
I J C T A, 9(25), 2016, pp. 359-369

© International Science Press

* Assistant professor, Department of Computer Science & Engineering, SRM University, Corresponding author: Email:

murugan.abap@gmail.com

** Professor, Department of Computer Science & Engineering, Pondicherry Engineering College.

Charting Captcha Page Redirected XML
Validation Handler Mechanism in Service
Computing Architectures
A. Murugan* and K. Vivekanandan**

ABSTRACT

Web services became a crucial tool for most of the Internet and Intranet applications. The term Web Service

becomes prevalent in today’s service oriented architecture based applications due to its independent nature,

flexibility, online access and code reusability. Web Service provides an intermediately support for the business

logic at the users end for the application programs. The core advantage of service oriented architecture is due

to its independent existence from both software and hardware platforms. Interoperability features and code

reusability cum adaptability provides an awesome experience for the end developers and end users to utilize

a standard platform for business service calls. Due to an enormous dependency of business scenario existence

it becomes more important to validated the security related concerns on web service accesses. A secure web

service system emphasizes some of the important basic requirements such as integrity, confidentiality and

availability. Any unwanted actions targeting the violation of one of the above said properties are called a web

service attack which in turn the possibility for an attack is called web service vulnerability. Predominantly, the

exploitation of data due to vulnerable inputs plays a very important role in case of security perspective. In

addition, this paper focuses on Denial of Service attack which enables the hijacker to block the system resources

by over utilizing the system resources.

Keywords: Web service composition, Preferable Services, Profitable Services, Web service decision Zone, WS

Invocation Zone, WS Recommendation Zone

1. INTRODUCTION

Web Service is employed to create complicated Business Service orientating design based mostly systems.

These service based mostly design sector depends in exchange of XML through numerous factors like

loosely couple design and ability. The basic web service call includes,

• End User WS Call Initialize: End User raises or initiates the request through applications to the

Web server. The request can be initialized via web server in case of web application or else directly

the request will be done by accessing the web service directly from the server level code(This will

happen in case of desktop applications).

• WS Invoke Call: Appropriate web service will get invoked based on the business logics.

• WS Activation: Web Service will in turns call back to the appropriate DB schema to fetch the data

from the database.

The typical requirements for a secure system are integrity, confidentiality and availability. Any action

targeting violation of one of these properties is called an attack and the possibility for an attack is called

vulnerability. Let’s see some of the key terminologies related to WS Security.

ISSN: 0974-5572

360 A. Murugan and K. Vivekanandan

• Vulnerability: Arises due to improper coding or weakness in the a) System design, b)Implementation,

c)Operation and management. The Specifiedissues provide an opportunity to exploit the system

and enable to violate the system’s security policy.

• Exploit: Known way for the hacker to penetrate into the system through specific software

vulnerability.

• Threat: Potential point for violation of terms and conditions for the system which may due to the

circumstances of the application functionality, capability of the app and the app environment, possible

action, or event that could tear the security and cause harm to the system.

• Attack: Attack is a central point on system security which is derived from an intelligent vulnerable

threat.

• Incident: Incident is a final outcome of a successful WS attack

The This research extends in detailing the list of 87 steps involved in constructing the web service

description Languagein XML Format specifying the XML Namespaces, Web Service Method, Web Service

Response, Soap In Out Messages, Soap Port Information’s, Backup Services, Service URLs.

2. LITERATURE REVIEW

Many researchers were working out for a feasible approach in securing SOA computing world.

Jiwei,Chuang,Bing and Xuemin(1) proposed an innovative top down approach on dependency attributes

evaluation in terms of service composition and selection pattern on the complex services is dealt. Direct

proportion of Dependency and the relevant security measures in SOA is developed through an innovative

semi-Markov model and the finalized output of this system provides an optimized solution for Mean time

to failure (MTTF). Jiwei team provides a clear picture on the possible dependency attributes to define the

composition model selection for the web services. Providing more relevancies with the security and the

dependency attributes can be emphasized.Zhiyuan,Aruna, Xiangjian and Ren Ping[2] focused in classifying

the sample into its distribution using sample-by-sample labeling in the format of cumulative distribution

functions which provides a discrete Triangle area Maps. Through which, the legitimate and illegitimate

traffic records were identified by manipulating the covariance between two arbitrary elements(Normal

profile Vs Threshold Selection). Prevention mechanism is not considered and the base work is completely

focused in the detection of the attack. Applying proposed solution to other attacks may provide more

flexibility options in resolving multiple attacks. Author didn’t focus in this perspective.Zhe, Yun, Byron,

Jianliang and Sourav[3] suggest on Retrieving datasets or activating the dataset values by querying the

graph database provides easiest and optimistic results of effective service utilization in manipulating the

Figure 1 : Basic business flow 1 in Server Oriented Architecture

Short Note: Plenty of applications work behind the

strong back bone of web service interfaces, each

application will have their own security vulnerabilities

which are more likely exposed via a plenty of hijack

attacks. Considering a user initiates a web service call,

user’s personal information such as location, personal

email ids, back ground identities and preferences are

usually exposed without any protection mechanism

against the service providers. Major aim of the

attackers is to cause a loss of availability on the

personal information’s for the users or intended

extraction of confidential information.

 Charting Captcha Page Redirected XML Validation Handler Mechanism... 361

<wsdl:definitionsxmlns:http=http://schemas.xmlsoap.org/wsdl/http/

xmlns:soapenc=http://schemas.xmlsoap.org/soap/encoding/

xmlns:mime=http://schemas.xmlsoap.org/wsdl/mime/

xmlns:tns=http://tempuri.org/

xmlns:soap=http://schemas.xmlsoap.org/wsdl/soap/

xmlns:tm=http://microsoft.com/wsdl/mime/textMatching/

xmlns:s=http://www.w3.org/2001/XMLSchema

xmlns:soap12=http://schemas.xmlsoap.org/wsdl/soap12/

targetNamespace=http://tempuri.org/

xmlns:wsdl=http://schemas.xmlsoap.org/wsdl/>

<wsdl:types>

<s:schema elementFormDefault=qualified

targetNamespace=http://tempuri.org/>

<s:element name=VerifyCredentials>

<s:complexType>

<s:sequence>

<s:element minOccurs=0" maxOccurs=1" name=username

type=”s:string” />

<s:element minOccurs=0" maxOccurs=1" name=password

type=s:string />

</s:sequence>

</s:complexType>

</s:element>

<s:element name=VerifyCredentialsResponse>

<s:complexType>

<s:sequence>

<s:element minOccurs=0" maxOccurs=1"

name=VerifyCredentialsResult>

<s:complexType>

<s:sequence>

<s:element ref=s:schema />

<s:any />

</s:sequence>

</s:complexType>

</s:element>

</s:sequence>

</s:complexType>

</s:element>

</s:schema>

</wsdl:types>

Step1:WebService Definition

Step2:Initialization-HTTP WSDL

Step3:Initialization-SOAP Encoding

Step4:Initialization-WSDL Mime

Step6:Initialization-tns

Step7:Initialization-SOAP Protocol

Step8:Initialization-Text Protocol

Step9:Initialization-XML Schema

Step10:Initialization-Alterate Srv

Step11:Initialization-NameSpace

Step12:Initialization-WSDL Schemas

Step13:WS Definition Types

Step14:Indicate XML as Qualified

Step15:Assign TargetNameSpace

Step16:Initialize the Method

Step17:ComplexDataType Method

Step18:Method Call-In Sequence

Step19:Min&Max Element Occurrence

Step20:Variable & Its type

Step21:Min&Max Element Occurrence

Step22:Variable & Its type

Step23:Ending of Sequence

Step24:Ending of Method Data Type

Step25:Ending of the Element

Step26:Srv Method Response Handle

Step27:ComplexDataType Method

Step28:Method Call-In Sequence

Step29:Min&Max Element Occurrence

Step30:Method Response Indicator

Step31:Return Data type

Step32:Return type Sequence Indic

Step33:Element Bind Ref Schema

Step34:Acceptance of return value

Step35:Ending of Sequence

Step36:Ending of Method Data Type

Step37:Ending of the Element

Step38:Ending of Sequence

Step39:Ending of Method Data Type

Step40:Ending of the Element

Step41:Ending of the Schema

Step42:Ending of the WSDL Types

Web

Service

Initialization

Parameters

Web

Service

Qualifiers

Initialization

Web Service

Response

Details

Specification

SOA based query engine. Optimistic path can be obtained through the subgraph query tuned with the

proposed merkel Intersection aware feature sub graph tree model. It’s featured with a minimized I/O

framework namely filtering-and-verification framework for clear authentication. The research mostly dealt

on the performance perspective in turn, reaction of the system based on frequent requests such as Denial of

Services was not explained clearly.Yajuan,Xiapu,Qing and Rocky[4] provides an insight view of DOS

attack and the appropriate feedback control which will streamline itself based on the difference between

current and the desired states. An automatic feedback control will provide adequate steady state error

information is gathered and a switched system model is activated to stable the environment. Three base

analyses were made on the system, one with the victim system’s state along with the attack, second with the

admission range rate for the attack and finally the end analysis of effectiveness of the LRDOS attack.

362 A. Murugan and K. Vivekanandan

<wsdl:message name=VerifyCredentialsSoapIn>

<wsdl:part name=parameters element=tns:VerifyCredentials />

</wsdl:message>

<wsdl:message name=VerifyCredentialsSoapOut>

<wsdl:part name=parameters element=tns:VerifyCredentialsResponse/>

</wsdl:message>

<wsdl:portType name=ServiceSoap>

<wsdl:operation name=VerifyCredentials>

<wsdl:input message=tns:VerifyCredentialsSoapIn />

<wsdl:output message=tns:VerifyCredentialsSoapOut />

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name=ServiceSoap12" type=tns:ServiceSoap>

<soap12:binding transport=http://schemas.xmlsoap.org/soap/http />

<wsdl:operation name=VerifyCredentials>

<soap12:operation soapAction=http://tempuri.org/VerifyCredentials style=document />

<wsdl:input>

 <soap12:body use=literal />

</wsdl:input>

<wsdl:output>

 <soap12:body use=literal />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

Step43:WSDL In Message Initialization

Step44:In Msg Parameter Initialization

Step45:In Msg Elements Initialization

Step46:WSDL In Message Closure

Step47:WSDL Out Message Initialization

Step48:OutMsg Parameter Initialization

Step49:Out Msg Elements Initialization

Step50:WSDL Out Message Closure

Step51:WSDL Port Initialization

Step52:WSDL Message Operations List

Step53:Soap In Assignation to Method

Step54:Soap Out Assignation to Method

Step55:WSDL Message Operations Closure

Step56:WSDL Port Operation Closure

Step57:WSDL Alterative Service Invoke

Step58:Alternate Service type

Step59:Backup Service Binding

Step60:Backup Service Bind Reference

Step61:Method Mapping with Backup Srv

Step62:Operation Initialization

Step63:Soap Action in Backup Service

Step64:Type Specification-SoapAction

Step65:Input Specification

Step66:Input Type Initialization

Step67:Input Specification End

Step68:Output Specification

Step69:Output Type Initialization

Step70:Output Specification End

Step71:Overall WSDL Operation Ends

Step72:Overall WSDL Binding Ends

WSDL

Soap

Message

Details

Specification

WSDL

Soap

Message

Ports

WSDL

Backup

Service

Port and

Operations

Initialization

<wsdl:servicename=Service>

<wsdl:portname=ServiceSoap

binding=tns:ServiceSoap>

<soap:addresslocation=http://ServiceURL:2022/AttackService/Service.

asmx />

</wsdl:port>

<wsdl:portname=ServiceSoap12

binding=tns:ServiceSoap12">

<soap12:address

location=http:// ServiceURL:2022/AttackService/Service.

asmx />

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

Step73:WSDL Service Name Specification

Step74:Port Initialization for Service

Step75:Service Soap binding for port

Step76:Soap Address Specification

Step77:Location of the Service URL

Step78:URL ending with asmx format

Step79:Service Port closure

Step80:Backup service port Initialize

Step81:Backup Srv port Binding ref

Step82:Backup Srv Address Specification

Step83:Backup Srv URL Specification

Step84:Backup Srv ending with asmx fmt

Step85:Port Closure for Backup Srv

Step86:Overall Service Closure

Step87:Overall WSDL Definition Closure

WSDL

Soap

Service

URL

WSDL

Backup

Soap

Service

URL

 Charting Captcha Page Redirected XML Validation Handler Mechanism... 363

“Getting the feedback and tuning the incoming requests by blocking it or taking appropriate actions” is one

of the predominant and interesting factors for controlling the DOS attack. Allowing attack on the server

side and recovering becomes older one and the restriction in the client side becomes the latest trend of

preventing DOS attack. Paper can be redirected in this approach.Nuno and Marco[5] emphasize the

penetration testing on the web service through some of the major tools like HP webinspect and IBM Rational

AppScan. Checks like false positive analysis and coverage analysis were automated through the tool by

applying on the remote web services. Emphasizement on the basic SQL and XML injections were discussed

through the tools. As a well known fact that, the tool cannot cover up the entire functional codes due to lack

of code paths which may not be instructed by the developer (Inadequate functional VS code coverage).

Some path of code that are not executing during the testing process may cause problem which cannot be

detected. This cannot be rectified until 100% full fledged information sharing on the functional and non

functional flow of the application to the penetration testers.Author [7] identifies the metrics, workload and

procedure based benchmark manipulations on the detection tools by applying on the available web services.

Variety of workloads was incorporated such as real workloads, realistic workloads and synthetic workloads

were manipulated in three ways of benchmark manipulation world which is 1. Generic benchmarking approach

2. Concrete benchmarking approach 3. A new benchmark technique. The researcher’s focuses on creating

metrics and identifying the benchmark of the tools for future usage and focus on preventing the vulnerabilities

or tool to overcome were not available in the existing model.Bo,Maziar,Anjum,Mohammad[8] considers the

variances between the trust quality criterion and non-trust quality criterion by dividing the time and aggregation

domain. Computation of trust by manipulating the nature of data requested and frequency of the data requested,

variance is calculated using Kalman filtering concept. Based on the manipulated inputs received, the criterion

trust and reference trust were categorized. This paper provides a base for our research but the major flaw is

with the prevention criteria’s which is not discussed detail.Andrea and team [6]introduce a biometric solution

through CASHMA architecture in which the biometric traits were validated and the verification certificate is

provided to the end user through which the data will be accessed via the web services. The entire system flows

around the business workflow of how to validate the user and provide the services whereas the system didn’t

focus on how to detect and prevent from the threats zone.

3. PROPOSED APPROACH

Web Service engine holds a XML program to fetch the specified information. Exploiting this XML, by

amending new nodes and tweaking the input content for the XML provides an incredible path to inject the

information into the system or to extract the information from the system. XML Signature provides associate

optimum answer towards net service attacks. This change low computer code detection mistake rates however

the main downside with this sort of detection technique is, it won’t discover new unknown detects just in

case of little variation within the identified payload. To beat this behavior, data based mostly detection

system is introduced which may direct the request VS response sort into specific classes. The primary

category is appointed for traditional behavior that the action is already recorded and there’s not issue with

the execution whereas the second category is said to the sudden behavior to which the admin outlined

action are taken or there won’t be any response for this sort of request.

Web services expose new security risks to the businesses. Various kinds of applications work behind a

Web Service interface. All of these applications obviously have their own security vulnerabilities which are

likely to be even more exposed via Web Services interfaces. When a user queries Web services, the user’s

personal information, such as identity, intention, location and preference, are usually unprotected against

service providers. An attacker could take advantage of such information and then launch targeted malicious

attacks against the user. Also, all these applications handle security in different ways. This presents a

significant security challenge to protect these services consistently. The aim of most of the attacks is usually

to cause loss of availability of scarce resources or unintended behavior due to intolerable delays.

364 A. Murugan and K. Vivekanandan

Possible Input Values

<WebServiceAttacks.dbo.possibleInputsval=  or substring((/

/ u s e r [p o s i t i o n () = N u m e r i c a l _ I n p u t _ Va l 1] /

chi ld : :node() [posi t ion()=Numer ica l_ Input_Val2]) ,

Numerical_Input_Val3, Numerical_Input_ Val4)="Input_

Val5" or ‘’Input_Val6' />

< WebServiceAttacks.dbo.possibleInputsval= ' or

substring(name(parent::*[position()=Numerical_Input_Val1]),

Numerical_Input_Val2, Numerical_Input_Val4)=’Input_Val5"

/>

< WebServiceAttacks.dbo.possibleInputsval=' or substring

(name(parent::*[position()=Numerical_Input_Val1]),

Numerical_Input_Val2, Numerical_Input_Val3)=’ Input_Val4"

/>

< WebServiceAttacks.dbo.possibleInputsval=Input_Val1 or

' Numerical_Input_Val2' = 'Numerical_Input_Val2" />

Combination and Probability Values

 –  , —  ,  ¡  ,  ¿  ,    ,    ,    ,

   ,    ,    ,  «  ,  »  , &  ,  ¢  ,

©  ,  ÷  ,  >  ,  <  ,  µ  ,  ·  ,  ¶  ,

 ±  ,  €  ,  £  , ®  ,  §  , ™  ,  ¥  ,

 °  ,  !  , @  ,  #  ,  $  , %  ,  ^  ,

&  ,  *  ,  ( , )  ,  _  ,  +  ,  =  ,  -  ,

 [ , ]  ,  {  ,  }  ,  \  ,  |  ,  ;  ,  :  ,    ,

   ,  /  ,  ?  ,  .  ,  >  ,  ,  ,  <  ,

 `  ,  ~  , A  , B  , C  , D  ,  E  ,

 F  , G  , H  ,  I  , K  ,  L  , M  ,

N  , O  ,  P  , Q  , R  ,  S  ,  T  ,

V  , X  , Y  ,  Z  ,  a  ,  b  ,  c  ,

 d  ,  e  ,  f  ,  g  ,  h  ,  i  ,  j  ,

 k  ,  l  , m  ,  n  ,  o  ,  p  ,  q  ,

 r  ,  s  ,  t  ,  u  ,  v  , w  ,  x  ,

 y  ,  z  ,  1  ,  2  ,  3  ,  4  ,  5  ,

 6  ,  7  ,  8  ,  9  ,  0 

 Charting Captcha Page Redirected XML Validation Handler Mechanism... 365

The Web Services acts as an agent of business logic to the user end or to the application programs. Once

the agents are compromised possibilities are, the entire system is compromised as in context of the Web

Applications Scenario as WebApps depends on Web Services. Web Service Engine needs an XML parser to

extract the required parameters from an incoming message. Exploiting this parser can successfully lead to

Denial of Service attacks. Web Services are designed in SGML type languages preferably XML so there are

some attacks like XML Injections, XSS and XPath Injections that targets the XML based Web Services to be

highly prevalent and even the Web Services designed using SOAP and offered over http. These attacks often

inject additional nodes or modify the existing nodes so as to change the operation parameters. Mitigations of

these attacks are must for security of Web Service and underlying Business Model to work properly.

These attacks can be accomplished due to the un-sanitized input to the Web Service or unauthorized

updating of the source code by injecting malicious code in Web Services. Among all the other reasons the

major threat to web service is the injection of malicious XML code by un-sanitized input to the Web

Service. In the coming sections various kind of attacks including the above named attacks are listed with

their detection and corrective measures.

4. PROCEDURE IN XML INJECTION PREVENTION

XML injection attacks occur by changing the internal component of the XML in order to compromise the

Web service application and to take control over the Web service. XML database stores the XSD that

Possible Injection Existing Possible Attacks Proposed Attack Mechanism Perf Evaluation

Combination

<WebServiceAttacks.dbo. 10 * 10 * 10 * 10 * 121*121 Restricted ahead before send-

possibleInputsval=”’ or = 14641*10^4 ing for processing

substring((//user[position()=

Numerical_Input_Val1]/child:: 
node()[position()=Numerical_

Input_Val2]), Numerical_

Input_Val3, Numerical_Input_

Val4)="Input_Val5&

quot; or ‘’Input_Val6'” />

< WebServiceAttacks.dbo. 10 * 10 * 10 * 121 = 121 Restricted ahead before send-

possibleInputsval=”’ or *10^3 ing for processing

substring(name(parent::*

[position()=Numerical_Input 
_Val1]), Numerical_Input_

Val2, Numerical_Input_Val3)

=Input_Val4" />

< WebServiceAttacks.dbo. 10 * 10 * 10 * 121 = 121 Restricted ahead before send-

possibleInputsval=”’ or *10^3 ing for processing

substring (name (parent::

*[position () = Numerical_ 
Input_Val1]), Numerical_

Input_Val2, Numerical_

Input_Val3)=’ Input_Val4" />

< Web Service Attacks.dbo. 121*10*10 = 121 * 10^2 Restricted ahead before send-

possible Inputsval=” Input_ ing for processing

Val1 or ‘ Numerical_Input_

Val2’ = ‘Numerical_Input_ 
Val2" />

366 A. Murugan and K. Vivekanandan

possess the data of the web application accessed by using XPATH. The problem arises when the input

provided by the user is not properly filtered by the system. This kind of XML Injection can be achieved by

injecting unsolicited content into an XML message, such as invalid XML characters.

When the user request the web service in order to claim the web service response action, the XML

Elements are being encrypted Using “TotientCiphering Algorithm” which will encrypt the user’s data in

the form of XML Schema by preventing the data’s from attacking criteria. This algorithm generates a Key

component to derive Cipher and Decipher formulation to transmit the data securely. The Size of the key is

considered to be 2048bits as the lower 1024 is least effective and higher 4096 is least secure. Memory

utilization is better in terms of storage allocation with 2048bits.

• Define what security tokens to accept and what parts to sign or encrypt using WS-Policy or WS

Policy Attachment;

• Validate the token and obtain a SAML token along with XACML information—the Web service

interacts with the STS (WS-Trust) to accomplish this;

• Define the security for the STS using WS-Policy (or WS-Policy Attachment or WS-Security Policy);

• Increase performance using WSSecureConversation for frequent message interactions; and describe

security for WS-SecureConversation using WS-Policy, WS-Policy Attachment, or WS Security Policy.

The hierarchical elements in Service oriented architecture with high end security model implementation

inovolves,

Input: SOAP message is the main requirement for both handlers to operate. It incorporates details about

how the message is to be present. The Entire Message needed to be decrypted before the handler is invoked

by the Message Content Handler.

Figure 3: XSD Validation Profile with restricting Patterns

Figure 2: Basic XML Data for User Profile in SOA

 Charting Captcha Page Redirected XML Validation Handler Mechanism... 367

Format Converter: Format Converter is the first component of the Message Content Handler architecture

that is unique to this architecture. Since, variant styles of analyses and manipulation require the message to

be in different formats, it led to the case that the format of the received message doesn’t possess the best

data structure to detect an attack. The Format Converter is designed to fix this issue by restructuring the

message object sent to the handler. This in turn makes the message usable to other component for its

designated attack types. The restructured and well –formatted message is then examined by Content Retriever.

Content Retriever: Content Retriever is similar to that of the Format Converter that acts as an unique

component to the Message Content Handler architecture. The Elements from the converted messages are

extracted by the content Retriever that detects the attack.

Attack Detection: Extracted Messages of the Content Retriever are utilized in the attack Detection step

to identify the attack. As validation requires a set of new object and is most necessary one, a necessary

Figure 4: Basic business flow 2 in Server Oriented Architecture

Figure 5: Basic business flow 3 in Server Oriented Architecture

368 A. Murugan and K. Vivekanandan

computation is done. Creating a SOAP Account from the received message to detect a XML/Digital Signature

Weakness attack, But finally, it may leads to a series of complicated steps to place new elements inside of

the message or remove them. This is a typical type of Necessary Computation.

The Attack Detection component performs detection with processes instantiated for a particular attack

type. When an attack has been identified, it compiles and sends the fault information to the Fault Generation

component. Otherwise, it passes the original message to the next handler in the handler chain. If it seems to

be final handler in the chain, the SOAP message is passed to the web service code.

5. PROCEDURE IN DISTRIBUTED DENIAL OF SERVICE PREVENTION

An innovative provoked algorithm is implemented in manipulating attack based on the parameters such as

threshold time, threshold values (Acceptable limits) for a SOA environment (This can be defined by the

system owner). Violating the values enables an automated prevention cover which can be redirected to the

prevention page which is manipulated and defined by the below captcha construction algorithm.

Captcha Construction Algorithmsteps

Steps Algorithm Step Details

1 Initialize the bitmap with specified BitmapHeight “H”, BitmapWidth “W”. Graphics Object “g” is initialized

with Image base as the Initialized Bitmap

2 Set the Graphics Smoothing Mode for the bitmap (The modes can be High Quality, High Speed and AntiAlias

property)

3 Initialize the rectangle zone for the output mode with the height and width specified.

4 Set the HatchStyle to define the background of the captcha. HatchStyle can be defaulted or assigned through a

HatchStyle Input which can be fed through the HatchBrush Typeconverter

5 End output HatchStyle can be achieved through the HatchBrush which is initialized with a HatchStyle created

associated with the color combination of forecolor and backcolor. Now the rectangle is filled with the brush

created. Now, we got the hatchstyle for the captcha.

6 The final process of content to be posted on the captcha can be achieved through font specification followed by

fontstyle. The input font style is type converted and initilialized for the font style. Format of the string and

LineAlignment for the style is assigned for the font to be displayed.

7 Through font Hatch brush the final data is filled in the graphics path between the specified rectangle width and height.

8 Dispose the methods for the brush, font and style.

CCPR algorithmic program (Charting Captcha Page Redirection algorithmic program) has been used by Page redirection Algorithm to

detect the occurrence of the vulnerabilities that prevents the adequate request to the online service. The interoperable elements trace are

taken forward by an effective algorithmic mechanism referred to as Multi-Attribute Host that traces the elements of the users such as

Ethernet address, IP Address and Port. Request prioritization is moreover considered to be the thought of as a DDOS attack in current

trend, wherein the users place associate degree incorrect operation within the SOAP body thereby employing a completely different SOAP

header. If a condition happens to reverse the online services that prioritizes the SOAP body over SOAP Action header, the uninvited users

places the wrong operation in SOAP body misleading completely by different SOAP header. The Modification apprehends within the

header and therefore the body of the SOAP dodges out the protocol filtering system.

Total Thres- Thres- Attack Attack Prevent Preventive Preventive Attack Attack Process Memory

Hits hold hold Start Detection ion Writes Write Writes Write Save Save

Time Value Time time Hits Count Bytes Count Bytes Cnt in

Count Count Bytes

20 5 8 08:51.0 09:26.0 7 1460 1121792 1484 1134080 24 12288

40 5 8 10:24.0 10:51.0 7 1519 1159168 1586 1204736 67 45568

60 5 8 12:43.0 13:19.0 7 1621 1234432 1725 1287680 104 53248

80 5 8 16:37.0 17:16.0 7 1760 1321472 1905 1399296 145 77824

100 5 8 22:20.0 22:44.0 7 1942 1451008 2133 1602560 191 151552

 Charting Captcha Page Redirected XML Validation Handler Mechanism... 369

Below is the table showing out the memory and process save values in case of prevention mechanism

through Captcha redirection Mechanism.

6. CONCLUSION

Web service is the prominent area of analysis since everybody relies on internet in today’s trend. This paper

took up some loop-holes and challenges in the web service area such as identifying an ineffective request

provision through IP address and XML injection detection with low weight Protocol. It also illustrated a

design model and effective algorithm to overcome the loop-hole stated by proposing a methodologyof

accessing the physical address to detect the unsolicited user and examining the XML with schema with

encoding strategies. Our Study and postulates with improved set of formulae found to be optimal option

than the existing scenarios.

REFERENCES

[1] Jiwei Huang, Student Member, IEEE, Chuang Lin, Senior Member, IEEE,Xiangzhen Kong, Bing Wei, and Xuemin

(Sherman) Shen, Fellow, IEEE. “Modeling and Analysis of DependabilityAttributes for Services Computing Systems”

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2014.

[2] Zhiyuan Tan, Aruna Jamdagni, Xiangjian He, Senior Member, IEEE,Priyadarsi Nanda, Member, IEEE, and Ren Ping

Liu, Member, IEEE, “A System for Denial-of-Service Attack Detection Based on Multivariate Correlation Analysis”

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014

[3] Zhe Fan, Yun Peng, Byron Choi, Jianliang Xu, and Sourav S. Bhowmick, “Towards Efficient Authenticated Subgraph

Query Service in Outsourced Graph Databases” IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO.

4, OCTOBER-DECEMBER 2014

[4] Yajuan Tang, Xiapu Luo, Qing Hui, and Rocky K. C. Chang, “Modeling the Vulnerability of Feedback-Control Based

Internet Services to Low-Rate DoS Attacks” IEEE TRANSACTIONS ON INFORMATION FORENSICS AND

SECURITY, VOL. 9, NO. 3, MARCH 2014.

[5] Nuno Antunes and Marco Vieira, University of Coimbra, Portugal, “Penetration Testing for Web Services” Published by

the IEEE Computer Society 0018-9162/14/$31.00 © 2014 IEEE

[6] Andrea Ceccarelli, Leonardo Montecchi, Francesco Brancati, Paolo Lollini,Angelo Marguglio, and Andrea Bondavalli,

Member, IEEE, “Continuous and Transparent User Identity Verification for Secure Internet Services” IEEE

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 3, MAY/JUNE 2015

[7] Nuno Antunes, Member, IEEE and Marco Vieira, Member, IEEE Computer Society, “Assessing and Comparing

Vulnerability Detection Tools for Web Services: Benchmarking Approach and Examples”, IEEE TRANSACTIONS ON

SERVICES COMPUTING, VOL. 8, NO. 2, MARCH/APRIL 2015

[8] Bo Ye1, Maziar Nekovee2, Anjum Pervez1, Mohammad Ghavami1, “Automatic trust calculation for service-oriented

systems”, The Institution of Engineering and Technology 2014,IET Softw., 2014, Vol. 8, Iss. 3, pp. 134–142

