{aligned}
$$

for all $(y, z) \in O_{n}$ with

$$
c_{1}:=2 a+\sigma_{1}^{2}+\kappa \Sigma_{2}^{2} .
$$

Thus

$$
\left(\mathcal{A}_{n} V\right)(y, z)+c V(y, z)=-c_{2}\left(y+\frac{\kappa B z}{c_{2}}\right)^{2}-c_{3} z^{2}+c_{1}\left(y+\frac{\kappa B z}{c_{2}}\right)+c_{4} z+\kappa \sigma_{3}^{2}
$$

for all $(y, z) \in O_{n}$ with

$$
c_{2}:=2 b-c, \quad c_{3}:=\kappa\left(2 \gamma-c-\frac{\kappa B^{2}}{c_{2}}\right), \quad c_{4}:=2 \kappa A-c_{1} \frac{\kappa B}{c_{2}}
$$

whenever $c_{2} \neq 0$. Consequently,

$$
\left(\mathcal{A}_{n} V\right)(y, z)+c V(y, z)=-c_{2}\left(y+\frac{\kappa B z}{c_{2}}-\frac{c_{1}}{2 c_{2}}\right)^{2}-c_{3}\left(z-\frac{c_{4}}{2 c_{3}}\right)^{2}+d
$$

for all $(y, z) \in O_{n}$ with

$$
d:=\frac{c_{1}^{2}}{4 c_{2}}+\frac{c_{4}^{2}}{4 c_{3}}+\kappa \sigma_{3}^{2}
$$

whenever $c_{2} \neq 0$ and $c_{3} \neq 0$. Let us choose

$$
c \in(0,2 \min \{b, \gamma\}), \quad \kappa \in\left(0, \frac{(2 \gamma-c)(2 b-c)}{B^{2}}\right) .
$$

Then $c_{2}>0$ and $c_{3}>0$, hence

$$
\left(\mathcal{A}_{n} V\right)(y, z) \leqslant-c V(y, z)+d, \quad(y, z) \in O_{n}, \quad n \in \mathbb{N}
$$

and the proof is complete.

5. Moments of the Stationary Distribution

Theorem 5.1. Let us consider the 2-dimensional affine diffusion model (1.1) with $a \in \mathbb{R}_{+}, \quad b \in \mathbb{R}_{++}, \quad \alpha, \beta \in \mathbb{R}, \quad \gamma \in \mathbb{R}_{++}, \sigma_{1}, \sigma_{2}, \sigma_{3} \in \mathbb{R}_{+}, \varrho \in[-1,1]$, and the random vector $\left(Y_{\infty}, X_{\infty}\right)$ given by Theorem 3.1. Then all the (mixed) moments of $\left(Y_{\infty}, X_{\infty}\right)$ of any order are finite, i.e., we have $\mathbb{E}\left(Y_{\infty}^{n}\left|X_{\infty}\right|^{p}\right)<\infty$ for all $n, p \in \mathbb{Z}_{+}$, and the recursion

$$
\begin{aligned}
\mathbb{E}\left(Y_{\infty}^{n} X_{\infty}^{p}\right)=\frac{1}{n b+p \gamma}[& \left(n a+\frac{1}{2} n(n-1) \sigma_{1}^{2}\right) \mathbb{E}\left(Y_{\infty}^{n-1} X_{\infty}^{p}\right)-p \beta \mathbb{E}\left(Y_{\infty}^{n+1} X_{\infty}^{p-1}\right) \\
& +p\left(\alpha+n \varrho \sigma_{1} \sigma_{2}\right) \mathbb{E}\left(Y_{\infty}^{n} X_{\infty}^{p-1}\right) \\
& +\frac{1}{2} p(p-1) \sigma_{2}^{2} \mathbb{E}\left(Y_{\infty}^{n+1} X_{\infty}^{p-2}\right) \\
& \left.+\frac{1}{2} p(p-1) \sigma_{3}^{2} \mathbb{E}\left(Y_{\infty}^{n} X_{\infty}^{p-2}\right)\right]
\end{aligned}
$$

holds for all $n, p \in \mathbb{Z}_{+}$with $n+p \geqslant 1$, where $\mathbb{E}\left(Y_{\infty}^{k} X_{\infty}^{\ell}\right):=0$ for $k, \ell \in \mathbb{Z}$ with $k<0$ or $\ell<0$. Especially,

$$
\begin{gathered}
\mathbb{E}\left(Y_{\infty}\right)=\frac{a}{b}, \quad \mathbb{E}\left(Y_{\infty}^{2}\right)=\frac{a\left(2 a+\sigma_{1}^{2}\right)}{2 b^{2}}, \quad \mathbb{E}\left(Y_{\infty}^{3}\right)=\frac{a\left(a+\sigma_{1}^{2}\right)\left(2 a+\sigma_{1}^{2}\right)}{2 b^{3}}, \\
\mathbb{E}\left(X_{\infty}\right)=\frac{b \alpha-a \beta}{b \gamma}, \\
\mathbb{E}\left(X_{\infty}^{2}\right)= \\
\mathbb{E}\left(Y_{\infty} X_{\infty}\right)=\frac{-2 \beta \mathbb{E}\left(X_{\infty}\right)-\beta \mathbb{E}\left(Y_{\infty}^{2}\right)+\left(\alpha+\varrho \sigma_{1} \sigma_{2}\right) \mathbb{E}\left(Y_{\infty}\right)+2 \alpha \mathbb{E}\left(X_{\infty}\right)+\sigma_{2}^{2} \mathbb{E}\left(Y_{\infty}\right)+\sigma_{3}^{2}}{2 \gamma}, \\
\mathbb{E}\left(Y_{\infty}^{2} X_{\infty}\right)= \\
\mathbb{E}\left(Y_{\infty} X_{\infty}^{2}\right)= \\
\\
+\frac{\left(2 a+\sigma_{1}^{2}\right) \mathbb{E}\left(Y_{\infty} X_{\infty}\right)-\beta \mathbb{E}\left(Y_{\infty}^{3}\right)+\left(\alpha+2 \varrho \sigma_{1} \sigma_{2}\right) \mathbb{E}\left(Y_{\infty}^{2}\right)}{2 b+\gamma}, \\
\\
\end{gathered}
$$

If $\sigma_{1}>0$ then the Laplace transform of Y_{∞} takes the form

$$
\begin{equation*}
\mathbb{E}\left(\mathrm{e}^{-\lambda Y_{\infty}}\right)=\left(1+\frac{\sigma_{1}^{2}}{2 b} \lambda\right)^{-2 a / \sigma_{1}^{2}}, \quad \lambda \in \mathbb{R}_{+} \tag{5.1}
\end{equation*}
$$

i.e., Y_{∞} has gamma distribution with parameters $2 a / \sigma_{1}^{2}$ and $2 b / \sigma_{1}^{2}$, hence

$$
\mathbb{E}\left(Y_{\infty}^{\kappa}\right)=\frac{\Gamma\left(\frac{2 a}{\sigma_{1}^{2}}+\kappa\right)}{\left(\frac{2 b}{\sigma_{1}^{2}}\right)^{\kappa} \Gamma\left(\frac{2 a}{\sigma_{1}^{2}}\right)}, \quad \kappa \in\left(-\frac{2 a}{\sigma_{1}^{2}}, \infty\right)
$$

If $\sigma_{1}>0$ and $\left(1-\varrho^{2}\right) \sigma_{2}^{2}+\sigma_{3}^{2}>0$ then the distribution of $\left(Y_{\infty}, X_{\infty}\right)$ is absolutely continuous.

Proof. We may and do suppose that all the mixed moments of $\left(Y_{0}, X_{0}\right)$ are finite and $\mathbb{P}\left(Y_{0}>0\right)=1$, since, due to Theorem 3.1, the distribution of $\left(Y_{\infty}, X_{\infty}\right)$ does not depend on the initial value of the model. First we show that

$$
\begin{equation*}
\int_{0}^{t} \mathbb{E}\left(Y_{u}^{n} X_{u}^{2 p}\right) \mathrm{d} u<\infty \quad \text { for all } t \in \mathbb{R}_{+} \quad \text { and } n, p \in \mathbb{Z}_{+} \tag{5.2}
\end{equation*}
$$

One can easily check that it is enough to prove (5.2) for the special affine diffusion process $\left(Y_{t}, Z_{t}\right)_{t \in \mathbb{R}_{+}}$given in Proposition 2.5. Indeed, then

$$
\begin{aligned}
\int_{0}^{t} \mathbb{E}\left(Y_{u}^{n} X_{u}^{2 p}\right) \mathrm{d} u & =\int_{0}^{t} \mathbb{E}\left(Y_{u}^{n}\left(Z_{u}+c Y_{u}\right)^{2 p}\right) \mathrm{d} u \\
& =\sum_{k=0}^{2 p}\binom{2 p}{k} c^{2 p-k} \int_{0}^{t} \mathbb{E}\left(Y_{u}^{n+2 p-k} Z_{u}^{2 k}\right) \mathrm{d} u<\infty
\end{aligned}
$$

Applying (2.5) and the power means inequality $(a+b+c+d)^{2 p} \leqslant 4^{2 p-1}\left(a^{2 p}+\right.$ $\left.b^{2 p}+c^{2 p}+d^{2 p}\right), a, b, c, d \in \mathbb{R}$, we obtain

$$
\begin{aligned}
\int_{0}^{t} \mathbb{E}\left(Y_{u}^{n} Z_{u}^{2 p}\right) \mathrm{d} u \leqslant & 4^{2 p-1} \int_{0}^{t} \mathbb{E}\left[Y _ { u } ^ { n } \left(\mathrm{e}^{-2 p \gamma u} Z_{0}^{2 p}+\left(\int_{0}^{u} \mathrm{e}^{-\gamma(u-v)}\left(A-B Y_{v}\right) \mathrm{d} v\right)^{2 p}\right.\right. \\
& \left.\left.+\left(\int_{0}^{u} \mathrm{e}^{-\gamma(u-v)} \sqrt{Y_{v}} \mathrm{~d} B_{v}\right)^{2 p}+\left(\int_{0}^{u} \mathrm{e}^{-\gamma(u-v)} \mathrm{d} L_{v}\right)^{2 p}\right)\right] \mathrm{d} u
\end{aligned}
$$

for all $t \in \mathbb{R}_{+}$and $n, p \in \mathbb{Z}_{+}$. Since for all $u \in[0, t]$, the distribution of $\int_{0}^{u} \mathrm{e}^{-\gamma(u-v)} \mathrm{d} L_{v}$ is a normal distribution with mean 0 and with variance $\int_{0}^{u} \mathrm{e}^{-2 \gamma(u-v)} \mathrm{d} v$, and the conditional distribution of $\int_{0}^{u} \mathrm{e}^{-\gamma(u-v)} \sqrt{Y_{v}} \mathrm{~d} B_{v}$ with respect to the σ-algebra generated by $\left(Y_{s}\right)_{s \in[0, t]}$ is a normal distribution with mean 0 and with variance $\int_{0}^{u} \mathrm{e}^{-2 \gamma(u-v)} Y_{v} \mathrm{~d} v$, to prove (5.2), it is enough to show that, for all $t \in \mathbb{R}_{+}$and $n, p \in \mathbb{Z}_{+}$,

$$
\begin{gathered}
\int_{0}^{t} \mathbb{E}\left(\mathrm{e}^{-2 p \gamma u} Y_{u}^{n} Z_{0}^{2 p}\right) \mathrm{d} u<\infty, \quad \int_{0}^{t} \mathbb{E}\left(Y_{u}^{n}\right) \mathrm{d} u<\infty \\
\int_{0}^{t} \mathbb{E}\left[Y_{u}^{n}\left(\int_{0}^{u} \mathrm{e}^{-\gamma(u-v)} Y_{v} \mathrm{~d} v\right)^{2 p}\right] \mathrm{d} u<\infty \\
\int_{0}^{t} \mathbb{E}\left[Y_{u}^{n}\left(\int_{0}^{u} \mathrm{e}^{-2 \gamma(u-v)} Y_{v} \mathrm{~d} v\right)^{p}\right] \mathrm{d} u<\infty
\end{gathered}
$$

which can be checked by standard arguments, see, e.g., in the arXiv version of the proof of Theorem 4.2 in Barczy et al. [1].

For all $n, p \in \mathbb{Z}_{+}$, using the independence of W, B and L, by Itô's formula, we have

$$
\begin{aligned}
& \mathrm{d}\left(Y_{t}^{n} X_{t}^{p}\right)=n Y_{t}^{n-1} X_{t}^{p}\left[\left(a-b Y_{t}\right) \mathrm{d} t+\sigma_{1} \sqrt{Y_{t}} \mathrm{~d} W_{t}\right] \\
& \quad+p Y_{t}^{n} X_{t}^{p-1}\left[\left(\alpha-\beta Y_{t}-\gamma X_{t}\right) \mathrm{d} t+\sigma_{2} \sqrt{Y_{t}}\left(\varrho \mathrm{~d} W_{t}+\sqrt{1-\varrho^{2}} \mathrm{~d} B_{t}\right)+\sigma_{3} \mathrm{~d} L_{t}\right] \\
& \quad+\frac{1}{2} n(n-1) Y_{t}^{n-2} X_{t}^{p} \sigma_{1}^{2} Y_{t} \mathrm{~d} t+\frac{1}{2} p(p-1) Y_{t}^{n} X_{t}^{p-2}\left(\sigma_{2}^{2} Y_{t}+\sigma_{3}^{2}\right) \mathrm{d} t \\
& \quad+n p Y_{t}^{n-1} X_{t}^{p-1} \varrho \sigma_{1} \sigma_{2} Y_{t} \mathrm{~d} t
\end{aligned}
$$

for $t \in \mathbb{R}_{+}$. Writing the SDE above in an integrated form and taking the expectation of both sides, we have

$$
\begin{aligned}
\mathbb{E} & \left(Y_{t}^{n} X_{t}^{p}\right)-\mathbb{E}\left(Y_{0}^{n} X_{0}^{p}\right) \\
= & \int_{0}^{t}\left[n a \mathbb{E}\left(Y_{u}^{n-1} X_{u}^{p}\right)-n b \mathbb{E}\left(Y_{u}^{n} X_{u}^{p}\right)+p \alpha \mathbb{E}\left(Y_{u}^{n} X_{u}^{p-1}\right)\right. \\
& -p \beta \mathbb{E}\left(Y_{u}^{n+1} X_{u}^{p-1}\right)-p \gamma \mathbb{E}\left(Y_{u}^{n} X_{u}^{p}\right) \\
& +\frac{1}{2} \sigma_{1}^{2} n(n-1) \mathbb{E}\left(Y_{u}^{n-1} X_{u}^{p}\right)+\frac{1}{2} \sigma_{2}^{2} p(p-1) \mathbb{E}\left(Y_{u}^{n+1} X_{u}^{p-2}\right) \\
& \left.+\frac{1}{2} \sigma_{3}^{2} p(p-1) \mathbb{E}\left(Y_{u}^{n} X_{u}^{p-2}\right)+\varrho \sigma_{1} \sigma_{2} n p \mathbb{E}\left(Y_{u}^{n} X_{u}^{p-1}\right)\right] \mathrm{d} u
\end{aligned}
$$

for all $t \in \mathbb{R}_{+}$, where we used that

$$
\begin{aligned}
& \left(\int_{0}^{t} Y_{u}^{n-1 / 2} X_{u}^{p} \mathrm{~d} W_{u}\right)_{t \in \mathbb{R}_{+}}, \quad\left(\int_{0}^{t} Y_{u}^{n+1 / 2} X_{u}^{p-1} \mathrm{~d} W_{u}\right)_{t \in \mathbb{R}_{+}} \\
& \left(\int_{0}^{t} Y_{u}^{n+1 / 2} X_{u}^{p-1} \mathrm{~d} B_{u}\right)_{t \in \mathbb{R}_{+}}, \quad\left(\int_{0}^{t} Y_{u}^{n} X_{u}^{p-1} \mathrm{~d} L_{u}\right)_{t \in \mathbb{R}_{+}}
\end{aligned}
$$

are continuous square integrable martingales due to (5.2), see, e.g., Ikeda and Watanabe [8, page 55]. Introduce the functions $f_{n, p}(t):=\mathbb{E}\left(Y_{t}^{n} X_{t}^{p}\right), t \in \mathbb{R}_{+}$, for $n, p \in \mathbb{Z}_{+}$. Then we have

$$
\begin{aligned}
& f_{n, p}^{\prime}(t)=-(n b+p \gamma) f_{n, p}(t)-p \beta f_{n+1, p-1}(t)+\left(n a+\frac{1}{2} \sigma_{1}^{2} n(n-1)\right) f_{n-1, p}(t) \\
& \quad+p\left(\alpha+\varrho \sigma_{1} \sigma_{2} n\right) f_{n, p-1}(t)+\frac{1}{2} \sigma_{2}^{2} p(p-1) f_{n+1, p-2}(t)+\frac{1}{2} \sigma_{3}^{2} p(p-1) f_{n, p-2}(t)
\end{aligned}
$$

for $t \in \mathbb{R}_{+}$, where $f_{k, \ell}(t):=0$ if $k, \ell \in \mathbb{Z}$ with $k<0$ or $\ell<0$. Hence for all $M \in \mathbb{N}$, the functions $f_{n, p}, n, p \in \mathbb{Z}_{+}$with $n+p \leqslant M$ satisfy a homogeneous linear system of differential equations with constant coefficients. The eigenvalues of the coefficient matrix of the above mentioned system of differential equations are $-(k b+\ell \gamma), \quad k, \ell \in \mathbb{Z}_{+}$with $k+\ell \leqslant M$ and 0 . Thus, for all $n, p \in \mathbb{Z}_{+}$, the function $f_{n, p}$ is a linear combination of the functions $\mathrm{e}^{-(k b+\ell \gamma) t}, t \in \mathbb{R}_{+}$, $k, \ell \in \mathbb{Z}_{+}$with $k+\ell \leqslant n+p$, and the constant function. Consequently, for all $n, p \in \mathbb{Z}_{+}$, the function $f_{n, p}$ is bounded and the limit $\lim _{t \rightarrow \infty} f_{n, p}(t)$ exists and finite. By the moment convergence theorem (see, e.g., Stroock [16, Lemma 2.2.1]), $\lim _{t \rightarrow \infty} f_{n, p}(t)=\lim _{t \rightarrow \infty} \mathbb{E}\left(Y_{t}^{n} X_{t}^{p}\right)=\mathbb{E}\left(Y_{\infty}^{n} X_{\infty}^{p}\right), \quad n, p \in \mathbb{Z}_{+}$. Indeed, by Theorem 3.1 and the continuous mapping theorem, $Y_{t}^{n} X_{t}^{p} \xrightarrow{\mathcal{D}} Y_{\infty}^{n} X_{\infty}^{p}$ as $t \rightarrow \infty$, and the family $\left\{Y_{t}^{n} X_{t}^{p}: t \in \mathbb{R}_{+}\right\}$is uniformly integrable. This latter fact follows from the boundedness of the function $f_{2 n, 2 p}$, see, e.g., Stroock [16, condition (2.2.5)]. Hence we conclude that all the mixed moments of $\left(Y_{\infty}, X_{\infty}\right)$ are finite.

Next, we calculate these mixed moments. We may and do suppose that the initial value $\left(Y_{0}, X_{0}\right)$ is independent of $\left(W_{t}, B_{t}, L_{t}\right)_{t \in \mathbb{R}_{+}}$, and its distribution is the same as that of $\left(Y_{\infty}, X_{\infty}\right)$, since, due to Theorem 3.1, the distribution of $\left(Y_{\infty}, X_{\infty}\right)$ does not depend on the initial value of the model. Then, by Theorem 3.1 , the process $\left(Y_{t}, X_{t}\right)_{t \in \mathbb{R}_{+}}$is strictly stationary, and hence, $f_{n, p}(t)=\mathbb{E}\left(Y_{\infty}^{n} X_{\infty}^{p}\right)$ for all $t \in \mathbb{R}_{+}$and $n, p \in \mathbb{Z}_{+}$. The above system of differential equations for the functions $f_{n, p}, n, p \in \mathbb{Z}_{+}$, yields the recursion for $\mathbb{E}\left(Y_{\infty}^{n} X_{\infty}^{p}\right), n, p \in \mathbb{Z}_{+}$. By this recursion, one can calculate the moments listed in the theorem.

The fact that, in case of $\sigma_{1}>0$, the random variable Y_{∞} has gamma distribution with parameters $2 a / \sigma_{1}^{2}$ and $2 b / \sigma_{1}^{2}$ follows by Cox et al. [5, Equation (20)].

Finally, we prove that the distribution of $\left(Y_{\infty}, X_{\infty}\right)$ is absolutely continuous whenever $\sigma_{1}>0$ and $\left(1-\varrho^{2}\right) \sigma_{2}^{2}+\sigma_{3}^{2}>0$. Let us consider a 2-dimensional affine diffusion model (1.1) with random initial value $\left(Y_{0}, X_{0}\right)$ independent of $\left(W_{t}, B_{t}, L_{t}\right)_{t \in[0, \infty)}$ having the same distribution as that of $\left(Y_{\infty}, X_{\infty}\right)$. Then, by part (ii) of Theorem 3.1, the process $\left(Y_{t}, X_{t}\right)_{t \in[0, \infty)}$ is strictly stationary. Hence
it is enough to prove that the distribution of $\left(Y_{1}, X_{1}\right)$ is absolutely continuous. According to the proof of part (b) in the proof of Theorem 3.1, the conditional distribution of $\left(Y_{1}, X_{1}\right)$ given $\left(Y_{0}, X_{0}\right)$ is absolutely continuous. This clearly implies that the (unconditional) distribution of $\left(Y_{1}, X_{1}\right)$ is absolutely continuous, and hence, the distribution of $\left(Y_{\infty}, X_{\infty}\right)$ is absolutely continuous.

References

1. Barczy, M., Döring, L., Li, Z., and Pap, G.: Stationarity and ergodicity for an affine two factor model, Adv. in Appl. Probab. 46(3) (2014) 878-898.
2. Ben Alaya, M. and Kebaier, A.: Asymptotic behavior of the maximum likelihood estimator for ergodic and nonergodic square-root diffusions, Stoch. Anal. Appl. 31(4) (2013) 552-573.
3. Bhattacharya, R. N.: On the functional central limit theorem and the law of the iterated logarithm for Markov processes, Z. Wahrsch. verw. Gebiete 60 (1982) 185-201.
4. Chung, K. L.: Lectures from Markov Processes to Brownian Motion, Springer-Verlag, New York-Berlin, 1982.
5. Cox, J. C., Ingersoll, J. E., and Ross, S. A.: A theory of the term structure of interest rates, Econometrica 53(2) (1985) 385-407.
6. Dawson, D. A. and Li, Z.: Skew convolution semigroups and affine Markov processes, Ann. Probab. 34(3) (2006) 1103-1142.
7. Duffie, D., Filipović, D., and Schachermayer, W.: Affine processes and applications in finance, Ann. Appl. Probab. 13 (2003) 984-1053.
8. Ikeda, N. and Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, North-Holland Publishing Company, 1981.
9. Jeanblanc, M., Yor, M., and Chesney, M.: Mathematical Methods for Financial Markets, Springer-Verlag London Limited, 2009.
10. Karatzas, I. and Shreve, S. E.: Brownian Motion and Stochastic Calculus, 2nd ed. SpringerVerlag, 1991.
11. Meyn, Sean P. and Tweedie, R. L.: Stability of Markovian processes. I: Criteria for DiscreteTime Chains, Adv. in Appl. Probab. 24(3) (1992) 542-574.
12. Meyn, Sean P. and Tweedie, R. L.: Stability of Markovian processes. II: Continuous-time processes and sampled chains, Adv. in Appl. Probab. 25(3) (1993) 487-517.
13. Meyn, Sean P. and Tweedie, R. L.: Stability of Markovian processes. III: Foster-Lyapunov criteria for continuous-time processes, Adv. in Appl. Probab. 25(3) (1993) 518-548.
14. Meyn, Sean P. and Tweedie, R. L.: Markov Chain and Stochastic Stability, 2nd edition. Cambridge University Press, Cambridge, 2009.
15. Sharpe, K. I.: General Theory of Markov Processes, Academic Press, New York, 1988.
16. Stroock, D. W.: Probability Theory, an Analytic View. Cambridge University Press, Cambridge, 1983.
17. Volkmann, P.: Gewöhnliche Differentialungleichungen mit Quasimonoton Wachsenden Funktionen in Topologischen Vektorräumen, Math. Z. 127 (1972) 157-164.

Beáta Bolyog: Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H6720 Szeged, Hungary

E-mail address: bbeata@math.u-szeged.hu
Gyula Pap: Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary

E-mail address: papgy@math.u-szeged.h
URL: http://www.math.u-szeged.hu/~papgy/index_en.html

[^0]: Received 2016-9-19; Communicated by D. Applebaum.
 2010 Mathematics Subject Classification. Primary 60J25; Secondary 37A25.
 Key words and phrases. Affine process, stationary distribution, ergodicity, Foster-Lyapunov criteria.

