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Abstract. The concepts of Feynman integrals in white noise analysis are
used to realize the Feynman integrand for a charged particle in a constant
magnetic field as a Hida distribution. For this purpose the velocity dependent
potential gives rise to a generalized Gauss kernel.

1. Introduction

As an alternative approach to quantum mechanics Feynman introduced the
concept of path integrals ([6, 7, 8]), which was developed into an extremely useful
tool in many branches of theoretical physics. In this article we use concepts for
realizing Feynman integrals in the framework of white noise analysis. The Feyn-
man integral for a particle moving from 0 at time 0 to y ∈ Rd at time t under the
potential V is given by

N

∫

x(0)=0,x(t)=y

∫

exp

(

i

~

∫ t

0

1

2
mẋ2 − V (x, ẋ) dτ

)

∏

0<τ<t

dx(τ), ~ =
h

2π
. (1.1)

Here h is Planck’s constant, and the integral is thought of being over all paths
with x(0) = 0 and x(t) = y.

In the last fifty years there have been many approaches for giving a mathemati-
cally rigorous meaning to the Feynman integral by using e.g. analytic continuation,
limits of finite dimensional approximations or Fresnel integrals. Instead of giving
a complete list of publications concerning Feynman integrals we refer to [2] and
the references therein. Here we choose a white noise approach. White noise anal-
ysis is a mathematical framework which offers generalizations of concepts from
finite-dimensional analysis, like differential operators and Fourier transform to an
infinite-dimensional setting. We give a brief introduction to white noise analysis
in Section 2, for more details see [14, 15, 23, 3, 20]. Of special importance in white
noise analysis are spaces of generalized functions and their characterizations. In
this article we choose the space of Hida distributions, see Section 2.
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The idea of realizing Feynman integrals within the white noise framework goes
back to [16]. There the authors used exponentials of quadratic (generalized) func-
tions in order to give meaning to the Feynman integral in configuration space
representation

N

∫

x(0)=0,x(t)=y

exp

(

i

~
S(x)

)

∏

0<τ<t

dx(τ), ~ =
h

2π
,

with the classical action S(x) =
∫ t

0
1
2mẋ2 − V (x) dτ . We use these concepts of

quadratic actions in white noise analysis, which were further developed in [12] and
[4] to give a rigorous meaning to the Feynman integrand

IV = Nexp

(

i

~

∫ t

0

m

2
ẋ(τ)2dτ +

1

2

∫ t

0

ẋ(τ)2dτ

)

× exp

(

−
i

~

∫ t

0

V (x(τ), ẋ(τ), τ) dτ

)

· δ0(x(t) − y) (1.2)

as a Hida distribution. In this expression the sum of the first and the third
integral in the exponential is the action S(x, ẋ), and the delta function (Donsker’s
delta function) serves to pin trajectories to y at time t. The second integral is
introduced to simulate the locally Lebesgue integral by a local compensation of the
fall-off of the Gaussian reference measure µ. Furthermore we use a two-dimensional
Brownian motion starting in 0 as the path i.e.

x(τ) =

√

~

m
B(τ). (1.3)

The construction is done in terms of the T -transform (infinite-dimensional version
of the Fourier transform w.r.t a Gaussian measure), which characterizes Hida dis-
tributions, see Theorem 2.4. At the same time, the T -transform of the constructed
Feynman integrands provides us with their generating functional. Finally using the
generating functional, we can show that the generalized expectation (generating
functional at zero) gives the Green’s function to the corresponding Schr̈ı¿1

2dinger
equation.

In this article we consider the potential given by the action of a constant mag-
netic field to a moving particle. From classical physics it is well-known, that a
magnetic field is influencing the so-called Lorentz force on a charged particle mov-
ing through this field. The corresponding potential term of a charged particle
moving in the (1, 2)-plane is given by

(x, ẋ) 7→ Vmag(x, ẋ) = −
qH3

c
(x1ẋ2 − ẋ1x2) ,

where q is the charge, H3 the strength of the magnetic field vector orthogonal to
the (1, 2)-plane and c the speed of light.

These are the core results of this article:

• The concepts of generalized Gauss kernels from [12] and [4] are used to
construct the Feynman integrand for a charged particle in a constant mag-
netic field as a Hida distribution, see Theorem 3.6.
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CHARGED PARTICLE AS HIDA DISTRIBUTION

• The results in Theorem 3.6 provide us with the generating functional for
a charged particle in a constant magnetic field.

• The generalized expectations (generating functional at zero) yields the
Green’s functions to the corresponding Schr̈ı¿1

2dinger equation.

2. White Noise Analysis

2.1. Gel’fand Triples. Starting point is the Gel’fand triple Sd(R) ⊂ L2
d(R, dx) ⊂

S′
d(R) of the R

d-valued, d ∈ N, Schwartz test functions and tempered distributions
with the Hilbert space of (equivalence classes of) Rd-valued square integrable func-
tions w.r.t. the Lebesgue measure as central space (equipped with its canonical
inner product (·, ·) and norm ‖ · ‖), see e.g. [28, Exam. 11]. Since Sd(R) is a nu-
clear space, represented as projective limit of a decreasing chain of Hilbert spaces
(Hp)p∈N, see e.g. [25, Chap. 2] and [9], i.e.

Sd(R) =
⋂

p∈N

Hp,

we have that Sd(R) is a countably Hilbert space in the sense of Gel’fand and
Vilenkin [9]. We denote the inner product and the corresponding norm on Hp

by (·, ·)p and ‖ · ‖p, respectively, with the convention H0 = L2
d(R, dx). Let H−p

be the dual space of Hp and let 〈·, ·〉 denote the dual pairing on Hp × H−p. Hp

is continuously embedded into L2
d(R, dx). By identifying L2

d(R, dx) with its dual
L2
d(R, dx)

′, via the Riesz isomorphism, we obtain the chainHp ⊂ L2
d(R, dx) ⊂ H−p.

Note that S′
d(R) =

⋃

p∈N

H−p, i.e. S
′
d(R) is the inductive limit of the increasing chain

of Hilbert spaces (H−p)p∈N, see e.g. [9]. We denote the dual pairing of Sd(R) and
S′
d(R) also by 〈·, ·〉. Note that its restriction on Sd(R)×L2

d(R, dx) is given by (·, ·).
We also use the complexifications of these spaces denoted with the subindex C (as
well as their inner products and norms). The dual pairing we extend in a bilinear
way. Hence we have the relation

〈g, f〉 = (g, f), f ,g ∈ L2
d(R)C,

where the overline denotes the complex conjugation.

2.2. White Noise Spaces. We consider on S′
d(R) the σ-algebra Cσ(S

′
d(R)) gen-

erated by the cylinder sets {ω ∈ S′
d(R)|〈ξ1, ω〉 ∈ F1, . . . , 〈ξn, ω〉 ∈ Fn}, ξi ∈ Sd(R),

Fi ∈ B(R), 1 ≤ i ≤ n, n ∈ N, where B(R) denotes the Borel σ-algebra on R.
The canonical Gaussian measure µ on Cσ(S

′
d(R)) is given via its characteristic

function
∫

S′

d
(R)

exp(i〈f ,ω〉)dµ(ω) = exp(− 1
2‖f‖

2), f ∈ Sd(R),

by the theorem of Bochner and Minlos, see e.g. [22], [3, Chap. 2 Theo. 1. 11]. The
space (S′

d(R), Cσ(S
′
d(R)), µ) is the basic probability space in our setup. The cen-

tral Gaussian spaces in our framework are the Hilbert spaces (L2) := L2(S′
d(R),

Cσ(S
′
d(R)), µ) of complex-valued square integrable functions w.r.t. the Gaussian

measure µ.
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Within this formalism a representation of a d-dimensional Brownian motion is
given by

Bt(ω) := (Bt(ω1), . . . , Bt(ωd)) := (〈1[0,t), ω1〉, . . . 〈1[0,t), ωd〉), (2.1)

with ω = (ω1, . . . , ωd) ∈ S′
d(R), t ≥ 0, in the sense of an (L2)-limit. Here 1A

denotes the indicator function of a set A.

2.3. The Hida triple. Let us now consider the Hilbert space (L2) and the cor-
responding Gel’fand triple

(S) ⊂ (L2) ⊂ (S)′.

Here (S) denotes the space of Hida test functions and (S)′ the space of Hida
distributions. In the following we denote the dual pairing between elements of (S)
and (S)′ by 〈〈·, ·〉〉. Instead of reproducing the construction of (S)′ here we give its
characterization in terms of the T -transform.

Definition 2.1. We define the T -transform of Φ ∈ (S)′ by

TΦ(f) := 〈〈exp(i〈f , ·〉),Φ〉〉, f := (f1, . . . , fd) ∈ Sd(R).

Remark 2.2. (i) Since exp(i〈f , ·〉) ∈ (S) for all f ∈ Sd(R), the T -transform of
a Hida distribution is well-defined.

(ii) For f = 0 the above expression yields 〈〈Φ, 1〉〉, therefore TΦ(0) is called the
generalized expectation of Φ ∈ (S)′.

In order to characterize the space (S)′ by the T -transform we need the following
definition.

Definition 2.3. A mapping F : Sd(R) → C is called a U-functional if it satisfies
the following conditions:

U1. For all f ,g ∈ Sd(R) the mapping R ∋ λ 7→ F (λf + g) ∈ C has an analytic
continuation to λ ∈ C (ray analyticity).

U2. There exist constants 0 < C,D < ∞ and a p ∈ N0 such that

|F (zf)| ≤ C exp(D|z|2‖f‖2p),

for all z ∈ C and f ∈ Sd(R) (growth condition).

This is the basis of the following characterization theorem. For the proof we refer
to [15, 19, 18, 24].

Theorem 2.4. A mapping F : Sd(R) → C is the T -transform of an element in
(S)′ if and only if it is a U-functional.

Theorem 2.4 enables us to discuss convergence of sequences of Hida distributions
by considering the corresponding T -transforms, i.e. by considering convergence on
the level of U-functionals. The following corollary is proved in [15, 19, 24].

Corollary 2.5. Let (Φn)n∈N denote a sequence in (S)′ such that:

(i) For all f ∈ Sd(R), ((TΦn)(f))n∈N is a Cauchy sequence in C.
(ii) There exist constants 0 < C,D < ∞ such that for some p ∈ N0 one has

|(TΦn)(zf)| ≤ C exp(D|z|2‖f‖2p)

for all f ∈ Sd(R), z ∈ C, n ∈ N.
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Then (Φn)n∈N converges strongly in (S)′ to a unique Hida distribution.

Example 2.6 (Vector valued white noise). Let B(t), t ≥ 0, be the d-dimensional
Brownian motion as in (2.1). Consider

B(t+ h,ω)−B(t,ω)

h
= (〈

1[t,t+h)

h
, ω1〉, . . . (〈

1[t,t+h)

h
, ωd〉), h > 0.

Then in the sense of Corollary 2.5 it exists

〈δt,ω〉 := (〈δt, ω1〉, . . . , 〈δt, ωd〉) := lim
hց0

B(t+ h,ω)−B(t,ω)

h
.

Of course for the left derivative we get the same limit. Hence it is natural to call
the generalized process 〈δt,ω〉, t ≥ 0 in (S)′ vector valued white noise. One also
uses the notation ω(t) = 〈δt,ω〉, t ≥ 0.

Another useful corollary of Theorem 2.4 concerns integration of a family of
generalized functions, see [15, 19, 24].

Corollary 2.7. Let (Λ,A, ν) be a measure space and Λ ∋ λ 7→ Φ(λ) ∈ (S)′ a
mapping. We assume that its T–transform TΦ satisfies the following conditions:

(i) The mapping Λ ∋ λ 7→ T (Φ(λ))(f) ∈ C is measurable for all f ∈ Sd(R).
(ii) There exists a p ∈ N0 and functions D ∈ L∞(Λ, ν) and C ∈ L1(Λ, ν) such

that

|T (Φ(λ))(zf)| ≤ C(λ) exp(D(λ) |z|
2
‖f‖

2
),

for a.e. λ ∈ Λ and for all f ∈ Sd(R), z ∈ C.

Then, in the sense of Bochner integration in H−q ⊂ (S)′ for a suitable q ∈
N0, the integral of the family of Hida distributions is itself a Hida distribution,

i.e.

∫

Λ

Φ(λ) dν(λ) ∈ (S)′ and the T–transform interchanges with integration, i.e.

T

(∫

Λ

Φ(λ) dν(λ)

)

(f) =

∫

Λ

T (Φ(λ))(f) dν(λ), f ∈ Sd(R).

Based on the above theorem, we introduce the following Hida distribution.

Definition 2.8. We define Donsker’s delta function at x ∈ R corresponding to
0 6= η ∈ L2

d(R) by

δ0(〈η, ·〉 − x) :=
1

2π

∫

R

exp(iλ(〈η, ·〉 − x)) dλ

in the sense of Bochner integration, see e.g. [15, 21, 28]. Its T –transform in f ∈
Sd(R) is given by

T (δ0(〈η, ·〉 − x)(f) =
1

√

2π〈η,η〉
exp

(

−
1

2〈η,η〉
(i〈η, f〉 − x)2 −

1

2
〈f , f〉

)

.
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2.4. Generalized Gauss Kernels. Here we review a special class of Hida dis-
tributions which are defined by their T -transform, see e.g. [16],[15],[12]. Proofs
and more details for can be found in [4]. Let B be the set of all continuous bilinear
mappings B : Sd(R)× Sd(R) → C. Then the functions

Sd(R) ∋ f 7→ exp

(

−
1

2
B(f , f)

)

∈ C

for all B ∈ B are U-functionals. Therefore, by using the characterization of Hida
distributions in Theorem 2.4, the inverse T-transform of these functions

ΦB := T−1 exp

(

−
1

2
B

)

are elements of (S)′.

Definition 2.9. The set of generalized Gauss kernels is defined by

GGK := {ΦB, B ∈ B}.

Example 2.10. [12] We consider a symmetric trace class operator K on L2
d(R)

such that − 1
2 < K ≤ 0, then
∫

S′

d
(R)

exp (−〈ω,Kω〉) dµ(ω) = (det(Id+ 2K))
− 1

2 < ∞.

For the definition of 〈·,K·〉 see the remark below. Here Id denotes the identity
operator on the Hilbert space L2

d(R), and det(A) of a symmetric trace class op-
erator A on L2

d(R) denotes the infinite product of its eigenvalues, if it exists. In
the present situation we have det(Id+ 2K) 6= 0. Therefore we obtain that the
exponential g = exp(− 1

2 〈·,K·〉) is square-integrable and its T-transform is given
by

Tg(f) = (det(Id+K))
− 1

2 exp

(

−
1

2
(f , (Id +K)−1f)

)

, f ∈ Sd(R).

Therefore (det(Id+K))
1

2 g is a generalized Gauss kernel.

Remark 2.11. i) Since a trace class operator is compact, see e.g. [25], we
have that K in the above example is diagonalizable, i.e.

Kf =

∞
∑

k=1

kn(f , en)en, f ∈ L2
d(R, dx),

where (en)n∈N denotes an eigenbasis of the corresponding eigenvalues
(kn)n∈N with kn ∈ (− 1

2 , 0], for all n ∈ N. Since K is compact, we have that

lim
n→∞

kn = 0 and sinceK is trace class we also have
∑∞

n=1(en,−Ken) < ∞.

We define for ω ∈ S′
d(R)

−〈ω,Kω〉 := lim
N→∞

N
∑

n=1

〈en,ω〉(−kn)〈en,ω〉.
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Then as a limit of measurable functions ω 7→ −〈ω,Kω〉 is measurable and
hence

∫

S′

d
(R)

exp(−〈ω,Kω〉) dµ(ω) ∈ [0,∞].

The explicit formula for the T -transform and expectation then follow by
a straightforward calculation with help of the above limit procedure.

ii) In the following, if we apply operators or bilinear forms defined on L2
d(R)

to generalized functions from S′
d(R), we are always having in mind the

interpretation as in 2.11.

Definition 2.12. [4] Let K : L2
d(R, dx)C → L2

d(R, dx)C be linear and continuous
such that:

(i) Id+K is injective.
(ii) There exists p ∈ N0 such that (Id+K)(L2

d(R, dx)C) ⊂ Hp,C is dense.
(iii) There exist q ∈ N0 such that (Id+K)−1 : Hp,C → H−q,C is continuous

with p as in (ii).

Then we define the normalized exponential

Nexp(−
1

2
〈·,K·〉) (2.2)

by

T (Nexp(−
1

2
〈·,K·〉))(f) := exp(−

1

2
〈f , (Id+K)−1f〉), f ∈ Sd(R).

Remark 2.13. The ”normalization” of the exponential in the above definition can
be regarded as a division of a divergent factor. In an informal way one can write

T (Nexp(−
1

2
〈·,K·〉))(f) =

T (exp(− 1
2 〈·,K·〉))(f)

T (exp(− 1
2 〈·,K·〉))(0)

=
T (exp(− 1

2 〈·,K·〉))(f)
√

det(Id+K)
, f ∈ Sd(R),

i.e. if the determinant in the Example 2.10 above is not defined, we can still define
the normalized exponential by the T-transform without the diverging prefactor.
The assumptions in the above definition then guarantee the existence of the gen-
eralized Gauss kernel in (2.2).

Example 2.14. For sufficiently ”nice” operators K and L on L2
d(R)C we can

define the product

Nexp
(

−
1

2
〈·,K·〉

)

· exp
(

−
1

2
〈·,L·〉

)

of two square-integrable functions. Its T -transform is then given by

T
(

Nexp(−
1

2
〈·,K·〉) · exp(−

1

2
〈·,L·〉)

)

(f)

=

√

1

det(Id+ L(Id +K)−1)
exp(−

1

2
〈f , (Id+K+ L)−1f〉), f ∈ Sd(R),
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in the case the right hand side indeed is a U-funcional.

Definition 2.15. Let K : L2
d(R, dx)C → L2

d(R, dx)C be as in Definition 2.12,
i.e. Nexp(− 1

2 〈·,K·〉) exists. Furthermore let L : L2
d(R, dx)C → L2

d(R, dx)C be trace
class. Then we define

Nexp(−
1

2
〈·,K·〉) · exp(−

1

2
〈·,L·〉)

via its T -transform, whenever

T
(

Nexp(−
1

2
〈·,K·〉) · exp(−

1

2
〈·,L·〉)

)

(f)

=

√

1

det(Id+ L(Id +K)−1)
exp(−

1

2
〈f , (Id+K+ L)−1f〉), f ∈ Sd(R),

is a U-functional.

In the case g ∈ Sd(R), c ∈ C the product between the Hida distribution Φ and
the Hida test function exp(i〈g, .〉 + c) can be defined because (S) is a continuous
algebra under pointwise multiplication. The next definition is an extension of this
product.

Definition 2.16. The pointwise product of a Hida distribution Φ ∈ (S)′ with an
exponential of a linear term, i.e.

Φ · exp(i〈g, ·〉+ c), g ∈ L2
d(R)C, c ∈ C,

is defined by

T (Φ · exp(i〈g, ·〉+ c))(f) := TΦ(f + g) exp(c), f ∈ Sd(R),

if TΦ has a continuous extension to L2
d(R)C and the term on the right-hand side

is a U-functional in f ∈ Sd(R).

Definition 2.17. Let D ⊂ R with 0 ∈ D. Under the assumption that TΦ has a
continuous extension to L2

d(R)C, η ∈ L2
d(R)C, y ∈ R, λ ∈ γα := {exp(−iα)s| s ∈ R}

and that the integrand

γα ∋ λ 7→ exp(−iλy)TΦ(f + λη) ∈ C

fulfills the conditions of Corollary 2.7 for all α ∈ D. Then one can define the
product

Φ · δ0(〈η, ·〉 − y),

by

T (Φ · δ0(〈η, ·〉 − y))(f) := lim
α→0

∫

γα

exp(−iλy)TΦ(f + λη) dλ.

Of course under the assumption that the right-hand side converges in the sense of
Corollary 2.5, see e.g. [12].

This definition is motivated by the definition of Donsker’s delta function, see
Definition 2.8.
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Lemma 2.18. [4] Let L be a d× d block operator matrix on L2
d(R)C acting com-

ponentwise such that all entries are bounded operators on L2(R)C. Let K be a d
×d block operator matrix on L2

d(R)C, such that Id+K and N = Id+K+ L are
bounded with bounded inverse. Furthermore assume that det(Id + L(Id +K)−1)
exists and is different from zero (this is e.g. the case if L is trace class and -1 in
the resolvent set of L(Id+K)−1). Let MN−1 be the matrix given by an orthogonal
system (ηk)k=1,...J of non–zero functions from L2

d(R), J ∈ N, under the bilinear
form

(

·,N−1·
)

, i.e. (MN−1)i,j =
(

ηi,N
−1ηj

)

, 1 ≤ i, j ≤ J . Under the assumption
that either

ℜ(MN−1) > 0 or ℜ(MN−1) = 0 and ℑ(MN−1) 6= 0,

where MN−1 = ℜ(MN−1)+ iℑ(MN−1) with real matrices ℜ(MN−1) and ℑ(MN−1),
then

ΦK,L := Nexp
(

−
1

2
〈·,K·〉

)

· exp
(

−
1

2
〈·,L·〉

)

· exp(i〈·,g〉) ·
J
∏

i=1

δ0(〈·,ηk〉 − yk),

for g ∈ L2
d(R,C), t > 0, yk ∈ R, k = 1 . . . , J , exists as a Hida distribution.

Moreover for f ∈ Sd(R)

TΦK,L(f) =
1

√

(2π)J det((MN−1))

√

1

det(Id+ L(Id+K)−1)

× exp

(

−
1

2

(

(f + g),N−1(f + g)
)

)

exp

(

−
1

2
(u, (MN−1)−1u)

)

, (2.3)

where

u =
((

iy1 + (η1,N
−1(f + g))

)

, . . . ,
(

iyJ + (ηJ ,N
−1(f + g))

))

.

3. The Feynman Integrand for a Charged Particle in a Constant

Magnetic Field

In classical physics a charged particle moving through a magnetic field H =
(0, 0, H3) has the Lagrangian

L(x, ẋ) =
1

2
m(ẋ1

2 + ẋ2
2 + ẋ3

2) +
qH3

c
(x1ẋ2 − ẋ1x2) ,

where m is the mass of the particle. We denote the constant in front of the
potential term by k := qH3

c
. We see that, besides the dependence on the spatial

coordinates, the potential term depends explicitly on the velocities.
Since the above three dimensional system can be separated to the free motion

parallel to the magnetic field vector and a motion in the plane orthogonal to the
magnetic field vector, we restrict ourselves to the two-dimensional system.

In the following we realize rigorously the ansatz

Imag = Nexp

(

i

~

∫ t

0

ẋ(τ)2

2m
dτ +

1

2

∫ t

t0

ẋ(τ)2
)

× exp

(

−
ik

~

∫ t

0

(x1(τ)ẋ2(τ) − ẋ1(τ)x2(τ)) dτ

)

· δ0(x(t) − y), (3.1)
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for the Feynman integrand of a charged particle in a constant magnetic field, with
the help of Lemma (2.18). See the introduction for a physical motivation. In
(3.1) the path x is realized by a two-dimensional Brownian motion starting in 0
at time t0 = 0. Then the first term in (3.1) can be written as an exponential of
quadratic type and gives a generalized Gauss kernel, see Definition 2.9. Indeed
with ~ = m = 1,

Nexp

(

i

∫ t

0

ẋ(τ)2

2
dτ +

1

2

∫ t

0

ẋ(τ)2
)

= Nexp

(

−
1

2
〈(ω1, ω2),K(ω1, ω2)〉

)

, (3.2)

with K := −(i + 1)P[0,t) := −(i + 1)

(

P[0,t) 0
0 P[0,t)

)

, where P[0,t) denotes the

orthogonal projection in L2(R)C given by the multiplication with 1[0,t).
In the following we derive the desired properties for applying Lemma 2.18. First

we write also the potential term in (3.1) in a quadratic way.

Proposition 3.1. The operator matrix

L = P[0,t)

(

0 ik (A−A∗)
ik (A∗ −A) 0

)

P[0,t), (3.3)

fulfills

1

2
〈f ,Lf〉 = −ik

t
∫

0

(∫ τ

0

f1(s) dsf2(τ) − f1(τ)

∫ τ

0

f2(s) ds

)

dτ, 0 ≤ t < ∞,

where f = (f1, f2) ∈ L2
2(R) and operator A is defined by

Af(τ) = 1[0,t)(τ)

∫

[0,τ)

f(s) ds, f ∈ L2(R), τ ∈ R.

A∗ denotes its adjoint w.r.t. the bilinear dual pairing 〈·, ·〉. Moreover L is sym-
metric w.r.t. 〈·, ·〉.

Proof. With L as above we have by the symmetry of the dual pairing

〈f ,Lf〉 =

〈(

f1
f2

)

,

(

0 ikP[0,t) (A−A∗)
ikP[0,t) (A

∗ −A) 0

)(

f1
f2

)〉

=
〈

f1, ikP[0,t)Af2
〉

−
〈

f1, ikP[0,t)A
∗f2
〉

+
〈

f2, ikP[0,t)A
∗f1
〉

−
〈

f2, ikP[0,t)Af1
〉

= 2
〈

f1, ikP[0,t)Af2
〉

− 2
〈

f2, ikP[0,t)Af1
〉

= 2ik

t
∫

0

(∫ τ

0

f1(s) dsf2(τ) − f1(τ)

∫ τ

0

f2(s) ds

)

,

since P[0,t) and A commute. �

Remark 3.2. If we extend 〈·,L·〉 informally to an element ω ∈ S′
2(R) we have

1

2
〈ω,Lω〉 = −ik

t
∫

0

Bτ (ω1)ω2(τ) −Bτ (ω2)ω1(τ) dτ, (3.4)
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where Bτ is the representation of a one-dimensional Brownian motion as in (4).
The term in (3.4) corresponds in this case with the potential term in the Feynman
integrand (3.1).

Lemma 3.3. The operator N : L2
2(R, dx)C → L2

2(R, dx)C given by

N := P[0,t)

(

−iId ik (A−A∗)
ik (A∗ −A) −iId

)

P[0,t) +P[0,t)c ,

is bijective. Here A and A∗ are as in Proposition 3.4, 0 < t < ∞.

Proof. We have

N = Id+K+ L

= P[0,t)

(

−i ik (A−A∗)
ik (A∗ −A) −i

)

P[0,t) +P[0,t)c

= −iP[0,t)N1P[0,t) +P[0,t)c . (3.5)

Denote the restriction of P[0,t)N1 to L2
2([0, t),R)C by N2. Then bijectivity of N2

implies bijectivity of N and

N−1 = iN−1
2 P[0,t) +P[0,t)c .

For this we show that N2 is Fredholm with ker(N2) = {0}.
First we show that

(

0 −k(A−A∗)
−k(A∗ −A) 0

)

=:

(

0 M
M∗ 0

)

is compact on L2
2([0, t),R)C. Then we have

N2 =

(

Id M
M∗ Id

)

,

is a compact perturbation of the identity on L2
2([0, t),R)C. We have

(Af) (τ) =

τ
∫

0

f(s) ds =

t
∫

0

1[0,τ)(s)f(s) ds,

(A∗f) (τ) =

t
∫

τ

f(s) ds =

t
∫

0

1[τ,t)(s)f(s) ds.

If 1[0,τ) and 1[τ,t) are Hilbert-Schmidt-kernels, the above integral operators A and

A∗ are compact operators on L2([0, t), dx)C and so are M and M∗. Indeed

t
∫

0

t
∫

0

(1[0,s)(τ))
2 dτds =

t
∫

0

t
∫

0

(1[s,t)(τ))
2 dτds =

1

2
t2 < ∞.
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Thus M as well as M∗can be written as the limit of a sequence of finite rank
operators (Mn)n∈N and (M∗

n)n∈N, respectively, in operator norm. Then:

sup
‖(f1,f2)‖≤1

∥

∥

∥

∥

∥

(

(

0 M
M∗ 0

)

−

(

0 Mn

M∗
n 0

)

)

(

f1
f2

)

∥

∥

∥

∥

∥

≤ sup
‖f1‖≤1

‖(M −Mn)f1‖+ sup
‖f2‖≤1

‖(M∗ −M∗
n)f2‖,

where the right hand side tends to zero as n goes to ∞. Hence,

(

0 M
M∗ 0

)

as

the limit of finite rank operators is compact.
It is left to show that ker (N2) = {0}. Let

(

Id M
M∗ Id

)(

f1
f2

)

=

(

0
0

)

.

This leads to the system

f1(s) = k

s
∫

0

f2(τ)dτ − k

t
∫

s

f2(τ)dτ, s ∈ [0, t),

f2(s) = k

t
∫

s

f1(τ)dτ − k

s
∫

0

f1(τ)dτ, s ∈ [0, t).

An analogue calculation as in the proof of Proposition 3.4, below, yields f1 ≡
f2 ≡ 0, which gives ker (N2) = {0}. �

Now we want to determine the prefactor in Equation (2.3). Recall that the de-
terminant of a diagonalizable operator is defined as the product of its eigenvalues,
if it exists. We have the following proposition.

Proposition 3.4. Let K be as in (3.2), L as in Proposition 3.1. Then

(i) For L(Id+K)−1 : L2
2(R, dx)C → L2

2(R, dx)C, the non-vanishing eigenval-
ues and their corresponding eigenvectors are

λn =
2k

(2n− 1)π
t,

en(·) = c1





1[0,t)(·) cos
(

2k
λn

·
)

1[0,t)(·) sin
(

2k
λn

·
)



+ c2





1[0,t)(·) sin
(

2k
λn

·
)

−1[0,t)(·) cos
(

2k
λn

·
)



 ,

n ∈ Z, c1, c2 ∈ C, where the multiplicity of the eigenvalues is 2.
(ii) We have for the determinant

det
(

Id+ L(Id +K)−1
)

= cos2(kt) .
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Proof. (i): We want to calculate the eigenvalues of

L(Id+K)−1

=

(

0 ikP[0,t) (A−A∗)P[0,t)

ikP[0,t) (A
∗ −A)P[0,t) 0

)

×

(

iP[0,t) + P[0,t)c 0
0 iP[0,t) + P[0,t)c

)

=

(

0 kP[0,t) (A
∗ −A)P[0,t)

kP[0,t) (A−A∗)P[0,t) 0

)

=

(

0 M
M∗ 0

)

P[0,t),

with M and M∗, as in Lemma 3.3, respectively. Hence we interpret the opera-
tor matrix as an operator from L2

2([0, t), dx)C into itself and restrict the desired
eigenfunctions from now on to this interval. Assume

(

0 M
M∗ 0

)(

en,1
en,2

)

= λn

(

en,1
en,2

)

,

(

en,1
en,2

)

∈ L2
2([0, t), dx)C, n ∈ Z.

Then

k (A∗ −A) en,2 = λnen,1(·) (3.6)

and k (A−A∗) en,1 = λnen,2(·). (3.7)

Differentiation yields

−2ken,2 = λne
′
n,1 and 2ken,1 = λne

′
n,2.

Hence

e′′n,1 +
4k2

λ2
n

en,1 = 0 and e′′n,2 +
4k2

λ2
n

en,2 = 0.

Due to general theory on ordinary differential equations, the solutions read

en,1(·) = c1 cos

(

2k

λn

·

)

+ c2 sin

(

2k

λn

·

)

(3.8)

and en,2(·) = d1 cos

(

2k

λn

·

)

+ d2 sin

(

2k

λn

·

)

, (3.9)

c1, c2, d1, d2 ∈ C. Inserting this into the integral Equation (3.7) we get

en,2(s) =
k

λn

s
∫

0

c1 cos

(

2k

λn

τ

)

+ c2 sin

(

2k

λn

τ

)

dτ

−
k

λn

t
∫

s

c1 cos

(

2k

λn

τ

)

+ c2 sin

(

2k

λn

τ

)

dτ, s ∈ [0, t),
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which leads to

en,2(s) = c1 sin

(

2k

λn

s

)

− c2 cos

(

2k

λn

s

)

+ c2

(

cos

(

2k

λn

t

)

+ 1

)

− c1 sin

(

2k

λn

t

)

, s ∈ [0, t).

Since en,2 is of the form (3.9) we have d1 = −c2, d2 = c1 and

c2

(

cos

(

2k

λn

t

)

+ 1

)

− c1 sin

(

2k

λn

t

)

= 0. (3.10)

Now of course (3.6) must also hold for s = 0, thus

λnc1 = λnen,1(0) = k

t
∫

0

c1 sin

(

2k

λn

τ

)

− c2 cos

(

2k

λn

τ

)

dτ,

which implies

c1

(

cos

(

2k

λn

t

)

+ 1

)

= −c2 sin

(

2k

λn

t

)

. (3.11)

First assume c1 = 0, then we have with (3.10)

c2

(

cos

(

2k

λn

t

)

+ 1

)

= 0,

and with (3.11)

−c2 sin

(

2k

λn

t

)

= 0.

But as we assume (en,1, en,2)
T to be an eigenvector, the functions en,1 and en,2

may not both be the zero function, i.e. c2 6= 0. Hence we have

sin

(

2k

λn

t

)

= 0 and cos

(

2k

λn

t

)

= −1,

which is equivalent to

2k

λn

t = (2n− 1)π,

for some n ∈ Z, i.e.

λn =
2k

(2n− 1)π
t, n ∈ Z.

If we assume c2 = 0, then

c1 sin

(

2k

λn

t

)

= 0 = c1

(

cos

(

2k

λn

t

)

+ 1

)

.

This again is equivalent to

2k

λn

t = (2n− 1)π,
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for some n ∈ Z, i.e. ,

λn =
2k

(2n− 1)π
t, n ∈ Z.

Assume c1 6= 0 6= c2, then we multiply (3.10) on both sides with (3.11) and obtain:

c1c2

(

cos2
(

2k

λn

t

)

+ 2 cos

(

2k

λn

t

)

+ 1

)

= −c1c2 sin
2

(

2k

λn

t

)

which gives

2 cos

(

2k

λn

t

)

= −

(

sin2
(

2k

λn

t

)

+ cos2
(

2k

λn

t

))

− 1.

Thus again

cos

(

2k

λn

t

)

= −1.

Inserted in (3.10), we also obtain

sin

(

2k

λn

t

)

= 0.

At first sight (3.10) and (3.11) give restrictions to the choice of c1 and c2. But
naturally, if we have an eigenvector consisting of the two functions en,1 and en,2,
corresponding to a certain λn, the factors of c1 and c2 in (3.10) and (3.11) become
zero and the aforementioned can be choosen arbitrary. So an eigenfunction to the
eigenvalue λn is always of the form

s 7→ en(s) =

(

en,1(s)
en,2(s)

)

= c1





cos
(

2k
λn

(s)
)

sin
(

2k
λn

(s)
)



+ c2





sin
(

2k
λn

(s)
)

− cos
(

2k
λn

(s)
)



 ,

where c1, c2 ∈ C are arbitrary and the involved vectors are clearly linearly inde-
pendent. Thus the dimension of the eigenspace corresponding to λn and therewith
its multiplicity is 2.

(ii): In (i) we calculated the eigenvalues and eigenfunctions of L(Id + K)−1

considered as an operator from L2
2([0, t), dx)C to itself. The eigenfunctions form

a basis of L2
2([0, t), dx)C, but surely not of L2

2(R, dx)C. However, we can extend
the set of eigenfunctions to a basis of L2

2(R, dx)C by adding an arbitrary basis
L2
2([0, t)

c, dx)C. Note that because of the projection on [0, t) in L(Id +K)−1 all
basis functions of L2

2([0, t)
c, dx)C are eigenvectors to the eigenvalue 0. Hence that

part of Id + L(Id + K)−1 is just a unit matrix and does not contibute to the
determinant.

Note for the nonvanishing eigenvalues of L(Id +K)−1 we have

λn = −λ−n+1, for all n ∈ Z,

thus

(1 + λn)(1 + λ−n+1) = 1− λ2
n.
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Finally

det
(

Id+ L(Id +K)−1
)

=
∏

n∈Z

(1 + λn)
2

=
∏

n∈N

(1 + λn)(1 + λ−n+1) =
∏

n∈N

(

1−
4k2

(2n− 1)2π2
t2
)2

= cos2(kt) .

�

In the following we calculate the preimages of η1 =

(

1[0,t)

0

)

and η2 =

(

0
1[0,t)

)

under N . With the help of this we can obtain
(

ηi,N
−1ηj

)

, 1 ≤ i, j ≤ 2, and
hence the matrix MN−1 used in Equation (2.3).

Proposition 3.5. Let N as in equation (3.5). Then

(i) N−1

(

1[0,t)

0

)

=

(

f1
f2

)

= f ∈ L2
2([0, t), dx)C,

(ii) N−1

(

0
1[0,t)

)

=

(

g1
g2

)

= g ∈ L2
2([0, t), dx)C,

with

f1(s) := i cos (2ks) + i
sin (2kt)

cos (2kt) + 1
sin (2ks) =: g2(s), s ∈ [0, t) (3.12)

f2(s) := i
sin (2kt)

cos (2kt) + 1
cos (2ks)− i sin (2ks) = − : g1(s), s ∈ [0, t). (3.13)

Proof. We have to check that

−i

(

Id M
M∗ Id

)(

f1
f2

)

=

(

1[0.t)

0

)

,

see the proof of Lemma 3.3. The corresponding system of equations reads

−if1 + ik (Af2 −A∗f2) = 1 (3.14)

ik (A∗f1 −Af1)− if2 = 0. (3.15)

Let s ∈ [0, t). Then

((A−A∗) sin(2k·)) (s) =

∫ s

0

sin(2kτ) dτ −

∫ t

s

sin(2kτ) dτ

= −
cos(2ks)

k
+

1 + cos(2kt)

2k
,

and

((A−A∗) cos(2ks)) (s) =

∫ s

0

cos(2kτ) dτ −

∫ t

s

cos(2kτ) dτ

=
sin(2ks)

k
−

sin(2kt)

2k
.
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Thus

((A−A∗)f2) (s)

= i
sin (2kt)

cos (2kt) + 1
((A−A∗) cos (2k·)) (s)− i ((A−A∗) sin (2k·)) (s)

= i(
sin (2kt)

cos (2kt) + 1
(
sin(2ks)

k
−

sin(2kt)

2k
) +

cos(2ks)

k
−

1 + cos(2kt)

2k
).

So we get

− if1(s) + ik (Af2(s)−A∗f2(s))

= cos(2ks) +
sin (2kt)

cos (2kt) + 1
sin (2ks)−

sin (2kt)

cos (2kt) + 1
sin(2ks)

+
sin2(2kt)

2 cos (2kt) + 1
− cos(2ks) +

1 + cos(2kt)

2
= 1.

Furthermore

((A∗ −A)f1) (s)

= i ((A∗ −A) cos (2k·)) (s) + i
sin (2kt)

cos (2kt) + 1
((A∗ −A) sin (2k·)) (s)

=
i

k

(

sin(2kt)

cos(2kt) + 1
cos(2ks)− sin(2ks)

)

.

And hence we obtain

− ik (Af1(s)−A∗f1(s))− if2(s)

= −
sin(2kt)

cos(2kt) + 1
cos(2ks) + sin(2ks) +

sin(2kt)

cos(2kt) + 1
cos(2ks)− sin(2ks) = 0.

Thus (i) is shown. (ii) can be shown analogously. An analogue computation also
can be done for g. �

Now all conditions of Lemma 2.18 are fulfilled. Hence we have the following
theorem.

Theorem 3.6 (Feynman integrand for a charged particle in a magnetic field). Let
0 ≤ 0 < t < ∞ with

2kt

π
/∈ Z.

Then the Feynman integrand Imag for a charged particle in a constant the magnetic
field exists as a Hida Distribution. Moreover the integrand can be written as

Imag = Nexp

(

−
1

2
〈ω,Kω〉

)

· exp

(

−
1

2
〈ω,Lω〉

)

· δ0 (Bt − y) ,
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where y = (y1, y2)
T ∈ R2 and the operators K as in (3.2) and L as in Proposition

3.1.Its T -transform in ϕ ∈ S2(R) is given by

TImag(ϕ) =
k

2πi

1

cos((kt)
exp

(

−
1

2

(

ϕ,N−1ϕ
)

)

× exp

(

−
ik

2
cot (kt)

(

(

iy1 +
1

2

(

1[0,t), (N
−1ϕ)1

)

+
1

2
(ϕ, f)

)2

+

(

iy2 +
1

2

(

1[0,t), (N
−1ϕ)2

)

+
1

2
(ϕ,g)

)2
))

,

for all ϕ ∈ S2(R). Here f = (1[0,t)f1,1[0,t)f2)
T ,g = (1[0,t)g1,1[0,t)g2)

T with

f1(s) = i cos (2kt) + i
sin (2kt)

cos (2kt) + 1
sin (2ks) = g2(s), s ∈ [0, t)

f2(s) = i
sin (2kt)

cos (2kt) + 1
cos (2ks)− i sin (2ks) = −g1(s), s ∈ [0, t).

The generalized expectation (T -transform in ϕ = 0) gives

TImag(0) =
k

2πi

1

cos (kt)
exp

(

ik

2
cot (kt)

(

y21 + y22
)

)

, (3.16)

which coincides with the Green’s function for a charged particle in a magnetic field
see e.g. [17], [11].

Proof. By Proposition 3.5 we have that MN−1 is completely imaginary and thus
fulfills the conditions of Lemma 2.18. The prefactor in the exponential function in
(2.3) exists whenever the cot(kt) 6= ∞, which is for kt 6= nπ, n ∈ Z. Furthermore
N is invertible by Theorem 3.3. By Proposition 3.4 we have the the determinant of
Id+L(Id+K)−1 exists and the prefactor in (2.3) is finite whenever the cos kt 6= 0,
i.e. kt 6= n+ 1

2 , for n ∈ N. Hence we have that the conditions of Lemma 2.18 are
fulfilled and

Imag = Nexp

(

−
1

2
〈ω,Kω〉

)

· exp

(

−
1

2
〈ω,Lω〉

)

· δ0 (Bt − y) ,

is a Hida disribution. The T -transform is provided by Lemma 2.18 �

Remark 3.7. At the critical time t, with kt
π

∈ Z or kt
π

∈ Z + 1
2Z the Feynman

propagator again is the Dirac delta function at 0. In the theory of Maslov (Morse)
correction this singularity is called caustics, see e.g. [12] Remark 5.2 and [27].
Another typical example for caustics besides that of a charged particle in a constant
magnetic field is the harmonic oscillator, [12]. Note that the Green’s function for
small times always exists.

Remark 3.8. In this article we considered the charged particle in a magnetic field
without any electric induced force. The system with an external electric force
F ∈ S∞

2 (R) is represented by the Lagrangian

L(x, ẋ) =
1

2
m(ẋ1

2 + ẋ2
2 + ẋ3

2) +
qH3

c
(x1ẋ2 − ẋ1x2)− Ḟx.
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The Green’s function for this system can be obtained by considering T (Imag)(F),
see e.g. [15, 11, 13].
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