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Abstract: In real world images the most considered challenge in image segmentation is intensity inhomogenity. 
Out of algorithms of image segmentation, region based algorithm is applied only for the homogeneity of 
images which does not provide accurate segmentation results for intensity inhomogenity. To deal with intensity 
inhomogenity of images, a novel region-based method is proposed in this paper. Firstly, based on the intensity 
inhomogenity of the image models, clustering property of local intensities of the image intensities is derived and 
a criterion function of local clustering for the image intensities in the neighborhood of each point is defined. The 
global criterion of image segmentation can be obtained by integrating the local clustering criterion function with 
respect to the neighborhood center. This global criterion defines in energy in terms of level set functions, in a 
level set formulation that represents partition of the image domain in the bias field that accounts for the intensity 
inhomogenity of the image. This method is able to together segment the image and estimate the bias field by 
minimizing this energy. This estimated bias field can be used for intensity inhomogenity correction. This method 
has been used for segmentation and bias correction of magnetic resonance (MR) images with promising 
results.
Keywords: Bias field, Inhomogenity, Intensity, Level-set, Segmentation.

Introduction1.	
Automated lung segmentation on chest magnetic resonance (MR) images is critical for efficient computer-
aided diagnosis (CAD) of pulmonary diseases [17-21]. Unfortunately, the huge range of images and diagnostic 
measurements for different lung pathologies make correct, fast, and low cost segmentation a challenge. For 
instance, pathology-related segmentation failures lose important data, being needed for studying radiation 
pneumonitis development. Intensity inhomogenity typically occurs in real-world images due to many reasons, 
such as illumination spatial variations and of imaging devices with imperfections, which raises many difficulties 
in image processing and computer vision. For the intensity inhomogenity images the image segmentation is 
difficult because of the overlaps among the intensity ranges in the segmented regions. So it is difficult to identify 
these regions based on the intensity value of the pixel. There are widely used image segmentation algorithms 

International Journal of Control Theory and Applications

ISSN : 0974-5572

„ International Science Press

Volume 10  •  Number 35  •  2017



K. Murali Krishna, Md. Zia Ur Rahman, B. Sowjanya Lakshmi, Ch. Padma Priya, A. Blessy and M. Thirumala Gayathri

International Journal of Control Theory and Applications 208

[1-4] based on intensity homogeneity, and are not valid for intensity inhomogenity images. Generally in image 
segmentation intensity inhomogenity is difficult.

Actually the level set method is used as numerical technique for interfaces and shapes tracking. In level 
set method, the surfaces are depicted as zero level set of the higher order dimensional function called, level set 
parameter. The segmentation problem can be solved with this level set method. The level set method is generally 
categorized into two classes: region based models [10-14] and edge-based models [5-7]. In region-based model 
it just identifies the region of interest using region descriptor. But it is difficult to define the region descriptor for 
the intensity inhomogenity images. Almost all the region-based models [8] are based on intensity homogeneity. 
In a novel region-based method [9], local intensity clustering property property is derived.

In this paper, we propose a novel region-based method for lung image segmentation. From a generally 
accepted model of images with intensity inhomogeneities, we derive a local intensity clustering property, and 
therefore define a local clustering criterion function for the intensities in a neighborhood of each point. This local 
clustering criterion is integrated over the neighborhood center to define an energy functional, which is converted 
to a level set formulation. Minimization of this energy is achieved by an interleaved process of level set evolution 
and estimation of the bias field. As an important application, our method can be used for segmentation and bias 
correction of magnetic resonance (MR) lung images.

LEVEL SET FORMULATIONS AND ENERGY MINIMIZATION2.	
We expressed the proposed energy PE in terms of the regions f1, …, fN. To derive the solution for the energy 
minimization problem from the expression PE is difficult. By representing the proposed energy PE in terms disjoint 
regions f1, …, fN with number of level set functions ,with a regularization term on these level set functions can 
be converted into level set formulation. By using well-established variation methods in the level set formulation 
we can solve the energy minimization problem.

Level set function is a function which is used to represent a partition of the domain f into two disjoint 
regions f1, …, fN by taking positive and negative signs.

Let W: f -> Q be a level set function, then its signs define two disjoint regions

	 F1 = {A : W(A) > 0}, and f2 = {A: W(A) < 0}	 (1)

Which form a partion of the domain f. Two or more level set functions can be used to represent M regions 
f1,….,fN in the case M > 2. The level set formulation of the energy PE

For the case of N = 2 and N = 2, called two-phase and multi phase formulations, respectively, will be given 
in the next two sub sections.

A. Two-phase Level Set Formulation
In this case The image domain f is segmented into two disjoint regions f1, …, fN. The regions f1, …, fN can be 
represented by their member functions F1(W) = H(W) and F2(W) = 1 - H(W), respectively, where H is Heaviside 
function. For M = 2, the energy can be expressed as the following level set formulation

	 PE = N B A I(A) (B) F (W( ))2M
( )-( )-ÚÂÚ =

y z a dax xx 1
	 (2)

By exchanging the order of integrations, we have

	 PE = N B A I(A) (B) F (W( ))2M
( )-( )-ÚÂÚ =

y z db a dax xx 1
	 (3)
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For, the constants are represented as z1, …, zM with a vector z = (z1, …, zM). Thus the level set function W, 
the vector z, and the bias field y are the variables of the energy PE, which can therefore be written as PE(W, z, y). 
From (3) we can rewrite the energy PE(W, z, y) in the following form:

	 PE(W, z, y) = exx =ÂÚ 1

M
(a)Fx(W(a))da	 (4)

where, ex is the function given by

	 ex(a) = NÚ (b - a) | I(A) - y(b)zx |
2db	 (5)

By using the equivalent expression the function ei can be computed

	 ei(a) = I21N - 2ZiI(y ¥ N) + zi
2(y2 ¥ N)	 (6)

where * is convolution operation, and 1N is the function defined by 1N(A) = N B A dB( )-Ú  which is equal to

constant 1 everywhere except near the boundary of the image domain F.

The above defined energy PE(W, z, y) is used as the data term in the energy [15-19] of the proposed variational 
level set formulation which is defined by

	 L(W, z, y) = PE(W, c, y) + ul(F) + mPR(W)	 (7)

Where l(F) and PR(W) are the regularization terms. They are defined as follows

	 l(W) = D WH( ) daÚ 	 (8)

which computes the length of the zero level counter of W and therefore serves to smooth the counter by penalizing 
its length. The energy term PR(F) is defined by

	 PR(W) = R DW( )Ú da 	 (9)

With a potential function R:[0, •) Æ O such that R(n) ≥ PR(1) for all s. i.e, s = 1 is a minimum point of R. 
In this paper, we use the potential function R defined by R(n) = (1/2)(s - 1)2. Obviously, with such a potential R, 
the energy PR(W) is minimized when | DW | = 1, which is the characteristic of a signed distance function, called the 
signed distance property. Therefore, the regularization term PR(W) is called a distance regularization term, which 
was introduced by Li et. al., [10] in a more general variational level set formulation called distance regularized 
level set evolution (DRLSE) formulation. Observe the equation [11] for the necessity and the mechanism of 
maintaining the signed distance property of the level set function in DRLSE.

We can obtain the result of image segmentation given by the level set function W and the estimation bias 
field b by minimizing this energy. With the help of iterative process we can achieve the energy minimization: in 
each iteration, we can minimize the energy L(W, z, y) with respect to each of its variables W, z and y, given the 
other two updated in previous iteration. We give the solution to the energy minimization with respect to each 
variable as follows:

1.	 Energy Minimization with Respect to W: The minimization of L(W, z, y) with respect to W can be 
achieved by using standard gradient descent method, namely, solving the gradient [20] flow equation 
by fixing z and y

	 ∂
∂

= - ∂
∂

W
Wt
L 	 (10)

	 where, ∂L/∂W is the Gateaux derivative [1]of the energy L.
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	 By calculus of variations [1], we can calculate the Gateaux derivative ∂L/∂W and express the equivalent 
gradient flow equation as

	 ∂
∂
W
t

 = -d(∆)(e1 - e2) + ud(W)div —
—

Ê
ËÁ

ˆ
¯̃

W
W

 + m div(dR(| —W |)—W)	 (11)

	 where, — is the gradient operator, div(.) is the divergence operator, and the function dp is defined as

	 dR(n) = ¢R ( )n
n

	 (12)

	 during the evolution of level set function according to [12] the constants z1 and z2 in z and the bias 
field y are updated by minimizing the energy PE(W, z, y) with respect to z and y, respectively, which 
are described below.

2.	 Energy Minimization with Respect to z: For fixed W and y, the optimal z that minimizes the energy 
PE(W, z, y), denoted by z = (zx, …, zM) is given by:

	 vx = 
( )

( )

y vxd

y vxd

¥

¥
Ú
Ú

N I B

N B2
, x = 1, …, M	 (13)

with vx(B) = Fx(W(B))

3.	 Energy minimization with respect to y: For fixed W and z, the optimal y that minimizes the energy 
PE(W, z, y), denoted by y, is given below

	 Y = IJ(1) N
J(2) N

¥
¥

	 (14)

	 where, J(1) = z vx xx =Â 1

M
 and J(2) = z vx xx

2
1=ÂM

.

	 The convolutions with a kernel function N in (14) confirm the slowly varying property of the derived 
optimal estimator y of the bias field.

Multiphase Level Set Formulation
For the case of M ≥ 3, we can use two or more level set functions W1, …, Wk to define M membership functions 
Fx of the regions fx, x = 1, …, M,

	 Fx(W(B), …, W(B)) = 
1

0
,

,
B

else
ŒÏ

Ì
Ó

fx

We use two level set functions W1 and W2, in the case M = 2 to define F1(W1, W2)H(W1)H(W2), F2 = (W1, 
W2) = H(W1)(1 - H(W2)), and F3(W1, W2) = 1 - H(W1) to give a three phase level set formulation [21] of our 
method. For the four-phase case M = 4, the definition of Fx can be defined as F1(W1, W2) = H(W1)H(W2), F2(W1, 
W2) = H(W1)(1 - H(W2)), F3(W1, W2) = (1 - H(W1))H(W2), and F4 = (1 - H(W1))(1 - H(W2)).

For simple notation we denote these level set functions W1, …, WN by a vector valued functions 
W = (W1, …, WN). Thus the membership function Fx(W1(y), …, WN(f)) can be written as Fx(W). The energy PE 
can be converted to multi phase level set formulation

	 PE(W, x, y) = ex xx
( ) ( ( ))A F A Da

M
W

=ÂÚ 1
	 (15)
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The energy function L in our multi phase level set formulation is defined by

	 L(W, z, y) = PE(W, z, y) + PR(W)	 (16)

The minimization of energy L(W, z, y) in (16) with respect to the variable W = (W1, …, WN), can be performed 
by solving the gradian flow equations:

	 ∂
∂
W1
t

 = - ∂
∂=Â FXM ( )W
W11x

 ex + ud(W1)div —
—

Ê

ËÁ
ˆ

¯̃
W
W

1
1

 + mdiv(dR(| —W1 | DW1)

	 ∂
∂
Wk
t

 = -
∂
∂=Â FM x

x k
( )W

W1
 ex + ud(Wk)div —

—
Ê

ËÁ
ˆ

¯̃
W
W

k
k

 + m div(dR(| —Wk |)—Wk).	 (17)

The minimization of the energy PE(W, z, y) can be achieved by the same procedure as in the two phase case. 
And this is easy to show that z and y that minimize the energy PE(W, z, y) with ux = Fx(W) for x = 1, …, N.

C. Numerical Implementation
Our method is straightforwardly implemented by using the same finite difference scheme as for the DRLSE 
provided in {PE} the level set evolution can be implemented. To implement the proposed level set method we use 
easy full domain implementation, we can use the narrow band implementation of the DRLSE which would greatly 
reduce the computation cost and make the algorithm significantly faster than the full domain implementation.

The Heaviside function H is replaced by a smooth function that approximates H, called the smoothed 
Heaviside function Hε, which is defined by

	 He(X) = 1
2

1 2+
Œ

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙p

arctan X 	 (18)

where, e = 1. Accordingly, the dirac delta function d, which is derivative of Heaviside Function H, is repaced 
by derivative of HŒ, which is computed by

	 de(X) = H¢e(X) = 1
2 2p

Œ
+e X

	 (19)

At each and every step, the constant z = (z1, …, zM) and the bias field b are updated according to (13) and 
(14). With vx = Fx(W).

The two convolutions y ¥ N and y2 ¥ N for the computation of ex also appear in the computation of e¢x 
for all x = 1 … N. Another two convolutions (IJ(1)) ¥ K and J(2) ¥ K for the bias field y. Thus there are a total 
of four convolutions to be computed at each time step during the evolution of W. The convolution kernel K is 
constructed as a w ¥ w mask, with w being the smallest odd number such that w ≥ 4 ¥ a + 1, when K is defined 
as the Gaussian kernel in PE. For example, given a scale parameter a = 4, the mask size is 16 ¥ 16.

The parameters such as m and the time step Dt, can be fixed as m = 1.0 and Dt = 0.1. Our model is not 
sensitive to the choice of the parameters. The parameter u is usually set to 0.001 ¥ 2552 as a default value for 
the most of digital images with intensity range in [0.225]. The parameter a and the size of the neighborhood Ob 
should be relatively smaller for images with more localized intensity in-homogeneties.

D. MR Image Segmentation and Bias Correction
The main focus of this subsection is to segmentation of the lung images as well as bias correction of those 
images. The first column of the Figure 1 shows the image to which results are obtained. These images display 
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clear intensity inhomogenities. The results of segmentation and estimated bias field and bias corrected images 
are observed in second, third and fourth column of the Figure 1 respectively. In bias corrected images, intensities 
become quite homogeneous which are within each tissue. The histograms of the bias corrected images and 
the original images are compared to demonstrate the improvement of the image quality in terms of intensity 
homogeneity. The histogram of original image is plotted in the fifth column and similarly histogram of the bias 
corrected image in the sixth column. In the histogram of the bias corrected image there are well separated peaks 
in which each corresponds to background in image. From comparison, it is clear that the histogram of original 
image does not have well separated peaks because of intensity distribution due to bias.

EXPERIMENTATION RESULTS3.	
First we substantiate our method in the phase of two cases. In this section the parameter s is set to five for this 
experiment. All the reaming parameters are set to the default values. The processes of curve evolutions are 
characterize by illustrate the left column has initial contours, the middle column has intermediate contours and 
finally the right column has the final contours. These two images can see clearly of intensity in homogeneities. 
The adorable segmentation result for such images by using in this method. The field of approximate bias ‘b’ used 
for intensity in homogeneities correction by using this method. The given estimating bias field b the corrected 
bias image quotient 1/b.  This method capability to prove the simultaneous segmentation and field estimation of 
bias. This method applied to the medical images. That is the x-ray image of lung shows the obvious intensity in 
homogeneities in these images. The ultrasound image is also corrupted with serious speckle noise. We applied a 
convolution with a Gaussian kernel to smooth the ultrasound image as a preprocessing step. The scale parameter 
of the Gaussian kernel is chosen as 2.0 for smoothing this ultrasound image. The initial contours are plotted 
on the original images in Figure 1(a). The corresponding results of segmentation, bias field estimation, and 
bias correction are shown in Figure 1(b), Figure 1(c), and Figure 1(d), respectively. These results demonstrate 
desirable performance of our method in segmentation and bias correction.

A. MR Image Segmentation and Bias Correction
In this paper we focus on the application of the proposed method to segmentation and bias correction of brain MR 
images. We show the results for MR image in Figure s(a). These images exhibit obvious intensity inhomogeneities. 
The segmentation results, computed bias fields, bias corrected images, are shown in Figure 2(b), Figure 2(d), 
and Figure 2(e) respectively. It can be seen that the intensities within each tissue become quite homogeneous in 
the bias corrected images. The improvement of the image quality in terms of intensity homogeneity can be also 
demonstrated by comparing the histograms of the original images and the bias corrected images. The histograms 
of the original images and the bias corrected images are plotted in Figure 2(f). There are three well-defined 
and well-separated peaks in the histograms of the bias corrected image, each corresponding to a tissue or the 
background in the image. In contrast, the histograms of the original images do not have such well-separated 
peaks due to the mixture of the intensity distribution caused by the bias.

CONCLUSION4.	
We have presented a deviational framework of level set method for segmentation and bias correction of image 
with intensity inhomogenities. Based on clustering property of local intensity, to represent the image domain’s 
partition and bias field that includes intensity inhomogenity, we defined energy of the level set functions. By 
minimizing the proposed energy functional, both segmentation and bias field estimation are jointly performed. 
The deviation property of bias field copied from the proposed energy is naturally protected by data term in 
deviational framework, without the demand to establish accurate smoothing term on the bias field. Compared 
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to piecewise smooth model, our method is more vigorous to initialization. Experimental results have determined 
preferable performance in terms of certainty, robustness and adaptability.

	 	
	 (a)	 (b)

	 	
	 (c)	 (d)

Figure 1: Application of our method to an MR image of lung. 
(a) Original Image, (b) Segmented Image, (c) Estimated bias field, (d) Bias Corrected Image

	 	
	 (a)	 (b)
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	 (c)	 (d)

	 	
	 (e)	 (f)

Figure 2: (a) Original image; (b): Final zero level contours of j1 (red) and j1 (blue), i.e. the segmentation result; 
(c): Segmented regions image (d): Estimated bias fields; (e): Bias corrected image; (f): Histograms of the 

original image and bias corrected images
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