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A New 4-D Conservative Chaotic System 
with Coexistence of Hidden Chaotic Orbits
Jay Prakash Singh* and Binoy Krishna Roy*

Abstract : In this paper a new 4-D conservative chaotic system is reported. When compared with other 
existing chaotic systems the proposed system has the following unique properties (i) hidden chaotic orbits 
with no equilibria and (ii) coexistence of chaotic orbits. The chaotic behaviour of the proposed conservative 
chaotic system is verifi ed by fi nding the Lyapunov exponents and plotting the phase portrait, time series 
plot, Poincare map, frequency spectrum and instantaneous phase. The sum of the Lyapunov exponents of the 
system is zero which validates the conservative nature of the system. 
Keywords: Conservative chaotic system; hidden chaotic orbits; new 4-D chaotic system; coexistence of 
chaotic orbits.

1. INTRODUCTION 

The chaotic systems are observed in many fi elds like communication, signal processing, economics, 
robotic, etc. [1], [2]. This leads to the development of new chaotic system with various characteristics [3]. 
The chaotic systems with higher dimensions are more interesting and effective compared with the low 
dimensions [4,42-45] ones.

Recently the chaotic systems are categorised into two parts: self-excited attractors and hidden 
attractors [5]–[9]. The well-known chaotic systems like Lorenz chaotic system [10], Rossler [11], Chen 
[12], Lu system [13], [14], Qi chaotic attractor [15] belong to the self-excited attractors. The development 
of hidden attractors was initiated from the pioneer work of [6], [7]. The chaotic systems with (i) no 
equilibria [16], (ii) only stable equilibria [17], [18] and (iii) plane or line of equilibria, are called the 
hidden attractors [19]–[22]. The chaotic systems are also grouped as dissipative or conservative chaotic 
systems [23]. Some conservative chaotic systems with no equilibria are also reported in the literature like 
in [23], [24]. The reported hidden chaotic systems with no equilibria are classifi ed in Table 1. 

It is seen from Table 1 that a 4-D conservative chaotic system with no equilibrium point is not found 
in the literature. Thus, the motivation behind this paper is to develop a new 4-D chaotic system with no 
equilibria and reports a new 4-D conservative chaotic system with no equilibria. Various tools are used for 
analysing the systems and found that the system has coexistence of chaotic orbits.

The rest part of the paper is organised as follows. Section 2 describes the dynamics of the new 
conservative chaotic system. The basic properties of the system are presented in Section 3. Numerical 
fi ndings of the proposed system are given in Section 4. Finally, conclusions of the paper are given in 
Section 5. 
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Table 1
Categorisation of 4-D chaotic/hyperchaotic systems with no equilibrium point

Sl. No. 3-D/4-D System Nature of system References of papers

Dissipative chaotic system

2. 4-D
Chaotic system

No equilibrium point attractors [25]

Multi-scroll or multi-attractor with no equilibrium 
point [26], [27]

3. 4-D
Hyperchaotic system

No equilibrium point attractors [28]-[33]
Multi-scroll or multi-attractor with no equilibrium 

point [34], [35]

Coexistence of attractors with no equilibrium point [36]

4. 5-D
Hyperchaotic system

No equilibrium point attractors [37]

Coexistence of attractors with no equilibrium point [38]

Multi-scroll or multi-attractor with no equilibrium 
point [39]

Conservative chaotic system

1. 3-D
Chaotic system No equilibrium point chaotic orbits [23], [24], [46]

2.
4-D

Chaotic 
system

No equilibrium point chaotic orbits This work

Coexistence of chaotic orbits with no equilibrium 
point This work

2. DYNAMICS OF THE NEW 4-D CONSERVATIVE SYSTEM

The dynamics of the new 4-D conservative chaotic system considered here is described below:
 1x  = x2 – x4 
 2x  = –x1  +  ax2 x3 (1)
 3x  = b – x2

4 
 4x  = – cx2 

where a, b and c are positive constant parameters and x1, x2, x3, x4 are the state variables of system (1). The 
system is chaotic for a = 1, b =1, c = 0.0037. All simulations of the proposed system are carried out with 
initial conditions x(0) = (0.01,0.02,0.02,0.02)T using ode-45 simulation method in MTALAB environment.

3. BASIC DYNAMICAL PROPERTY OF SYSTEM (1)

Some common basic dynamical properties of the system are described in this section. 

3.1. Symmetry and invariance

The system is invariant under the coordinate transformation (x1, x2, 3, x4)  (– x1, – x2, – x3, – x4).

3.2. Equilibrium point

The equilibrium points of the system can be determined by equating each state equation of (1) to zero. It 
is determined that the system has no particular solution with the chosen parameters set. Thus, the system 
has no equilibrium point and hence system (1) has hidden chaotic orbits. 



235A New 4-D Conservative Chaotic System with Coexistence of Hidden Chaotic Orbits

4. NUMERICAL SIMULATION 

This section describes some dynamical properties of system (1) using numerical simulation.

4.1. Lyapunov exponents and Lyapunov dimension

System (1) is chaotic for parameter a = b = 1, c = 0.0037 where the Lyapunov exponents are
 Li = (0.0828,0,0, – 0.0828) (2)
The Lyapunov exponents plot of the system are shown in Fig. 1. It is seen from Fig. 1 that the system 

has one positive, one negative and two zero Lyapunov exponents. The Lyapunov exponents of the system 
are calculated by using Wolf algorithm [40] with sampling size t = 0.01, x(0) = (0.01,0.02,0.02,0.02T. 
The sum of the Lyapunov exponents is zero. Thus, the system is a conservative chaotic system. The 
Lyapunov (Kaplan Yorke) dimension of the system is calculated as:

 DKY = 1 2 3

4

L L L3 3 1 4.0
| L |

     (3)

The Lyapunov dimension also validate the conservative nature of the proposed conservative system.

Figure 1: Lyapunov exponents of the system with a = b = 1, c = 0.0037.

4.2. Chaotic orbits and Poincare map
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Figure 2: Chaotic orbits of the system with a = b = 1, c = 0.0037 and x(0) = (0.01,0.02,0.02,0.02)T.

The chaotic orbits of the system with a = b = 1, c = 0.0037 and x(0) = (0.01,0.02,0.02,0.02)T are shown 
in Fig. 2. It is seen from the Fig. 2 that phase portrait of the system has chaotic behaviours. The Poincare 
maps of the system for different section of the planes are shown in Fig. 3. The random location of dots in 
the Poincare map indicates the chaotic behaviour of the system.
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Figure 3: Poincare map of the system with a = b = 1, c = 0.0037: (a) across x2 – x3  plane for x1 = 0 and 
(b) across x1 – x3  plane for x2 = 0.

4.3. Frequency spectrum and instantaneous phase plot 

The frequency spectra of the signal of system (1) with a = b = 1, c = 0.0037 are shown in Fig. 4. The 
random location of peaks in Fig. 5 indicates that the system has chaotic behaviour. The instantaneous 
phase of x2 and x3 signal of the system are shown in Fig. 5. The instantaneous phase of a chaotic system 
increases monotonically with time, whereas for a periodic signal it remains constant [41]. Thus, system 
(1) has chaotic behaviour. The Hilbert transformation method is used for the generation of instantaneous 
phase (). Here, Hilbert transformation is calculated using the technique given in [41].

4.4. Coexistence of chaotic orbits

The system has coexistence of chaotic orbits for the bifurcation parameter c with changes in the sign of 
initial conditions. The coexistences of chaotic orbits of the system with a = b = 1, c = 0.0037 and x (0) 
= (0.01, 0.02, 0.02, 0.02)T are shown in Fig. 6. It is seen from Fig. 6 that different shapes of chaotic 
orbits coexist with the changes in the sign of initial conditions. 
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Figure 4: Frequency spectrum of the system with a = b = 1, c = 0.0037 for : (a) x2  signal and (b) x3  plane.
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Figure 5: Instantaneous phase of the system with a = b = 1, c = 0.0037 for: (a) x2  signal and (b) x3 plane.

5. CONCLUSIONS

We have proposed a new 4-D conservative chaotic system having hidden chaotic orbits with no equilibria 
and coexistences of chaotic orbits. The zero sums of the Lyapunov exponents and the integer value of 
the Lyapunov dimension confi rm the conservative nature of the proposed system. Different theoretical 
and numerical tools are used to validate the chaotic behaviour of the system. Such 4-D chaotic system is 
reported for the fi rst time to the best of our knowledge. 
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Figure 6: Coexistence of chaotic orbits of the system with a = b = 1, c = 0.0037 
and x(0) = (± 0.01, ± 0.02, ± 0.02, ± 0.02)T.
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