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Abstract. We consider a doubly reflected backward stochastic differential
equations with jumps where the lower barrier and the opposite of the up-

per barrier are assumed to be right upper-semicontinuous (not necessarily
càdlàg). We provide existence and uniqueness result when the coefficient is
stochastic Lipschitz by using an equivalent transformation which is a coupled
system of one-reflected backward stochastic differential equations.

1. Introduction

Backward Stochastic Differential Equations (BSDEs in short) were introduced
(in the linear case) by Bismut [5]. The non-linear case was developed by Pardoux
and Peng [32]. These equations have attracted great interest due to their connec-
tions with mathematical finance [11, 12], stochastic control and stochastic games
[5, 19] and partial differential equations [33].

In their seminal paper [32], Pardoux and Peng generalized such equations to
the Lipschitz condition and proved existence and uniqueness results in a Brownian
framework. Other extensions include BSDEs with jumps on non-Brownian filtra-
tions, which are driven, additionally, by a compensated Poisson random measure
[35, 37]. Moreover, many efforts have been made to relax the Lipschitz condition
on the coefficient [23, 27]. In this context, Bender and Kohlmann [4] considered
the so-called stochastic Lipschitz condition introduced by El Karoui and Huang
[8]. Later, some works have investigated this extension, especially [29, 30, 38].

Further, El Karoui et al. [9] have introduced the notion of reflected BSDEs
(RBSDEs in short), which is a BSDE, but the solution is forced to stay above a
given process called barrier. Once more under square integrability of terminal con-
dition and the barrier, and Lipschitz property of the coefficient, the authors have
proved the existence and uniqueness results in the case of a Brownian filtration
and a continuous barrier. These equations have been proven to be powerful tools
in mathematical finance [10], mixed game problems [20], providing a probabilistic
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formula for the viscosity solution of an obstacle problem for a class of parabolic
partial differential equations [9].

Later, there have been several extensions to the case of a RBSDEs with jumps
[21, 22]. Grigorova et al. [14] is the first paper investigate a new extension of
the theory to RBSDEs in the case where the barrier is not necessarily right-
continuous (just right upper-semicontinuous), the authors studied the existence
and uniqueness result under the Lipschitz assumption on the coefficient. Since
then, some works generalize the corresponding results of [14] in several directions
[1, 24]. Recently, Marzougue and El Otmani [31] discussed RBSDEs with right
upper-semicontinuous barrier under stochastic Lipschitz coefficient.

Doubly reflected BSDEs (DRBSDEs in short) have been introduced by Cvitanic
and Karatzas [6] in the case of continuous barriers, a Brownian filtration and
a Lipschitz coefficient. The solutions of such equations are constrained to stay
between a lower barrier ξ and a upper barrier ζ. Many efforts have been made
to relax the assumptions on parameters [2, 16, 28, 30], and [13, 17] for DRBSDEs
with jumps. In the case of discontinuous barriers, Hamadène et al. [18] show
the existence of a solution when the barriers and their left limits are completely
separated. Later, Grigorova et al. [15] formulate a notion of DRBSDE in the
case where the barriers do not satisfy any regularity assumption, the authors
show existence and uniqueness result under the so-called Mokobodski’s condition
(assuming the existence of two strong supermartingales whose difference is between
ξ and ζ) and a general Lipschitz driver. The interpretation of solution to this
equations in terms of a two-stopper game problem which has been studied in [15].

Let us have a look at the Dynkin game problem whose the terminal time of the
game is given by a stopping time τ ∧ ν, and the terminal payoff of the game (at
τ ∧ ν) is given by

J(τ, ν) = ξτ1{τ≤ν} + ζν1{ν<τ}.

We consider the following generalization of the Dynkin game problem which the
criterion is defined as

Ef
t,τ∧ν(J(τ, ν)),

where Ef
t,τ∧ν(.) denotes the f -stochastic expectation at time t with terminal time

equal to τ ∧ ν. We refer to this generalized game problem as Ef -Dynkin game.
Grigirova et al. [15] have shown that if ξ and −ζ are right upper-semicontinuous
and satisfy Mokobodski’s condition, then there exists a (common) value function
for the Ef -Dynkin game, that is

inf
ν∈T[0,T ]

sup
τ∈T[0,T ]

Ef
0,τ∧ν(J(τ, ν)) = sup

τ∈T[0,T ]

inf
ν∈T[0,T ]

Ef
0,τ∧ν(J(τ, ν))

where T[0,T ] is the collection of all stopping times τ ∈ [0, T ] (T > 0 is a fixed
horizon). But, this result remains valid just in the case when f is Lipschitz driver.
So who can it say in the case of stochastic Lipschitz driver?

Inside the present paper, we consider a further extension of the theory to DRB-
SDEs in the case where the barriers are left limited, and the generator is stochastic
Lipschitz in a filtration that supports a Brownian motion and an independent Pois-
son random measure. We show that the solution to DRBSDEs can be written in
terms of difference between the solutions of a coupled system made of one-reflected
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BSDEs, we show that this system admits a solution if and only if the Mokobod-
ski’s condition holds. To prove our result, we use some tools from the optimal
stopping theory [25], other tools from the general theory of process [7] such as
Mertens decomposition of strong optional supermartingale, and a generalization
of Itô’s formula to the case of strong optional supermartingale due to Gal’chouk
and Lenglart [26]. Furthermore, a comparison theorem for the solutions of DRB-
SDEs will be established.

The paper is organized as follows: In Section 2, we consider the case where the
generator does not depend on the solution, we then establish a priori estimate for
solutions, and we give the coupled system equivalent to our DRBSDEs, further,
we prove the existence and uniqueness of a (minimal) solution to DRBSDEs in
this particular case. Section 3 is devoted to solve our DRBSDEs in the case of a
general stochastic Lipshitz driver by using fixed point theorem. In Section 4, we
give the comparison theorem for the solutions of DRBSDEs.

Preliminaries

Let T strictly positive real number. Let (Ω,F , (Ft)t≤T ,P) be a filtered proba-
bility space where (Ft)t≤T is the natural filtration generated by a one-dimensional
Brownian motion (Bt)t≤T and an independent Poisson random measure µ(dt, de)
with compensator λ(de)dt. We denote by µ̃(dt, de) the compensated process, i.e.
µ̃(dt, de) := µ(dt, de) − λ(de)dt. Let (U,U) be a measurable space equipped with
a σ-finite positive measure λ where U := Rl \ {0}, (l > 1). We will denote by |.|
the Euclidian norm on Rn, T[t,T ] the set of stopping times τ such that τ ∈ [t, T ]
and P (resp. O) be the predictable (resp. optional) σ-algebra on Ω× [0, T ].

Let’s introduce some spaces:

• H2 is the space of R-valued and predictable processes (Zt)t≤T such that

∥Z∥2H2 = E

[∫ T

0

|Zt|2dt

]
< +∞.

• S2 is the space of R-valued and optional processes (Kt)t≤T such that

∥K∥2S2 = E

[
ess sup
τ∈T[0,T ]

|Kτ |2
]
< +∞.

• Lλ is the set of Rd-valued and P ⊗U-measurable mapping V : Ω×U → R
such that

∥V ∥2λ =

∫
U

|V (e)|2λ(de) < +∞.

• L2 is the space of Rd-valued and P⊗U -predictable processes (Vt)t≤T such
that

∥V ∥2L2 = E

[∫ T

0

∥Vt∥2λdt

]
< +∞.

Let β > 0 and (a(t))t≤T be a nonnegative Ft-adapted process. We define the

increasing continuous process A(t) =
∫ t

0
a2(s)ds for all t ≤ T , and we introduce

the following spaces:
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• S2(β, a) is the space of R-valued and optional processes (Yt)t≤T such that

∥Y ∥2S2
β
= E

[
ess sup
τ∈T[0,T ]

eβA(τ)|Yτ |2
]
< +∞.

• S2,a(β, a) is the space of R-valued and optional processes (Yt)t≤T such
that

∥aY ∥2S2,a
β

= E

[∫ T

0

eβA(t)|a(t)Yt|2dt

]
< +∞.

• H2(β, a) is the space of Rd-valued and predictable processes (Zt)t≤T such
that

∥Z∥2H2
β
= E

[∫ T

0

eβA(t)|Zt|2dt

]
< +∞.

• L2(β, a) is the space of Rd-valued and P⊗U -predictable processes (Vt)t≤T

such that

∥V ∥2L2
β
= E

[∫ T

0

eβA(t)∥Vt∥2λdt

]
< +∞.

• B2(β, a) = S2(β, a) ∩ S2,a(β, a).

A function f is said to be a stochastic Lipschitz driver if

(i) f : Ω × [0, T ] × R × Rd × Lλ −→ R, (ω, t, y, z, v) 7→ f(ω, t, y, z, v) is
P ⊗ B(Rd)-measurable.

(ii) For all (t, y, y′, z, z′, v, v′) ∈ [0, T ]×R1+1+d+d×Lλ×Lλ , there exists three
nonnegative Ft-adapted processes θ, γ and η such that

|f(t, y, z, v)− f(t, y′, z′, v′)| ≤ θ(t)|y − y′|+ γ(t)|z − z′|+ η(t)∥v − v′∥λ.

where θ(t) + γ2(t) + η2(t) = a2(t) ≥ ϵ > 0.
(iii)

∀t ∈ [0, T ],
f(t, 0, 0, 0)

a
∈ H2(β, a).

For a làdlàg process Y , we denote Yt+ (resp. Yt−) the right-hand (resp. left-
hand) limit of Y at t. We denote by ∆+Yt := Yt+ − Yt the size of the right jump
of Y at t and by ∆Yt := Yt − Yt− the size of the left jump.

Let ξ = (ξt)t≤T and ζ = (ζt)t≤T be two left limited process in S2(β, a) such
that ξt ≤ ζt for all t ≤ T a.s. and ξT = ζT a.s. We suppose moreover that the
processes ξ and −ζ are right upper-semicontinuous (r.u.s.c in short). A pair of
process (ξ, ζ) will be called a pair of admissible barriers.

We will denote by Ref [.], the operator induced by a reflected BSDEs, defined
as following

Ref : S2(β, a) −→ B2(β, a)
ξ 7−→ Ref [ξ] = X

i.e. X is the first component of solution to reflected BSDEs associated with pa-
rameters (0, ξ) (the driver 0 and the lower barrier ξ).



NON-CONTINUOUS DOUBLE BARRIER RBSDES WITH JUMPS 363

Definition 1.1. Let f be a stochastic Lipschitz driver and (ξt, ζt)t≤T be a pair of
admissible barriers. A process (Y, Z, V,K+,K−, C+, C−) is said to be a solution
to doubly reflected BSDE with parameters (f, ξ, ζ), if

(i) (Y,Z, V,K+,K−, C+, C−) ∈ B2(β, a)×H2(β, a)× L2(β, a)×
(
S2

)4
,

(ii) Yt = ξT +

∫ T

t

f(s, Ys, Zs, Vs)ds+ (K+
T −K+

t )− (K−
T −K−

t )−
∫ T

t

ZsdBs

−
∫ T

t

∫
U

Vs(e)µ̃(ds, de) + (C+
T− − C+

t−)− (C−
T− − C−

t−), (1.1)

(iii) ξt ≤ Yt ≤ ζt ∀t ≤ T a.s.

(iv) K+ and K− are nondecreasing right-continuous predictable processes

with K+
0 = K−

0 = 0,∫ T

0

1{Yt−>ξt−}dK
+
t = 0 a.s. and

∫ T

0

1{Yt−<ζt−}dK
−
t = 0 a.s. (1.2)

(v) C+and C− are nondecreasing right-continuous adapted purely

discontinuous processes with C+
0− = C−

0− = 0,

(Yτ − ξτ )∆C
+
τ = 0 a.s. and (Yτ − ζτ )∆C

−
τ = 0 a.s. ∀τ ∈ T[0,T ], (1.3)

(vi) dK+
t ⊥ dK−

t and dC+
t ⊥ dC−

t .

Remark 1.2. (i) The constraints dK+
t ⊥ dK−

t and dC+
t ⊥ dC−

t will allow us
to obtain the uniqueness of the nondecreasing processes K+, K−, C+ and
C− without the strict separability condition (ξt < ζt and ξt− < ζt− for all
t ≤ T ).

(ii) Due to equation (1.1), we have

∆C+
t (ω)−∆C−

t (ω) = −∆+Yt(ω), ∀(ω, t) ∈ Ω× [0, T ].

This, together with the condition dC+
t ⊥ dC−

t gives ∆C+
t = (∆+Yt)

− (the
negative part of ∆+Yt) and ∆C−

t = (∆+Yt)
+ (the positive part of ∆+Yt)

for all t ≤ T a.s.
On the other hand, since in our framework the filtration is quasi-left-

continuous, martingales have only totally inaccessible jumps. Hence, for
each predictable stopping time τ ∈ T[0,T ], ∆K

+,d
τ −∆K−,d

τ = −∆Yτ (con-

sequence of equation (1.1)), where K±,d is the discontinuous parts of K±.
This, together with the condition dK+

t ⊥ dK−
t , ensures that for each pre-

dictable stopping time τ ∈ T[0,T ], ∆K
+,d
τ = (∆Yτ )

− and ∆K−,d
τ = (∆Yτ )

+

a.s.
We denote also that Y can jump (on the left) at totally inaccessible

stopping times; these jumps of Y come from the jumps of the stochastic
integral with respect to µ̃ in equation (1.1).

Proposition 1.3. Let (Y, Z, V ) ∈ S2(β, a)×H2(β, a)×L2(β, a) where Y is a làdlàg

process. Then
(∫ t

0
eβA(s)YsZsdBs

)
t≤T

and
(∫ t

0

∫
U
eβA(s)Ys−Vs(e)µ̃(ds, de)

)
t≤T

are the martingales.
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Proof. For all ν ≤ τ ≤ T we have∫ τ

ν

e2βA(s)|Ys|2|Zs|2ds ≤
∫ τ

0

e2βA(s) ess sup
τ∈T[0,T ]

|Yτ |2|Zs|2ds

≤ ess sup
τ∈T[0,T ]

eβA(τ)|Yτ |2
∫ τ

0

eβA(s)|Zs|2ds.

Hence

E

[√∫ τ

ν

e2βA(s)|Ys|2|Zs|2ds

]
≤ E

√ess sup
τ∈T[0,T ]

eβA(τ)|Yτ |2
√∫ T

0

eβA(s)|Zs|2ds

 .
Since (Y, Z) ∈ S2(β, a)×H2(β, a) then we get the finite expectation. Hence, one

can derive that E
[∫ τ

ν
eβA(s)YsZsdBs|Fν

]
= 0. Since

(∫ t

0
eβA(s)YsZsdBs

)
t≤T

is

Ft-adapted process, then it is a martingale.
Now, let’s use the left continuity of trajectory of the process Ys−, we have

|Ys−(ω)|2 ≤ sup
t∈[0,T ]∩Q

|Yt−(ω)|2 ∀(s, ω) ∈ [0, T ]× Ω.

On the other hand, we have |Yt−|2 ≤ ess sup
τ∈T[0,T ]

|Yτ |2, then

sup
t∈[0,T ]∩Q

|Yt−|2 ≤ ess sup
τ∈T[0,T ]

|Yτ |2.

From the above equations, we obtain for all ν ≤ τ ≤ T∫ τ

ν

∫
U

e2βA(s)|Ys−|2|Vs(e)|2λ(de)ds

≤
∫ τ

0

e2βA(s) sup
t∈[0,T ]∩Q

|Yt−|2|Vs(e)|2λ(de)ds

≤
∫ τ

0

e2βA(s) ess sup
τ∈T[0,T ]

|Yτ |2|Vs(e)|2λ(de)ds

≤ ess sup
τ∈T[0,T ]

eβA(τ)|Yτ |2
∫ τ

0

eβA(s)|Vs(e)|2λ(de)ds.

Hence

E

[√∫ τ

ν

∫
U

e2βA(s)|Ys−|2|Vs(e)|2λ(de)ds

]

≤ E

√ess sup
τ∈T[0,T ]

eβA(τ)|Yτ |2
√∫ T

0

eβA(s)∥Vs∥2λds

 .
Since (Y, V ) ∈ S2(β, a) × L2(β, a) then we get the finite expectation. Hence, one
can derive that E

[∫ τ

ν

∫
U
eβA(s)Ys−Vs(e)µ̃(ds, de)|Fν

]
= 0, which implies that the

process
(∫ t

0

∫
U
eβA(s)Ys−Vs(e)µ̃(ds, de)

)
t≤T

is a martingale, since it’s a Ft-adapted

process. □



NON-CONTINUOUS DOUBLE BARRIER RBSDES WITH JUMPS 365

2. Special Case of Solution to DRBSDEs

In this section we prove existence and uniqueness of the solution to DRBSDE
with parameters (f, ξ, ζ) in the special case which is the stochastic Lipschitz driver
f does not depend on (y, z, v). Let f(t, y, z, v) = g(t).

We first will proved a priori estimate which is a consequently to uniqueness of
solution.

2.1. A priori estimate.

Lemma 2.1. Let (Y i, Zi, V i,K+,i,K−,i, C+,i, C−,i) be the solution to the DRB-
SDE with parameters (gi, ξi, ζi) for i = 1, 2. We denote Γ̄ := Γ1 − Γ2 with
Γ := Y, Z, V,K±, C±, g, ξ, ζ. Then there exists a constant Cβ depending on β
such that

∥Ȳ ∥2B2
β
+ ∥Z̄∥2H2

β
+ ∥V̄ ∥2L2

β
≤ Cβ

(∥∥∥ ḡ
a

∥∥∥2
H2

β

+ ∥ξ̄∥2S2
β
+ ∥ζ̄∥2S2

β

)
.

Proof. Let τ ∈ T[0,T ], one can derive that

Ȳτ = ξ̄T +

∫ T

τ

ḡ(s)ds+ (K̄+
T − K̄+

τ )− (K̄−
T − K̄−

τ )−
∫ T

τ

Z̄sdBs

−
∫ T

τ

∫
U

V̄s(e)µ̃(ds, de) + (C̄+
T− − C̄+

τ−)− (C̄−
T− − C̄−

τ−).

We denote Mτ =
∫ τ

0
Z̄sdBs +

∫ τ

0

∫
U
V̄s(e)µ̃(ds, de), Nτ = −

∫ τ

0
ḡ(s)ds− K̄+

τ + K̄−
τ

and Wτ = −C̄+
τ−+ C̄−

τ−. Then the process Ȳ is an optional strong semimartingale

with decomposition Ȳτ = Ȳ0 +Mτ +Nτ +Wτ . Using the Corollary A.6, we have

eβA(t)|Ȳt|2

= |Ȳ0|2 +
∫ t

0

βeβA(s)a2(s)|Ȳs|2ds+
∫ t

0

2eβA(s)Ȳs−d(M +N)s

+
1

2

∫ t

0

2eβA(s)d < M c,M c >s +
∑

0<s≤t

eβA(s)
[
Ȳ 2
s − Ȳ 2

s− − 2Ȳs−∆Ȳs
]

+

∫ t

0

2eβA(s)Ȳsd(W )s+ +
∑

0≤s<t

eβA(s)
[
Ȳ 2
s+ − Ȳ 2

s − 2Ȳs∆+Ȳs
]
.

Moreover, Ȳ 2
s − Ȳ 2

s− − 2Ȳs−∆Ȳs = (∆Ȳs)
2 and Ȳ 2

s+ − Ȳ 2
s − 2Ȳs∆+Ȳs = (∆+Ȳs)

2,
then

eβA(t)|Ȳt|2 +
∫ T

t

βeβA(s)a2(s)|Ȳs|2ds+
∫ T

t

eβA(s)|Z̄s|2ds

= eβA(T )|ξ̄T |2 + 2

∫ T

t

eβA(s)Ȳsḡ(s)ds+ 2

∫ T

t

eβA(s)Ȳs−(dK̄
+
s − dK̄−

s )

−2

∫ T

t

eβA(s)ȲsZ̄sdBs − 2

∫ T

t

∫
U

eβA(s)Ȳs−V̄s(e)µ̃(ds, de)−
∑

t<s≤T

eβA(s)(∆Ȳs)
2

+2

∫ T

t

eβA(s)Ȳs(dC̄
+
s+ − dC̄−

s+)−
∑

t≤s<T

eβA(s)(∆+Ȳs)
2. (2.1)
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Let us first show that Ȳs−(dK̄
+
s − dK̄−

s ) ≤ 0 and Ȳs(∆C̄
+
s −∆C̄−

s ) ≤ 0; indeed,
using the property (1.2) and (1.3), cited in Definition 1.1, respectively, we have

Ȳs−(dK̄
+
s − dK̄−

s ) = −(Y 1
s− − ξs−)dK

+,2
s − (Y 2

s− − ξs−)dK
+,1
s

+(Y 1
s− − ζs−)dK

−,2
s + (Y 2

s− − ζs−)dK
−,1
s

≤ 0,

and

Ȳs(∆C̄
+
s −∆C̄−

s ) = −(Y 1
s − ξs)∆C

+,2
s − (Y 2

s − ξs)∆C
+,1
s

+(Y 1
s − ζs)∆C

−,2
s + (Y 2

s − ζs)∆C
−,1
s

≤ 0.

On the other hand, we have

2

∫ T

t

eβA(s)Ȳsḡ(s)ds ≤
β

2

∫ T

t

eβA(s)a2(s)|Ȳs|2ds+
2

β

∫ T

t

eβA(s)

∣∣∣∣ ḡ(s)a(s)

∣∣∣∣2 ds.
Consequently, the equation (2.1) lead to the following inequality

eβA(t)|Ȳt|2 +
∫ T

t

β

2
eβA(s)a2(s)|Ȳs|2ds+

∫ T

t

eβA(s)|Z̄s|2ds

≤ eβA(T )|ξ̄T |2 +
2

β

∫ T

t

eβA(s)

∣∣∣∣ ḡ(s)a(s)

∣∣∣∣2 ds− 2

∫ T

t

eβA(s)ȲsZ̄sdBs

−2

∫ T

t

∫
U

eβA(s)Ȳs−V̄s(e)µ̃(ds, de)−
∑

t<s≤T

eβA(s)(∆Ȳs)
2 −

∑
t≤s<T

eβA(s)(∆+Ȳs)
2.

(2.2)

By Remark 1.2, the processes K±,1 and K±,2 jumps only at predictable stopping
times and µ(., de) jumps only at totally inaccessible stopping times, then we can
note that ∑

t<s≤T

eβA(s)(∆Ȳs)
2

=

∫ T

t

∫
U

eβA(s)|V̄s(e)|2µ(ds, de) +
∑

t<s≤T

eβA(s)(∆K̄+
s −∆K̄−

s )2.

Hence∫ T

t

eβA(s)∥V̄s∥2λds−
∑

t<s≤T

eβA(s)(∆Ȳs)
2

=

∫ T

t

eβA(s)∥V̄s∥2λds−
∫ T

t

∫
U

eβA(s)|V̄s(e)|2µ(ds, de)

−
∑

t<s≤T

eβA(s)(∆K̄+
s −∆K̄−

s )2

≤ −
∫ T

t

∫
U

eβA(s)|V̄s(e)|2µ̃(ds, de).
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By adding the term
∫ T

t
eβA(s)∥V̄s∥2λds on both sides of inequality (2.2), we get

eβA(t)|Ȳt|2 +
∫ T

t

eβA(s)

{
β

2
a2(s)|Ȳs|2 + |Z̄s|2 + ∥V̄s∥2λ

}
ds

≤ eβA(T )|ξ̄T |2 +
2

β

∫ T

t

eβA(s)

∣∣∣∣ ḡ(s)a(s)

∣∣∣∣2 ds− 2

∫ T

t

eβA(s)ȲsZ̄sdBs

−
∫ T

t

∫
U

eβA(s)
{
2Ȳs−V̄s(e) + |V̄s(e)|2

}
µ̃(ds, de). (2.3)

Observe that

eβA(T )|ξ̄T |2 =
1

4
eβA(T )|ξ̄T + ζ̄T |2 ≤ 1

2
ess sup
τ∈T[0,T ]

eβA(τ)|ξ̄τ |2 +
1

2
ess sup
τ∈T[0,T ]

eβA(τ)|ζ̄τ |2.

Taking expectation on the both sides of the inequality (2.3) with t = 0 and using
the Proposition 1.3, we get

β

2
∥aȲ ∥2S2,a

β

+ ∥Z̄∥2H2
β
+ ∥V̄ ∥2L2

β
≤ 2

β

∥∥∥ ḡ
a

∥∥∥2
H2

β

+
1

2
∥ξ̄∥2S2

β
+

1

2
∥ζ̄∥2S2

β
. (2.4)

On the other hand, from (2.2) we also get for all τ ∈ T[0,T ]

eβA(τ)|Ȳτ |2

≤ ess sup
τ∈T[0,T ]

eβA(τ)|ξ̄τ |2 +
2

β

∫ T

0

eβA(s)

∣∣∣∣ ḡ(s)a(s)

∣∣∣∣2 ds− 2

∫ T

0

eβA(s)ȲsZ̄sdBs

+2

∫ τ

0

eβA(s)ȲsZ̄sdBs − 2

∫ T

0

∫
U

eβA(s)Ȳs−V̄s(e)µ̃(ds, de)

+2

∫ τ

0

∫
U

eβA(s)Ȳs−V̄s(e)µ̃(ds, de).

Taking the essential supremum over τ ∈ T[0,T ] and then the expectation on both
sides of the above inequality, using the fact that

ess sup
τ∈T[0,T ]

Xτ = sup
t≤T

Xt

for all càdlàg process X (see Remark A.1 in Grigorova et al. [14]) and Burkholder-
Davis-Gundy’s inequality, we have

2E ess sup
τ∈T[0,T ]

∣∣∣∣∫ τ

0

eβA(s)ȲsZ̄sdBs

∣∣∣∣ = 2E sup
t∈[0,T ]

∣∣∣∣∫ t

0

eβA(s)ȲsZ̄sdBs

∣∣∣∣
≤ 2cE

√∫ T

0

e2βA(s)|Ȳs|2|Z̄s|2ds


≤ 1

4
∥Ȳ ∥2S2

β
+ 4c2∥Z̄∥2H2

β
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and

2E ess sup
τ∈T[0,T ]

∣∣∣∣∫ τ

0

∫
U

eβA(s)Ȳs−V̄s(e)µ̃(ds, de)

∣∣∣∣
≤ 2cE

√∫ T

0

∫
U

e2βA(s)|Ȳs−|2|V̄s(e)|2µ(ds, de)


≤ 1

4
E ess sup

τ∈T[0,T ]

eβA(τ)|Ȳτ |2 + 4c2E
∫ T

0

∫
U

eβA(s)|V̄s(e)|2µ(ds, de)

=
1

4
∥Ȳ ∥2S2

β
+ 4c2∥V̄ ∥2L2

β
,

where c is a universal positive constant. Then

∥Ȳ ∥2S2
β
≤ 1

2
∥ξ̄∥2S2

β
+

1

2
∥ζ̄∥2S2

β
+

2

β

∥∥∥ ḡ
a

∥∥∥2
H2

β

+
1

2
∥Ȳ ∥2S2

β
+ 4c2∥Z̄∥2H2

β
+ 4c2∥V̄ ∥2L2

β
.

By (2.4), It follows that

∥Ȳ ∥2S2
β
≤ Cβ

(∥∥∥ ḡ
a

∥∥∥2
H2

β

+ ∥ξ̄∥2S2
β
+ ∥ζ̄∥2S2

β

)
, (2.5)

where Cβ is a constant depending on β and c. The desired result obtained by the
estimates (2.4) and (2.5). □

2.2. The coupled system equivalent to DRBSDE. We first show that the
existence of a solution to the DRBSDE is equivalent to the existence of a solution
to a coupled system made of reflected BSDE. Let (Y, Z, V,K+,K−, C+, C−) ∈
B2(β, a)×H2(β, a)×L2(β, a)× (S2)4 be a solution to DRBSDE with parameters
(g, ξ, ζ).

We denote Ỹt = Yt − E
[
ξT +

∫ T

t
g(s)ds|Ft

]
, together with equation (1.1), we

get

Ỹt = Xt −X ′
t ∀t ≤ T a.s.,

where the processes X and X ′ are defined as

Xt = E[K+
T −K+

t +C+
T− −C+

t−|Ft] and X
′
t = E[K−

T −K−
t +C−

T− −C−
t−|Ft] a.s.

We note that X ∈ B2(β, a) and X ′ ∈ B2(β, a) are two nonnegative right upper-
semicontinuous strong supermartingales (with XT = X ′

T = 0 a.s.), and they are
of class (D) (i.e. the set of all random variable Xν , for each finite stopping time
ν, is uniformly integrable). Then by the Mertens decomposition (see Theorem
A.4), there exists an uniformly integrable martingale (càdlàg) M (resp. M ′),

nondecreasing right-continuous predictable process K̃+ (resp. K̃−) (with K̃±
0 =

0) such that E[K̃±
T ] < +∞ and nondecreasing right-continuous adapted purely

discontinuous process C̃+ (resp. C̃−) (with C̃±
0− = 0) such that E[C̃±

T ] < +∞,
gives the following

Xt =Mt − K̃+
t − C̃+

t− ( resp. X ′
t =M ′

t − K̃−
t − C̃−

t−) ∀t ≤ T.
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On the other hand, from the martingale representation Theorem there exists a
unique pair (Z, U) (resp. (Z ′, U ′)) belongs to H2 × L2 such that

Xt = −
∫ T

t

ZsdBs −
∫ T

t

∫
U

Us(e)µ̃(ds, de) + K̃+
T − K̃+

t + C̃+
T− − C̃+

t− (2.6)

( resp. X ′
t = −

∫ T

t

Z ′
sdBs−

∫ T

t

∫
U

U ′
s(e)µ̃(ds, de)+K̃

−
T −K̃−

t +C̃−
T−−C̃−

t−). (2.7)

Noting that K̃+ ≡ K+, K̃− ≡ K−, C̃+ ≡ C+ and C̃− ≡ C−. Now, let introduce
the following optional processes

ξ̃gt := ξt − E

[
ξT +

∫ T

t

g(s)ds|Ft

]
and ζ̃gt := ζt − E

[
ζT +

∫ T

t

g(s)ds|Ft

]
. (2.8)

We denote by

ξ̃X
′,g = X ′ + ξ̃g and ζ̃X,g = X − ζ̃g.

Remark 2.2. Since the coefficient of reflected BSDE (2.6) (resp. (2.7)) equal to
zero, then thanks to Grigorova et al. [14] the solution (X,Z, U,K+, C+) (resp.
(X ′,Z ′, U ′,K−, C−)) belongs to S2 ×H2 × L2 × S2 × S2.

Lemma 2.3. Assuming that
g

a
∈ H2(β, a).

(i) The process (X,Z, U,K+, C+) is solution of the reflected BSDE associated

with parameters (0, ξ̃X
′,g) belonging to B2(β, a)×H2(β, a)×L2(β, a)×S2×

S2.
(ii) The process (X ′,Z ′, U ′,K−, C−) is solution of the reflected BSDE associ-

ated with parameters (0, ζ̃X,g) belonging to B2(β, a)×H2(β, a)×L2(β, a)×
S2 × S2.

Proof. Note that ξ̃X
′,g

T = ζ̃X,g
T = 0 a.s. Let show that ξ̃X

′,g ∈ S2(β, a). By (2.8),
we can write

ess sup
τ∈T[0,T ]

eβA(τ)|ξ̃gτ |2

≤ 2 ess sup
τ∈T[0,T ]

eβA(τ)|ξτ |2 + 2 sup
0≤t≤T

∣∣∣∣∣e β
2 A(t)E

[
ξT +

∫ T

t

g(s)ds|Ft

]∣∣∣∣∣
2

.

Moreover

e
β
2 A(t)

∣∣∣∣∣E
[
ξT +

∫ T

t

g(s)ds|Ft

]∣∣∣∣∣
≤

√
2E


√√√√eβA(T )|ξT |2 + eβA(t)

∣∣∣∣∣
∫ T

t

g(s)ds

∣∣∣∣∣
2

|Ft


≤

√
2E

√eβA(T )|ξT |2 +
1

β

∫ T

0

eβA(s)

∣∣∣∣g(s)a(s)

∣∣∣∣2 ds|Ft

 .
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Thus, by Doob’s martingale inequality one has

E sup
0≤t≤T

∣∣∣∣∣e β
2 A(t)E

[
ξT +

∫ T

t

g(s)ds|Ft

]∣∣∣∣∣
2

< +∞.

It follows that ξ̃g ∈ S2(β, a), since X ′ ∈ S2(β, a) then ξ̃X
′,g ∈ S2(β, a). Similarly,

it can be shown that ζ̃X,g ∈ S2(β, a).

On the other hand, from ξ ≤ Y ≤ ζ and definition of Ỹ , ξ̃g and ζ̃g, we derive
that ξ̃g ≤ Ỹ ≤ ζ̃g. Since Ỹ = X −X ′ we have X ≥ ξ̃X

′,g and X ′ ≥ ζ̃X,g. Note
that Y − ξ = Ỹ − ξ̃g = X − ξ̃X

′,g. The minimality condition (1.3) satisfied by

C+ can thus be written (Xτ − ξ̃X
′,g

τ )∆C+
τ = 0 a.s. We also have {Yt− > ξt−} =

{Xt− > ξ̃X
′,g

t− }, hence the Skorokhod condition (1.2) satisfied byK+ can be written∫ T

0
1{Xt−>ξ̃X

′,g
t− }dK

+
t = 0 a.s. Additionally, the process (X,Z, U,K+, C+) satisfies

the equation (2.6), then it is a solution of the reflected BSDE associated with the

driver 0 and the barrier ξ̃X
′,g. In other terms, X = Ref [ξ̃X′,g]. By similar

arguments, we get that X ′ = Ref [ζ̃X,g].
Now, remark that

Xt = −
∫ T

t

ZsdBs −
∫ T

t

∫
U

Us(e)µ̃(ds, de) +K+
T −K+

t + C+
T− − C+

t−

= X0 +Mt +Nt +Wt

where

Mt =

∫ t

0

ZsdBs +

∫ t

0

∫
U

Us(e)µ̃(ds, de), Nt = −K+
t and Wt = −C+

t−.

Using the Corollary A.6, we get

eβA(t)|Xt|2 +
∫ T

t

βeβA(s)a2(s)|Xs|2ds+
∫ T

t

eβA(s)|Zs|2ds

= −2

∫ T

t

eβA(s)XsZsdBs − 2

∫ T

t

∫
U

eβA(s)Xs−Us(e)µ̃(ds, de)

+2

∫ T

t

eβA(s)Xs−dK
+
s + 2

∫ T

t

eβA(s)Xsd(C
+)s+

−
∑

t<s≤T

eβA(s)(∆Xs)
2 −

∑
t≤s<T

eβA(s)(∆+Xs)
2. (2.9)

Since the process K+ be a jumps only at predictable stopping times and µ(., de)
jumps only at totally inaccessible stopping times, then we can note that

∑
t<s≤T

eβA(s)(∆Xs)
2 =

∫ T

t

∫
U

eβA(s)|Us(e)|2µ(ds, de) +
∑

t<s≤T

eβA(s)(∆K+
s )2.
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Then one can derive that∫ T

t

eβA(s)∥Us∥2λds−
∑

t<s≤T

eβA(s)(∆Xs)
2

=

∫ T

t

eβA(s)∥Us∥2λds−
∫ T

t

∫
U

eβA(s)|Us(e)|2µ(ds, de)−
∑

t<s≤T

eβA(s)(∆K+
s )2

≤ −
∫ T

t

∫
U

eβA(s)|Us(e)|2µ̃(ds, de).

By adding the term
∫ T

t
eβA(s)∥Us∥2λds on both sides of inequality (2.9), we get∫ T

t

eβA(s)
{
|Zs|2 + ∥Us∥2λ

}
ds

≤ −2

∫ T

t

eβA(s)XsZsdBs −
∫ T

t

∫
U

eβA(s)
{
2Xs−Us(e) + |Us(e)|2

}
µ̃(ds, de)

+2

∫ T

t

eβA(s)Xs−dK
+
s + 2

∫ T

t

eβA(s)Xsd(C
+)s+.

Since Xs−dK
+
s = ξ̃X

′,g
s− dK+

s and Xs∆C
+
s = ξ̃X

′,g
s ∆C+

s , taking into consideration
the Proposition 1.3, we get

E
∫ T

t

eβA(s)
{
|Zs|2 + ∥Us∥2λ

}
ds

≤ 2E
∫ T

t

eβA(s)ξ̃X
′,g

s− dK+
s + 2E

∑
t≤s<T

eβA(s)ξ̃X
′,g

s ∆C+
s

≤ 4E ess sup
τ∈T[0,T ]

eβA(τ)|ξ̃X
′,g

τ |2 + E|eβA(T )K+
T |2 + E|eβA(T )C+

T |2 < +∞.

Here we suppose, in addition, that E
∫ T

0
{θ(t) + γ2(t) + η2(t)}dt < +∞. It follows

that (Z, U) ∈ H2(β, a)× L2(β, a).
Finally, from Remark 2.2, (X,Z, U,K+, C+) ∈ B2(β, a)×H2(β, a)×L2(β, a)×

S2×S2. Similarly, we can prove that (X ′,Z ′, U ′,K−, C−) ∈ B2(β, a)×H2(β, a)×
L2(β, a)× S2 × S2. The proof is complete. □

Lemma 2.4. The following assertions are equivalent:

(i) The DRBSDE associated with parameters (g, ξ, ζ) has a solution belonging
to B2(β, a)×H2(β, a)× L2(β, a)× (S2)4.

(ii) There exists two processes X ∈ B2(β, a) and X ′ ∈ B2(β, a) such that{
X = Ref [ξ̃X ′,g]

X ′ = Ref [ζ̃X ,g].
(2.10)

Proof. (i) ⇒ (ii) has been proved above. (ii) ⇒ (i): Let X ∈ B2(β, a) and
X ′ ∈ B2(β, a) be satisfying the coupled system (2.10). Let (Z, U,K+, C+) (resp.
(Z ′, U ′,K−, C−)) be the vector of the remaining components of the solution to
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the reflected BSDE whose first component is X (resp. X ′). We note that the
equations (2.6) and (2.7) hold for X and X ′. We define the optional process Y by

Yt = Xt −X ′
t + E[ξT +

∫ T

t

g(s)ds|Ft] ∀t ≤ T a.s. (2.11)

Since X and X ′ are belongs to B2(β, a), it follows that the process Y is well-
defined. From (2.11) and the property XT = X ′

T = 0 a.s., we get YT = ξT a.s.

Note that, he coupled system (2.10) implies that X > ξ̃X
′,g and X ′ > ζ̃X ,g a.s.

Then, by using the definitions of ξ̃g, ζ̃g and Y , we derive that ξ ≤ Y ≤ ζ a.s.
Moreover, the processes K+ and C+ satisfy the minimality condition for re-

flected BSDE. More precisely, for all τ ∈ T[0,T ] (Xτ − ξ̃X
′,g

τ )∆C+
τ a.s. and for

all t ≤ T
∫ T

0
1{Xt>ξ̃X

′,g
t }dK

+
t = 0 a.s. Now, by using the definitions of Y and

ξ̃g we get {Xτ = ξ̃X
′,g

τ } = {Yτ = ξτ}, {Xτ− = ξ̃X
′,g

τ− } = {Yτ− = ξτ−} and

{Xt > ξ̃X
′,g

t } = {Yt > ξt}, then we can derive that for all τ ∈ T[0,T ] (Yτ − ξτ )∆C
+
τ

a.s. and for all t ≤ T
∫ T

0
1{Yt−>ξt−}dK

+
t = 0 a.s. By applying the same arguments

to K− and C− we also get for all τ ∈ T[0,T ] (Yτ − ζτ )∆C
−
τ a.s. and for all t ≤ T∫ T

0
1{Yt−<ζt−}dK

−
t = 0 a.s.

Now, we note that the process
(
E
[
ξT +

∫ T

t
g(s)ds|Ft

])
t≤T

corresponds to the

first component of the solution to the non-reflected BSDE with parameters (ξT , g).
Hence, by martingale representation theorem, there exists Z ′′ ∈ H2 and U ′′ ∈ L2

such that

E

[
ξT +

∫ T

t

g(s)ds|Ft

]
= ξT +

∫ T

t

g(s)ds−
∫ T

t

Z ′′
s dBs −

∫ T

t

∫
U

U ′′
s (e)µ̃(ds, de).

Further, by using Itô’s formula for a semimartingale, we have also Z ′′ ∈ H2(β, a)
and U ′′ ∈ L2(β, a). Together with definition of Y and the equations (2.6) and
(2.7), we obtain

Yt = ξT +

∫ T

t

g(s)ds−
∫ T

t

ZsdBs + (K+
T −K+

t )− (K−
T −K−

t )

−
∫ T

t

∫
U

Vs(e)µ̃(ds, de) + (C+
T− − C+

t−)− (C−
T− − C−

t−),

where Z = Z − Z ′ + Z ′′ and V = U − U ′ + U ′′. Moreover,

∥Y ∥2B2
β
≤ 3

∥X∥2B2
β
+ ∥X ′∥2B2

β
+

∥∥∥∥∥E
[
ξT +

∫ T

t

g(s)ds|Ft

]∥∥∥∥∥
2

B2
β

 < +∞.

Thus, if dK+ ⊥ dK− and dC+ ⊥ dC−, the process (Y,Z, V,K+,K−, C+, C−) is
a solution to the DRBSDE with parameters (g, ξ, ζ). □

2.3. Existence of a (minimal) solution to DRBSDE. Let us notice that
obviously for arbitrary pair of admissible barriers (ξ, ζ), the DRBSDE with pa-
rameters (g, ξ, ζ) does not have a solution since, for example, ξ and ζ coincide and
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ξ is not semimartingale then we cannot find a semimartingale which equals to ξ.
However as into account the Mokobodski’s condition which reads as:

(Mk): There exist two nonnegative supermartingales (Ht)t≤T and (H ′
t)t≤T

such that
∀t ≤ T, ξt ≤ Ht −H ′

t ≤ ζt.

Then we can prove the existence of a solution for DRBSDE with driver g and a
pair of admissible barriers (ξ, ζ).

Theorem 2.5. Assume that
g

a
∈ H2(β, a) and (Mk) holds. Then the DRBSDE

associated with data (g, ξ, ζ) admits a unique solution (Y, Z, V,K+,K−, C+, C−)
that belongs to B2(β, a)×H2(β, a)× L2(β, a)× (S2)4.

The idea to the proof is from establishing the existence of solution to the coupled
system (2.10) which equivalent to the DRBSDE by using lemma 2.4. To do that,
we use Picard’s iterations, whose we define recursively the processes{

X 0 = 0, X ′0 = 0;

Xn+1 = Ref [X ′n + ξ̃g], X ′n+1 = Ref [Xn − ζ̃g].
(2.12)

Lemma 2.6. The sequences (Xn)n≥0 and (X ′n)n≥0 are nondecreasing of optional
processes. Moreover, there exists two nonnegative strong optional supermartingales
X and X ′ in B2(β, a) satisfying the system (2.10) and

ξ̃g ≤ X − X ′ ≤ ζ̃g. (2.13)

Proof. By induction, the processes Xn and X ′n are well-defined, moreover they
are strong supermartingales in B2(β, a).

We first show that Xn ≥ 0 and X ′n ≥ 0, for all n ∈ N. Clearly, Xn
T = X ′n

T = 0.
Since Xn is a strong supermartingales, it follows that Xn

τ ≥ E[Xn
T |Fτ ] = 0 a.s. for

all τ ∈ T[0,T ], which implies that Xn ≥ 0. Similarly we see that X ′n ≥ 0.
We prove recursively that (Xn)n≥0 and (X ′n)n≥0 are nondecreasing sequences

of processes. We have X 1 ≥ 0 = X 0 and X ′1 ≥ 0 = X ′0. Suppose that Xn ≥ Xn−1

and X ′n ≥ X ′n−1. The induction hypothesis and nondecreasingness of the operator
Ref (see lemma A.7) implies that

Ref [X ′n + ξ̃g] ≥ Ref [X ′n−1 + ξ̃g] and Ref [Xn + ζ̃g] ≥ Ref [Xn−1 + ζ̃g].

Hence Xn+1 ≥ Xn and X ′n+1 ≥ X ′n, which is the desired result.
Now we show that (Xn)n≥0 and (X ′n)n≥0 are bounded from above by some

processes Hg and H ′g respectively, which define as follows Hg
t = Ht + E

[
ξ−T +

∫ T

t
g−(s)ds|Ft

]
;

H ′g
t = H ′

t + E
[
ξ+T +

∫ T

t
g+(s)ds|Ft

]
,

where H and H ′ come from Mokobodski’s condition (Mk) for (ξ, ζ). We note that
Hg and H ′g are nonnegative strong supermartingales in S2(β, a). From (Mk), we
get

ξ̃g ≤ Hg −H ′g ≤ ζ̃g. (2.14)

By recursively, note first that X 0 = 0 ≤ Hg and X ′0 = 0 ≤ H ′g. Suppose
that Xn ≤ Hg and X ′n ≤ H ′g. From this, together with (2.14), we get X ′n ≤
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H ′g ≤ Hg − ξ̃g, which implies X ′n + ξ̃g ≤ Hg. By the nondecreasingness of the
operator Ref , we derive Xn+1 = Ref [X ′n + ξ̃g] ≤ Ref [Hg]. Since Hg is a strong
supermartingale, the second assertion of lemma A.7 gives Ref [Hg] = Hg. Hence
Xn+1 ≤ Hg. Similarly we shown X ′n+1 ≤ H ′g.

Since (Xn)n≥0 and (X ′n)n≥0 are nondecreasing sequences of processes, and
they are bounded from above by Hg and H ′g respectively, then there exists two
nonnegative optional strong supermartingales X and X ′ limits to (Xn)n≥0 and
(X ′n)n≥0 respectively. This limits satisfies 0 ≤ X ≤ Hg and 0 ≤ X ′ ≤ H ′g, as
Hg,H ′g ∈ S2(β, a), it follows that X and X ′ are belongs to S2(β, a).

It remains to show that X and X ′ are the solutions of the coupled system
(2.10). Note that the sequence (X ′n + ξ̃g)n≥0 is nondecreasing and converges to

ξ̃X
′,g. By lemma A.8, we thus derive that limn→+∞ Ref [X ′n + ξ̃g] = Ref [ξ̃X ′,g]

and similarly limn→+∞ Ref [Xn − ζ̃g] = Ref [ζ̃X ,g]. Hence, by letting n tend to
+∞ in (2.12), one can derive that X and X ′ solve the coupled system (2.10).

The property ξ̃g ≤ X − X ′ ≤ ζ̃g come from the definition of operator Ref ;
indeed, Xn = Ref [X ′n + ξ̃g] implies that Xn ≥ X ′n + ξ̃g, by letting n tend to

+∞ we get X − X ′ ≥ ξ̃g and with same way X − X ′ ≤ ζ̃g. Moreover, X and X ′

are the minimal nonnegative strong supermartingales in S2(β, a) satisfying (2.13);
indeed, if H, H ′ are nonnegative strong supermartingales in S2(β, a) satisfying

ξ̃g ≤ H −H ′ ≤ ζ̃g, then by using the some arguments as above, we have always
X ≤ H and X ′ ≤ H ′.

From this minimality property, it follows that (X ,X ′) is also characterized as
the minimal solution of the coupled system (2.10). □

Proof of Theorem 2.5. By lemma 2.6 we have existence of two nonnegative strong
optional supermartingales X and X ′ that belonging toB2(β, a) solution of the cou-
pled system (2.10). Then, from lemma 2.4, there exists (Y, Z, V,K+,K−, C+, C−)
that belonging to B2(β, a) × H2(β, a) × L2(β, a) × (S2)4 solution of DRBSDE
associated with parameters (g, ξ, ζ) such that

Yt = Xt −X ′
t + E

[
ξT +

∫ T

t

g(s)ds|Ft

]
∀t ≤ T a.s.

The uniqueness derive from the a priori estimate which proved in lemma 2.1. □

3. Solving the DRBSDEs with General Stochastic Lipschitz Driver

By means of the fixed point theorem, we prove the existence and uniqueness of
solution to the DRBSDE associated with parameters (f, ξ, ζ) where f is stochastic
Lipschitz driver.

Theorem 3.1. Let f be a stochastic Lipschitz driver and (ξt, ζt)t≤T are left limited
processes satisfying (Mk). Then the DRBSDE associated with parameters (f, ξ, ζ)
admits a unique solution.
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Proof. Given (ϕ, ψ, φ) ∈ B2(β, a) × H2(β, a) × L2(β, a), consider the following
DRBSDE:

Yt = ξT +

∫ T

t

f(s, ϕs, ψs, φs)ds+ (K+
T −K+

t )− (K−
T −K−

t )−
∫ T

t

ZsdBs

−
∫ T

t

∫
U

Vs(e)µ̃(ds, de) + (C+
T− − C+

t−)− (C−
T− − C−

t−) t ≤ T. (3.1)

From the stochastic Lipschitz assumption on f , we have

|f(t, ϕt, ψt, φt)|2 ≤ (θ(t)|ϕt|+ γ(t)|ψt|+ η(t)∥φt∥λ + |f(t, 0, 0, 0)|)2

≤ 4
(
θ2(t)|ϕt|2 + γ2(t)|ψt|2 + η2(t)∥φt∥2λ + |f(t, 0, 0, 0)|2

)
.

It follows

|f(t, ϕt, ψt, φt)|2

a2(t)
≤ 4

(
a2(t)|ϕt|2 + |ψt|2 + ∥φt∥2λ +

|f(t, 0, 0, 0)|2

a2(t)

)
.

Then
f

a
∈ H2(β, a). It follows from Theorem 2.5 that the DRBSDE(3.1) has a

unique solution (Y, Z, V,K+,K−, C+, C−). Define a mapping Φ from B2(β, a)×
H2(β, a) × L2(β, a) into itself. Let (ϕ′, ψ′, φ′) an other element of B2(β, a) ×
H2(β, a)×L2(β, a). We set Φ(ϕ, ψ, φ) = (Y, Z, V ) and Φ(ϕ′, ψ′, φ′) = (Y ′, Z ′, V ′).
We also set

δϕ = ϕ− ϕ′, δψ = ψ − ψ′, δφ = φ− φ′, δY = Y − Y ′, δZ = Z − Z ′,

δV = V − V ′, δft = f(t, ϕ′t, ψ
′
t, φ

′
t)− f(t, ϕt, ψt, φt).

With same way as to inequality (2.4) (see the proof of lemma 2.1), we get

β

2
∥aδY ∥2S2,a

β

+ ∥δZ∥2H2
β
+ ∥δV ∥2L2

β
≤ 2

β

∥∥∥∥δfa
∥∥∥∥2
H2

β

.

By using the stochastic Lipschitz assumption on f , we can write for β > 6

β

2
∥aδY ∥2S2,a

β

+ ∥δZ∥2H2
β
+ ∥δV ∥2L2

β
≤ 6

β

(
∥aδϕ∥2S2,a

β

+ ∥δψ∥2H2
β
+ ∥δφ∥2L2

β

)
.

It follows that Φ is a strict contraction mapping on B2(β, a)×H2(β, a)×L2(β, a).
Henceforth, there exists a process (Y, Z, V ) fixed point to Φ which, with (K±, C±)
is the unique solution to DRBSDE with parameters (f, ξ, ζ). □

4. Comparison Theorem

The comparison theorem is one of the principal tools in the theories of the
BSDEs. But it does not hold in general for solutions of BSDEs with jumps (see
the counter example in [3]). However, it’s shown in special cases (see for example
[36, 39]). In order to obtain the comparison theorem, in this section, we will discus
the following generator

f(ω, t, y, z, v) = h(ω, t, y, z) +

∫
U

ct(ω, e)vt(e)λ(de),

where

• c : Ω× [0, T ]×U → [−1,+∞[ is a P ⊗U-measurable mapp belongs in Lλ.
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• There exist two nonnegative Ft-adapted processes θ1 and γ1 such that
∀(y, y′, z, z′) ∈ R× R× Rd × Rd

|h(ω, t, y, z)− h(ω, t, y′, z′)| ≤ θ1(t)|y − y′|+ γ1(t)|z − z′|,
with θ1(t) + γ21(t) = a21(t) ≥ ϵ1 > 0.

Let (Y i, Zi, V i,K+,i,K−,i, C+,i, C−,i) be the unique solution of the DRBSDE
with data (f i, ξi, ζi), for i = 1, 2. Then we have the following:

Theorem 4.1. Assume that

ξ1t ≤ ξ2t , ζ1t ≤ ζ2t and f1(t, Y 2
t , Z

2
t , V

2
t ) ≤ f2(t, Y 2

t , Z
2
t , V

2
t ) ∀t ≤ T a.s.

Then Y 1
t ≤ Y 2

t ∀t ≤ T a.s.

Proof. Let ℜ̄ = ℜ1 −ℜ2 with ℜ = Y,Z, V,K+,K−, C+, C−, ξ, ζ. Then

Ȳt = ξ̄T +

∫ T

t

{
σsȲs + δsZ̄s +

∫
U

cs(ω, e)V̄s(e)λ(de) + hs

}
ds+ (K̄+

T − K̄+
t )

−(K̄−
T − K̄−

t )−
∫ T

t

Z̄sdBs −
∫ T

t

∫
U

V̄s(e)µ̃(ds, de) + (C̄+
T− − C̄+

t−)

−(C̄−
T− − C̄−

t−), (4.1)

where

σt = 1{Ȳt ̸=0}
h(t, Y 1

t , Z
1
t )− h(t, Y 2

t , Z
1
t )

Ȳt
, δt = 1{Z̄t ̸=0}

h(t, Y 2
t , Z

1
t )− h(t, Y 2

t , Z
2
t )

Z̄t

and ht = f1(t, Y 2
t , Z

2
t , V

2
t )− f2(t, Y 2

t , Z
2
t , V

2
t ).

Now, by Girsanov transformation theorem, there exists a probability measure
Q defined on the standard measurable space (Ω,F) such that Q := ET (M)P where
ET (.) is Doléans-Dade exponential (see Protter [34], theorem 37 pp.84), B̄t =

Bt −
∫ t

0
δsds is a Brownian motion under probability measure Q and µ̄(de, ds) =

µ̃(de, ds) − cs(ω, e)λ(de)ds is a Q-martingale measure. Hence the DRBSDE(4.1)
can be rewritten as

Ȳt = ξ̄T +

∫ T

t

(
σsȲs + hs

)
ds+ (K̄+

T − K̄+
t )− (K̄−

T − K̄−
t )−

∫ T

t

Z̄sdB̄s

−
∫ T

t

∫
U

V̄s(e)µ̄(ds, de) + (C̄+
T− − C̄+

t−)− (C̄−
T− − C̄−

t−).

Applying Gal’chouk formula with the convex function x 7→ x+ (see Theorem A.9),
we get for all t ≤ T

Ȳ +
t = Ȳ +

0 +

∫ t

0

1{Ȳs−>0}dȲs +
1

2
Lt(Ȳ ) +

∑
0≤s<t

[
Ȳ +
s+1{Ȳs−≤0} + Ȳ −

s−1{Ȳs−>0}

+Ȳ +
t 1{Ȳt−≤0} + Ȳ −

t 1{Ȳt−>0}

]
= Ȳ +

0 −
∫ t

0

1{Ȳs−>0}(σsȲs + hs)ds− K̄+
t + K̄−

t +

∫ t

0

Z̄sdB̄s

+

∫ t

0

∫
U

V̄s(e)µ̄(ds, de)− C̄+
t− + C̄−

t− +
1

2
Lt(Ȳ ) + Σt



NON-CONTINUOUS DOUBLE BARRIER RBSDES WITH JUMPS 377

where (Lt)t≤T is a local time (nondecreasing continuous process with L0 = 0)
and Σt =

∑
0≤s<t Ȳ

+
s+1{Ȳs−≤0} + Ȳ −

s−1{Ȳs−>0} + Ȳ +
t 1{Ȳt−≤0} + Ȳ −

t 1{Ȳt−>0} is

finite by Theorem A.10. Ȳ + is a strong optional semimartingale (see Theorem

A.9) with decomposition Ȳ +
t = Ȳ +

0 + Mt + Nt + Wt where Mt =
∫ t

0
Z̄sdB̄s +∫ t

0

∫
U
V̄s(e)µ̄(ds, de), Nt = −

∫ t

0
(σsȲs + hs)ds − K̄+

t + K̄−
t + 1

2Lt(Ȳ ) + Σt and

Wt = −C̄+
t− + C̄−

t−.

Next, we denote Rt = eβA1(t)+2
∫ t
0
σsds where A1(t) =

∫ t

0
a21(s)ds is a increasing

continuous process. We apply the Corollary A.6 to obtain

Rt|Ȳ +
t |2

= |Ȳ +
0 |2 +

∫ t

0

{
βa21(s) + 2σs

}
Rs|Ȳ +

s |2ds+ 2

∫ t

0

RsȲ
+
s Z̄sdB̄s

+2

∫ t

0

∫
U

RsȲ
+
s−V̄s(e)µ̄(ds, de)− 2

∫ t

0

RsȲ
+
s

{
σsȲs + hs

}
ds

−2

∫ t

0

RsȲ
+
s−(dK̄

+
s − dK̄−

s ) +

∫ t

0

RsȲ
+
s dLs +

∫
]0,t]

Rs|Z̄s|2ds

+
∑

0<s≤t

Rs(Ȳ
+
s − Ȳ +

s−)
2 − 2

∫ t

0

RsȲ
+
s (dC̄+

s − dC̄−
s ) +

∑
0≤s<t

Rs(Ȳ
+
s+ − Ȳ +

s )2.

Consequently

Rt|Ȳ +
t |2 +

∫ T

t

βRsa
2
1(s)|Ȳ +

s |2ds+
∫ T

t

Rs|Z̄s|2ds

= |ξ̄+T |
2 − 2

∫ T

t

RsȲ
+
s Z̄sdB̄s − 2

∫ T

t

∫
U

RsȲ
+
s−V̄s(e)µ̄(ds, de)

+2

∫ T

t

RsȲ
+
s hsds+ 2

∫ T

t

RsȲ
+
s−(dK̄

+
s − dK̄−

s )−
∫ T

t

RsȲ
+
s dLs

−
∑

t<s≤T

Rs(Ȳ
+
s − Ȳ +

s−)
2 + 2

∫ T

t

RsȲ
+
s (dC̄+

s − dC̄−
s )−

∑
t≤s<T

Rs(Ȳ
+
s+ − Ȳ +

s )2.

Using the property (1.2) and (1.3) cited in Definition 1.1 to obtain that Ȳ +
s−(dK̄

+
s −

dK̄−
s ) ≤ 0 and Ȳ +

s (dC̄+
s − dC̄−

s ) ≤ 0 respectively. In addition ξ̄T ≤ 0, hs ≤ 0 and
the nondecreasingness of (Lt)t≤T implies that

Rt|Ȳ +
t |2 +

∫ T

t

βRsa
2
1(s)|Ȳ +

s |2ds+
∫ T

t

Rs|Z̄s|2ds

≤ −2

∫ T

t

RsȲ
+
s Z̄sdB̄s − 2

∫ T

t

∫
U

RsȲ
+
s−V̄s(e)µ̄(ds, de).

Taking expectation under the measure Q on the both sides we get

E[Rt|Ȳ +
t |2] ≤ 0.

It follows that Ȳ +
t = 0, i.e. Y 1

t ≤ Y 2
t for all t ≤ T Q-a.s. and so P-a.s. □
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Appendix A

Definition A.1. Let τ ∈ T[0,T ]. An optional process (ξt)t≤T is said to be right
upper-semicontinuous (r.u.s.c) along stopping times at the stopping time τ if for
all nonincreasing sequence of stopping times (τn)n≥0 such that τn ↘ τ a.s. and
ξτ ≥ lim supn→+∞ ξτn a.s. The process (ξt)t≤T is said to be r.u.s.c along stopping
times if it is r.u.s.c along stopping times at each τ ∈ T[0,T ].

Definition A.2. Let (Kt)t≤T and (Ct)t≤T be two R-valued optional nondecreas-
ing càdlàg processes with K0 = 0, C0 = 0, E[KT ] < +∞ and E[CT ] < +∞. We
say that the random measures dKt and dCt are mutually singular and we write
dKt ⊥ dCt, if there exists D ∈ O such that

E

[∫ T

0

1DcdKt

]
= E

[∫ T

0

1DdCt

]
= 0.

Definition A.3. Let (Yt)t≤T be an optional process. We say that Y is a strong
(optional) supermartingale if Yτ is integrable for all τ ∈ T[0,T ] and Yν ≥ E[Yτ |Fν ]
a.s. for all ν ≤ τ ∈ T[0,T ].

Theorem A.4 (Mertens decomposition). Let Ỹ be a strong optional super-
martingale of class(D). There exists a unique uniformly integrable martingale
(càdlàg) M , a unique nondecreasing right-continuous predictable process K with
K0 = 0 and E[KT ] < +∞, and a unique nondecreasing right-continuous adapted
purely discontinuous process C with C0− = 0 and E[CT ] < +∞, such that

Ỹt =Mt −Kt − Ct− ∀t ≤ T a.s.

Theorem A.5 (Gal’chouk-Lenglart formula). Let n ∈ N. Let Y be an n-
dimensional optional semimartingale with decomposition Y k = Y k

0 +Mk +Nk +
W k, for all k = 1, · · · , n where Mk is a (càdlàg) local martingale, Nk is a right-
continuous process of finite variation such that Nk

0 = 0 andW k is a left-continuous
process of finite variation which is purely discontinuous and such that W k

0 = 0.
Let F be a twice continuously differentiable function on Rn. Then, almost surely,
for all t ≥ 0,

F (Yt) = F (Y0) +
n∑

k=1

∫ t

0

DkF (Ys−)d(M
k +Nk)s

+
1

2

n∑
k,l=1

∫ t

0

DkDlF (Ys−)d < Mk,c,M l,c >s

+
∑

0<s≤t

[
F (Ys)− F (Ys−)−

n∑
k=1

DkF (Ys−)∆Y
k
s

]

+
n∑

k=1

∫ t

0

DkF (Ys)d(W
k)s+

+
∑

0≤s<t

[
F (Ys+)− F (Ys)−

n∑
k=1

DkF (Ys)∆+Y
k
s

]
,
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where Dk denotes the differentiation operator with respect to the k-th coordinate,
and Mk,c denotes the continuous part of Mk.

Corollary A.6. Let Y be an one-dimensional optional semimartingale with de-
composition Y = Y0 + M + N + W where M , N and W are as in the above
Theorem. Let X be a continuous process of finite variation. Then, almost surely,
for all t ≥ 0,

F (Xt, Yt)

= F (X0, Y0) +

∫ t

0

∂XF (Xs, Ys)ds+

∫ t

0

∂Y F (Xs, Ys−)d(M +N)s

+
1

2

∫ t

0

∂2Y F (Xs, Ys−)d < M c,M c >s +

∫ t

0

∂Y F (Xs, Ys)d(W )s+

+
∑

0<s≤t

[F (Xs, Ys)− F (Xs, Ys−)− ∂Y F (Xs, Ys−)∆Ys]

+
∑

0≤s<t

[F (Xs, Ys+)− F (Xs, Ys)− ∂Y F (Xs, Ys)∆+Ys]

where ∂Y is the partial derivative operator with respect to Y .

We give some useful properties of the operator Ref in the following lemmas.

Lemma A.7. (1) The operator Ref is nondecreasing, that is, for ξ and ξ′

belongs to S2(β, a) such that ξ ≤ ξ′ we have Ref [ξ] ≤ Ref [ξ′].
(2) If ξ ∈ S2(β, a) is a strong supermartingale, then Ref [ξ] = ξ.
(3) For each ξ ∈ S2(β, a), Ref [ξ] is a strong supermartingale and satisfies

Ref [ξ] ≥ ξ.

Lemma A.8. Let (ξn)n≥0 be a nondecreasing sequence of processes belonging to
S2(β, a). Let ξ = lim

n→+∞
ξn. If ξ ∈ S2(β, a) the we have Ref [ξ] = lim

n→+∞
Ref [ξn].

In the following we find a special case to Gal’chouk-Lenglart formula for the
convex function x→ x+ du in to E. Lenglart 1980 [26].

Theorem A.9. Let Y be an one-dimensional optional semimartingale. Then,
almost surely, for all t ≥ 0,

Y +
t = Y +

0 +

∫ t

0

1{Ys−>0}dYs +
1

2
Lt(Y )

+
∑

0≤s<t

[
Y +
s+1{Ys−≤0} + Y −

s−1{Ys−>0}

]
+ Y +

t 1{Yt−≤0} + Y −
t 1{Yt−>0}

where (Lt)t≤T is a local time (nondecreasing continuous process). Moreover Y +

is an optional semimartingale.

Theorem A.10. If Y be an optional semimartingale, then
∑

0≤s<t Y
+
s 1{Ys−≤0}+

Y −
s 1{Ys−>0} is finite a.s.
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